soluble RNA–amino acid complex and microsomes and only to a lesser degree in the steps involving amino acids activation and transport. This step requires GTP as a cofactor. It is thus conceivable that an increased synthesis of proteins may be accompanied by an increased turnover of guanine nucleotides. Increase in 5'-nucleotidase and guanase activity of the cells as brought about by growth-hormone administration may be connected with an increased turnover of guanine nucleotides.

Growth-hormone administration is also seen to cause a decrease in xanthine-oxidase activity. Bergel, Bray, Haddow & Lewin (1957) have ascribed a key role to this enzyme in the purine cycle. Its activity is seen to decrease in phases of accelerated growth (Lamirande et al. 1958).

SUMMARY

1. Activities of 5'-nucleotidase, adenase, guanase and xanthine oxidase have been estimated in livers from normal and growth-hormone-treated rats.

2. Increased 5'-nucleotidase and guanase activities were found after growth-hormone administration; xanthine-oxidase activity fell.

Part of the results reported here are included in the M.Sc. thesis of N. C. Panda. Gift of Antuitrin-G from Parke, Davis and Co. Ltd. is gratefully acknowledged.

REFERENCES

Sumner, J. B. (1944). Science, 100, 413.

Biochem. J. (1962) 82, 179

Intracellular Distribution and Biosynthesis of Ubiquinone in Rat Liver in Carbon Tetrachloride Liver Injury

BY A. S. AIYAR AND A. SREENIVASAN

Central Food Technological Research Institute, Mysore, India

(Received 23 May 1961)

The fundamental metabolic deviation by which carbon tetrachloride administration results in fatty degeneration of liver is not yet clear. In recent reports on the changes in composition and function of the fatty liver cell particular attention has been paid to the mitochondria. A damage to mitochondrial integrity is accompanied by major biochemical alterations (Dianzani, 1954, 1955, 1956; Dianzani & Viti, 1955; Kasbekar, Lavate, Rege & Sreenivasan, 1959). Inhibition of certain enzymes (Dianzani, 1953) and activation of others (Lehninger, 1951; Berthet & de Duve, 1951; Schneider & Hogeboom, 1952a, b; Hogeboom & Schneider, 1953) latent in fresh mitochondria, especially of adenosine triphosphatase (Kielley & Kielley, 1951; Potter & Recknagel, 1951; Copenhagen & Lardy, 1952; Lardy & Wellman, 1952, 1953) have been reported.

Dianzani & Viti (1955) have observed decreases in both cytochrome c and pyridine nucleotides in fatty livers. Work in this Laboratory (Nadkarni, Wagle & Sreenivasan, 1957) has further shown that the biosynthesis in vivo of pyridine nucleotides from intraperitoneal administered nicotinamide is less in the carbon tetrachloride-treated animals. A decrease in hepatic coenzyme A has also been reported in fatty degeneration (Severi & Fonnesu, 1956; Heim, Leuschner & Ott, 1956). In view of the changes in cytochrome c and pyridine nucleotides, and in coenzyme A, which is known to be
necessary for the biosynthesis of ubiquinone (cf. Aiyar, Sulebele, Rege & Sreenivasan, 1959; Aiyar & Sreenivasan, 1961), a study of the alterations in ubiquinone levels in fatty livers is of interest.

In this paper we present data on the intracellular distribution of ubiquinone and on its biosynthesis in vitro by liver slices from labelled precursors.

EXPERIMENTAL

Adult male albino rats (Wistar strain) reared on the laboratory stock diet (cf. Kasbekar et al. 1959) and weighing 140–150 g. were administered intraperitoneally with 2·0 ml. of carbon tetrachloride/kg. body wt. The control animals were given corresponding quantities of distilled water. Where protection by vitamin B_{12} was studied, the vitamin (10 μg./animal) was given intraperitoneally 3 hr. before carbon tetrachloride injection, since maximal protection by the vitamin against fat accumulation has been shown under these conditions (Rege, 1953). The animals were killed at intervals of 0, 8, 24 and 48 hr. after administration of carbon tetrachloride. The livers were excised, chilled and homogenized in a previously chilled Potter–Elvehjem-type glass homogenizer to 10% suspensions in cold iso-osmotic (0·25 M) sucrose. Fractionation of the suspensions into cellular components was achieved by differential centrifuging. Nuclei and mitochondria were sedimented in an International PR-2 refrigerated centrifuge as described by Schneider & Hogeboom (1950), and microsomes and supernatant were separated in a Spinco model L preparative ultracentrifuge by the method of Palade & Siekverts (1955).

Portions of the liver were cut into thin slices with a Stadie tissue slicer (A. H. Thomas Co., U.S.A.) and were incubated in Krebs–Ringer phosphate buffer, pH 7·2 (cf. Kasbekar & Sreenivasan, 1959), containing either $[^{14}C_2]_2$acetate (10 μCi) or $[^{2,14}C]$mevalonate (10 μCi) together with 3μM-adenosine triphosphate and 60μM-glucose in a final volume of 4·0 ml. for 3 hr. in Warburg flasks at 37$^\circ$. At the end of the incubation period, the suspending medium was decanted off, and the slices were washed twice with the buffer and taken for estimation of ubiquinone.

Ubiquinone was estimated in the whole liver, and in cellular fractions, by the spectrophotometric method of Crane, Lester, Widmer & Hatfield (1959) after saponification and purification of the unsaponifiable lipids by chromatography on Brockmann grade III alumina (Festenstein, Lowe & Morton, 1955).

Ubiquinone in the liver slices was isolated by chromatography (Festenstein et al. 1955), and the counts were read in a Tracerlab SC-16 windowless gas-flow counter in conjunction with a Tracerlab SC-51 autoscaler. The ubiquinone was later determined spectrophotometrically (Crane et al. 1959).

Nitrogen was estimated by a micro-Kjeldahl method (Umbreit, Burris & Stauffer, 1946).

RESULTS AND DISCUSSION

Changes in ubiquinone (expressed/100 mg. of liver N) due to carbon tetrachloride administration with and without vitamin B_{12} protection are presented in Table 1. Carbon tetrachloride administration results only in an insignificant decrease in ubiquinone concentration of liver, whereas vitamin B_{12} exerts a protection against this change. Even though the total ubiquinone in liver per unit of nitrogen is only slightly decreased in the fatty livers, there is a marked reduction in the mitochondrial fraction, with concomitant increase in the supernatant fraction (Table 2). Similar alterations in the distribution of other mitochondrial components are known (Dianzani, 1955; Dianzani & Viti, 1955; Kasbekar & Sreenivasan, 1956).

Vitamin B_{12} affords almost complete protection against this alteration in the distribution of ubiquinone. This observation would further substantiate the view that vitamin B_{12} exerts its protection against carbon tetrachloride injury through a reversal of the changes in the mitochondrion (Kasbekar et al. 1959).

Studies on the incorporation of $[^{14}C_2]_2$acetate and $[^{2,14}C]$mevalonate into ubiquinone by liver slices (Table 3) reveal a greatly depressed incorporation by the injured slices. An explanation for this may be found in the reported decreases in coenzyme A (Severi & Fonnesu, 1956; Heim et al. 1956) and adenosine triphosphate (Dianzani, 1955) in fatty livers. Although coenzyme A is known to be involved in the biosynthesis of the isoprenoid side chain of ubiquinone from acetate (Aiyar et al. 1959; Aiyar & Sreenivasan, 1961), evidence has become available in recent years that maintenance of

Table 1. Effect of carbon tetrachloride administration on hepatic stores of ubiquinone

<table>
<thead>
<tr>
<th>Time after administration (hr.)</th>
<th>Nitrogen (mg./g.)</th>
<th>Ubiquinone (μg./100 mg. of N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Without vitamin B_{12}</td>
<td>With vitamin B_{12}</td>
</tr>
<tr>
<td>0</td>
<td>32·8±1·7</td>
<td>32·8±2·1</td>
</tr>
<tr>
<td>8</td>
<td>29·6±1·8</td>
<td>30·6±0·6</td>
</tr>
<tr>
<td>24</td>
<td>24·7±3·1</td>
<td>31·9±1·2</td>
</tr>
<tr>
<td>48</td>
<td>29·4±1·6</td>
<td>31·4±1·8</td>
</tr>
</tbody>
</table>
Table 2. Intronaccel distribution of ubiquinone in carbon tetrachloride liver injury

<table>
<thead>
<tr>
<th>Group</th>
<th>Whole liver</th>
<th>Nuclei</th>
<th>Mitochondria</th>
<th>Microsomes</th>
<th>Supernatant</th>
<th>Percentage of total in mitochondria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>367±21</td>
<td>82±7</td>
<td>148±11</td>
<td>59±4</td>
<td>25±3</td>
<td>40-0</td>
</tr>
<tr>
<td>Carbon tetrachloride administered</td>
<td>306±24</td>
<td>79±3</td>
<td>84±7</td>
<td>41±7</td>
<td>72±6</td>
<td>27-5</td>
</tr>
<tr>
<td>Carbon tetrachloride administered with vitamin B12 protection</td>
<td>341±22</td>
<td>74±9</td>
<td>126±12</td>
<td>66±11</td>
<td>37±6</td>
<td>37-0</td>
</tr>
</tbody>
</table>

Table 3. Biosynthesis of ubiquinone from labeled precursors by carbon tetrachloride-injured liver slices

Liver slices (500 mg.) were incubated in a system containing acetate (10 µc) or mevalonate (10 µc) with 3 µM ATP, and 60 µM-glucose in 4.0 ml of Krebs-Ringer phosphate buffer, pH 7.2, for 3 hr. Results are averages of four independent determinations±s.E.M.

<table>
<thead>
<tr>
<th>From [14C]acetate</th>
<th>Specific activity (counts/min./mg.)</th>
<th>From [2-14C]mevalonate</th>
<th>Specific activity (counts/min./mg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>(Counts/min.)</td>
<td>(Counts/min.)</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>204±21</td>
<td>745±94</td>
<td>341±61</td>
</tr>
<tr>
<td>Carbon tetrachloride administered</td>
<td>118±32</td>
<td>316±56</td>
<td>239±17</td>
</tr>
</tbody>
</table>

SUMMARY

1. Carbon tetrachloride administration results in a decrease in the mitochondrial ubiquinone and an increase in the ubiquinone of the supernatant fraction.

2. Administration of vitamin B12 3 hr. before carbon tetrachloride affords significant protection against this alteration in intracellular distribution of ubiquinone.

3. The incorporation of [14C]acetate and [2-14C]mevalonate into ubiquinone by liver slices is decreased by carbon tetrachloride administration.

Our thanks are due to the Indian Council of Medical Research for a research grant and to Dr V. Subrahmanyan, Director of this Institute, for his interest and encouragement. The gift of [2-14C]mevalonate used in these studies, from Dr O. Wiss, F. Hoffmann-La Roche and Co. Ltd., Basle, Switzerland, is gratefully acknowledged.

REFERENCES

Content and Intracellular Distribution of Ubiquinone in the Rat in Experimental Thyrotoxicosis

BY A. S. AIYAR AND A. SREENIVASAN
Central Food Technological Research Institute, Mysore, India

(Received 23 May 1961)

A functional relationship between thyroid activity and respiratory metabolism in animals has been suggested by many authors. Thus there have been reports of increased rates of oxygen consumption (Rossiter, 1940; Dunne & Tapley, 1960) and, more specifically, of succinate oxidation (Gemmill, 1951; Wolff & Ball, 1957) in tissues treated with the hormone. The first report of a direct influence of the thyroid hormone on concentrations of intracellular respiratory carriers came from Tipton, Leath, Tipton & Nixon (1945-46), who observed an increase in cytochrome oxidase in the hyperthyroid animal. Drabkin (1950) has observed an enhancement of cytochrome c stores in tissues in hyperthyroidism and has suggested that the increase in respiratory metabolism is a direct effect of the increase in cytochrome c, which probably is the rate-limiting component in the electron-transfer chain. Similar increases of cytochrome c and cytochrome oxidase in hyperthyroidism have since been found by others (Nikkila & Pitkanen, 1959; C. Bhuvaneswaran & A. Sreenivasan, unpublished work). Thyroxine also induces an increase in hepatic concentration of coenzyme A (Tabachnik & Bonnycastle, 1954; Turchetto, Sanguinetti & Rossi, 1965) and an enhancement of different coenzyme A-dependent reactions (cf. Barker, 1951; Solomon & Dowling, 1960; Kritchevsky, 1960).

We have observed that in pantothentic acid-deficient rats there is a decrease in liver ubiquinone (Aiyar, Sulebele, Rege & Sreenivasan, 1959; Aiyar & Sreenivasan, 1961) and also a lowered incorporation of [14C]acetate and [2-14C]mevalonate into liver ubiquinone (A. S. Aiyar & A. Sreenivasan, unpublished work). These experiments appear to indicate the involvement of coenzyme A in the biosynthesis of ubiquinone.

In view of these reports a study of the effect of experimental thyrotoxicosis on liver concentrations of ubiquinone, a recently recognized member of the electron-transport chain (Crane, Hatafi, Lester & Widmer, 1957), appeared to be of interest. Observations on the intracellular distribution of ubiquinone in the hyperthyroid rat liver, and the effect of vitamin B12 supplementation thereon are presented and discussed.

EXPERIMENTAL

Male rats, Wistar strain, were rendered thyrotoxic by feeding a purified 10% casein ration devoid of vitamin B12 and containing 0-10% of iodiandated casein (Protomone, Cerophyll Laboratories, Kansas, Mo., U.S.A.) (cf. Kasbekar, Lavate, Rege & Sreenivasan, 1959). Control rats without iodiandated casein as well as two more groups with vitamin B12 supplementation (200 μg./kg. of diet) of the basal and the iodiandated-casein-supplemented diets were also maintained. At the end of 8 weeks, when the animals fed the iodiandated casein showed obvious symptoms of thyrotoxicosis, the animals were exsanguinated. The livers were homogenized and subcellular fractions were prepared as described in the preceding paper (Aiyar & Sreenivasan, 1962).

Vitamin B12 in liver homogenates was determined microbiologically by using Euglena gracilis as test organism (Hoff-Jorgensen, 1954), and succinioxidase was determined manometrically by the method of Schneider & Potter (1943). Ubiquinone in whole liver and in subcellular fractions was estimated as in the preceding paper (Aiyar & Sreenivasan, 1962).