Activation of IP₃ receptors requires an endogenous 1-8-14 calmodulin-binding motif

Yi SUN¹ ², Ana M. ROSSI¹, Taufiq RAHMAN and Colin W. TAYLOR³
Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.

INTRODUCTION

Ca²⁺ channels allow most electrical and many chemical signals to be transduced into the changes in cytosolic Ca²⁺ concentration that regulate almost every aspect of cellular activity [1]. Most Ca²⁺ channels are also regulated by CaBP1, either directly or via CaM (calmodulin) [2]. This provides feedback regulation of Ca²⁺ signalling and it allows Ca²⁺ channels to evoke regenerative Ca²⁺ signals [3]. The latter are important because they underpin the versatility of Ca²⁺ as an intracellular messenger, permitting it to function either locally or globally [1].

Two major families of intracellular Ca²⁺ channels, IP₃Rs [IP₃ (inositol 1,4,5-trisphosphate) receptors] and RyRs (ryanodine receptors), share many structural [4,5] and functional [5–7] properties. Most notably, all IP₃Rs and RyRs are stimulated by low concentrations of cytosolic Ca²⁺ and inhibited by higher concentrations. Ca²⁺-binding sites within the RyR itself can mediate this biphasic Ca²⁺ regulation [7], but, for IP₃Rs, it remains unclear whether additional Ca²⁺-binding proteins are required [6]. None of the many Ca²⁺-binding sites in RyRs [8] or IP₃Rs [9] has been unambiguously associated with Ca²⁺ regulation of channel gating [10,11], although mutation of a single equivalent residue in RyRs or IP₃Rs (Glu2100 in IP₃R1) modulates their Ca²⁺-sensitivity [11]. Both families of intracellular Ca²⁺ channels are also regulated by CaM, a ubiquitously expressed and highly conserved Ca²⁺-binding protein [12]. Related proteins with EF-hand Ca²⁺-binding structures, such as S100A and CaBP1 (Ca²⁺-binding protein 1), also regulate RyRs and IP₃Rs, but the physiological significance of these interactions between intracellular Ca²⁺ channels and CaM or related proteins is unresolved [13,14]. Despite some conflicting evidence [15], CaM seems not to be essential for Ca²⁺ regulation of RyRs or IP₃Rs [16–18], but it does regulate both channels and it modulates their responses to Ca²⁺ [19–21].

All IP₃Rs are inhibited by Ca²⁺–CaM [22], but neither of the two CaM-binding sites within IP₃R1, nor a third that is created by alternative splicing [23], clearly mediates this inhibition of IP₃-evoked Ca²⁺ release. The central site [24] (Figure 1A) mediates neither Ca²⁺ nor CaM regulation of IP₃R activity [16,17] and it is absent from IP₃R3. The functional role of the split N-terminal site (Figure 1A), one component of which may also bind CaBP1 [25], is also unclear. It has been proposed to bind CaM and thereby to inhibit IP₃R activity, but only when Ca²⁺ has bound elsewhere [26]. The evidence that CaM inhibits IP₃R only in the presence of Ca²⁺, without CaM itself providing the Ca²⁺-sensor, is persuasive [26], but there is no compelling evidence to link this to the N-terminal CaM-binding site [27].

The links between CaM binding and function are better understood for RyRs, although the effects differ between RyR subtypes [7]. A single site on each RyR1 subunit (residues 3614–3643 in rabbit RyR1), which is conserved in all RyRs, binds the C-terminal lobe of both apo-CaM and Ca²⁺–CaM and appears to mediate the functional effects of CaM [20,28,29]. As this tethered CaM binds Ca²⁺, it migrates towards the NT (N-terminus) of the binding site and the CaM switches from activating RyR1 to inhibiting it [19]. The CaM-binding site of RyR1 also engages other CaM-like domains, notably the C-terminus of the L-type Ca²⁺ channel which inhibits RyR1 activity [30], and perhaps an EF-hand-like structure within the C-terminal region of RyR1 which binds Ca²⁺ and modulates Ca²⁺ regulation of RyR [31]. These observations suggest that the CaM-binding domain of RyR also mediates important inter- and intra-molecular interactions, and that the complex effects of CaM and related proteins may, at least in part, result from disrupting these interactions [29,31,32].

Abbreviations used: BCR, B-cell receptor; CaBP1, Ca²⁺-binding protein 1; CaM, calmodulin; CLM, cytosol-like medium; IP₃, inositol 1,4,5-trisphosphate; IBC, IP₃-binding core; IP₃-R, IP₃ receptor; MLCK, myosin light chain kinase; NT, N-terminus; RyR, ryanodine receptor; SD, suppressor domain.

¹ These authors contributed equally to this work.
² Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K.
³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk).
Figure 1 A putative 1-8-14 motif within the SD of the IP₃R

(A) Key features of a rat IP₃R showing the NT, with its component parts (SD and IBC), the six C-terminal transmembrane domains (TMD) that form the pore and the CaM-binding domains (yellow). Residue numbers are shown. (B) Comparison of 1-8-14 motifs showing the conserved hydrophobic residues of the consensus sequence in blue. Charged residues within the 1-8-14 motif are highlighted in red because the consensus motif has a net charge of +3 to +6. The lower panel shows the peptides used with mutated residues underlined. (C) Structure of the SD of IP₃R1 (PDB code 1XZZ) and the equivalent region (A domain) of RyR1 (PDB code 3HSM) with the pseudo-1-8-14 motif highlighted and compared with MLCK in the structure it adopts when bound to Ca²⁺–CaM (PDB code 1QTX).

For IP₃Rs, IP₃ binding to the IBC (IP₃-binding core) (residues 224–604) (Figure 1A) initiates the conformational changes that lead to opening of a pore formed by the C-terminal transmembrane domains of each of the four IP₃R subunits [5,33]. These conformational changes pass via the N-terminal SD (suppressor domain) (residues 1–223), which is essential for IP₃R activation. Indeed, the major conformational changes associated with IP₃R activation appear to occur within the NT (residues 1–604) [5,33]. Although both IP₃ and Ca²⁺ are required for IP₃R activation [6,34], it is not yet clear how the conformational changes initiated by IP₃ lead to Ca²⁺ binding and then to gating of the pore. It is therefore intriguing that a CaM-binding peptide derived from MLCK (myosin light chain kinase), which comprises a 1-8-14 CaM-binding sequence [35], reversibly inhibits IP₃-evoked Ca²⁺ release [36] via all three vertebrate IP₃R subtypes. Furthermore, MLCK peptide is more potent in the presence of Ca²⁺ [35]. This inhibition is entirely independent of CaM and involves interaction of MLCK peptide with the NT in a manner that requires the SD [35]. We speculate, by analogy with RyRs, that inhibition of IP₃Rs by MLCK peptide might result from disruption of an interaction between endogenous CaM-like and CaM-binding domains within IP₃Rs, and that, for IP₃Rs, this interaction is essential for activation. In the present study, we explored this hypothesis further.

EXPERIMENTAL

Materials

Cell culture materials were from Gibco, except for fetal bovine serum (Sigma). CaM purified from bovine brain was from Calbiochem. [³⁵S]IP₃ (18 Ci/mmol) was from PerkinElmer. IP₃ was from Alexis Biochemicals. Peptides were synthesized and purified by Sigma or New England Peptide, and each was shown to be >90% pure by HPLC. The peptide sequences are listed in Supplementary Table S1 (at http://www.biochemj.org/bj/449/bj4490039add.htm).
Site-directed mutagenesis

The NT (residues 1–604) and IBC (residues 224–604) of rat IP3R1 were amplified by PCR from the full-length receptor clone lacking the SI splice region (GenBank accession number GQ233532.1) as described previously [33]. The fragments were ligated into pTrcHis A (Invitrogen) to allow expression of N-terminally Histagged proteins. Mutagenesis of the 1-8-14 motif within the NT used the QuikChange® II XL site-directed mutagenesis kit (Stratagene) for single mutants (F53E, L60E, Y66E and K52E) and the QuikChange® multi-site-directed mutagenesis kit for the double mutant (F53E and Y66E). The primers used are listed in Supplementary Table S2 (http://www.biochemj.org/bj/449/bj4490039add.htm). The same primers and conditions were used for mutagenesis of full-length IP3R using IP3R1 in the pENTR1A vector. Full-length constructs were subcloned into pcDNA3.2/V5-DEST for expression in DT40 cells. The complete sequence of every mutant construct was verified by sequencing.

Culture and stable transfection of DT40 cells

DT40 cells in which the genes for all three IP3R subtypes had been disrupted (DT40-KO) [37] and DT40 cells stably expressing rat IP3R1 (DT40-IP3R1) were grown in RPMI 1640 medium supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) heat-inactivated chicken serum, 2 mM L-glutamine and 50 μM 2-mercaptopetoethanol. Cells were grown in suspension in 175 cm2 flasks at 37 °C in an atmosphere of 5% CO2. They were used or passed when they reached a density of ~2 x 106 cells/ml.

To generate stable cell lines expressing mutant IP3R, the mutant construct in pcDNA3.2/V5-DEST was linearized, and DT40 cells were transfected by nucleofection (Amazax, protocol B-23). Cell lines were selected with G-418 (2 mg/ml) and screened initially by Western blotting using a peptide antiserum to IP3R1 [38] as described previously [33], and then using the functional assay described below.

Ca2+ release from the intracellular stores of permeabilized cells

The free Ca2+ concentration of the intracellular stores of permeabilized cells was measured using a low-affinity Ca2+ indicator trapped within the endoplasmic reticulum as reported previously [39]. Briefly, DT40 cells (4 x 106 cells/ml) were suspended in HBS (Hepes-buffered saline: 135 mM NaCl, 5.9 mM KCl, 11.6 mM Hepes, 1.5 mM CaCl2, 11.5 mM glucose and 1.2 mM MgCl2, pH7.3) containing 1 mg/ml BSA, 0.4 mg/ml Pluronic F127 and 20 μM mag-fluo-4/AM (Invitrogen). After 1 h at 20 °C in the dark with gentle shaking, cells were centrifuged at 650 g for 2 min and resuspended to 105 cells/ml in Ca2+-free CLM (cytosol-like medium) (20 mM NaCl, 140 mM KCl, 1 mM EGTA, 20 mM Pipes and 2 mM MgCl2, pH 7.0) containing 20 μg/ml saponin. After incubation at 37 °C with gentle shaking for 4 min, permeabilized cells were centrifuged at 650 g for 2 min and resuspended in Mg2+-free CLM, supplemented with CaCl2, to give a final free Ca2+ concentration of 220 nM. The free Ca2+ concentration of CLM was calculated using the MaxChelator program (http://maxchelator.stanford.edu) and then measured using fluo-3 or fura-2. Cells were then washed, resuspended in Mg2+-free CLM containing 10 μM FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) to inhibit mitochondria, and distributed into a 96-well plate (106 cells in 50 μl of CLM/well). After centrifugation, fluorescence from the luminal indicator was recorded using a FlexStation II platereader (Molecular Devices) equipped to allow automated additions [39]. In all experiments, the intracellular stores were allowed to load to steady-state with Ca2+ after addition of MgATP. IP3 was then added with thapsigargin (1 μM, to inhibit Ca2+ reuptake). The Ca2+ release evoked by IP3, is expressed as a fraction of the ATP-dependent Ca2+ uptake.

Patch-clamp recording

Currents were recorded from patches excised from the outer nuclear envelope of DT40 cells expressing recombinant rat IP3R1 using symmetrical caesium methanesulfonate (140 mM) as the charge-carrier. The composition of recording solutions and methods of analysis were otherwise as described previously [40].

Expression of N-terminal fragments of IP3R

The pTrcHis constructs were used for expression of N-terminally Histagged proteins in Escherichia coli strain BL21(DE3) cells. Before use for [3H]IP3 binding, proteins were cleaved from the His tags using biotinylated thrombin (Novagen) at the engineered thrombin- cleavage site [33]. Complete cleavage was verified by Western blotting using an anti-His6 antibody. The proteins were used for [3H]IP3 binding, without further purification [33].

[3H]IP3 binding

Equilibrium-competition binding assays were performed at 4 °C for 5 min in CLM (500 μl) with a free Ca2+ concentration of 220 nM and containing [3H]IP3 (0.75–1.5 nM), bacterial lysate (10 μg protein for IBC and 100 μg protein for NT) or competing ligands. Non-specific binding was defined by addition of 10 μM IP3. Bound and free [3H]IP3, were separated by centrifugation at 20000 g for 5 min, after addition of poly(ethylene glycol) (15 % final concentration) and γ-globulin (0.75 mg) for soluble proteins. Results were analysed by fitting to a Hill equation (using GraphPad Prism) from which the IC50 (half-maximal inhibitory concentration) and thereby the Kd (equilibrium dissociation constant) were calculated [33].

Western blotting

Cells in Ca2+-free CLM containing 2-mercaptopetoethanol (1 mM) and protease inhibitors were lysed by addition of PopCulture (10 %), lysozyme (10 μg/ml), DNAse (5 units/ml) and RNase (10 μg/ml). The proteins were separated using SDS/PAGE pre-cast mini-gels (Invitrogen) and transferred on to a PVDF membrane using an Iblot dry-transfer apparatus (Invitrogen). The primary antibodies were rabbit anti-His6 (1:3000 dilution) (Sigma) and anti-IP3R1 (1:100 dilution) [33]. HRP (horseradish peroxidase)- conjugated anti-rabbit secondary antibodies (1:5000 dilution) (AbCam) and the Super Signal West Pico chemiluminescence reagent (Pierce) were used to detect immunoreactivity. Bands were quantified using GeneTools software (Syngene).

Statistical analysis

For comparisons of Kd, EC50 (half-maximally effective concentration) or IC50 values, their negative logarithms (pKd, pEC50 and pIC50; means ± S.E.M.) were used for statistical analyses. For clarity, some Figures show normalized results, but all statistical analyses were performed on the raw data using
paired or unpaired Student’s t tests. \(P < 0.05 \) was considered significant.

RESULTS AND DISCUSSION

Reversible inhibition of IP₃-evoked Ca²⁺ release by an endogenous 1-8-14 peptide

A sequence within the SD of all known IP₃Rs (residues 53–66 in rat IP₃R1; Supplementary Figure S1 at http://www.biochemj.org/bj/449/bj4490039add.htm) includes the critical hydrophobic residues of a 1-8-14 CaM-binding motif appropriately oriented within the known structure of the SD [41] (Figures 1B and 1C) and with the required net positive charge [35]. The sequence lies within one of the two regions (residues 49–81; Figure 1A) within the NT reported to bind CaM [42] and CaBP [14]. A similar sequence is present within the N-terminal of all RyRs (Supplementary Figure S1). To test our hypothesis that inhibition of IP₃R by MLCK peptide results from disruption of an essential interaction involving an endogenous 1-8-14 motif, we assessed the effects of a peptide derived from this motif (1-8-14 peptide; Figure 1B and Supplementary Table S1) on IP₃-evoked Ca²⁺ release.

The 1-8-14 peptide inhibited IP₃-evoked Ca²⁺ release via IP₃R without affecting either Ca²⁺ uptake or the sensitivity (EC₅₀) to IP₃ (Figures 2A–2D). A maximally effective concentration of the peptide reduced the maximal response to IP₃ by 77 ± 7% (Figure 2C). The IC₅₀ for 1-8-14 peptide was 767 μM (pIC₅₀, 3.1 ± 0.25) (Figure 2C). Neither a mutant 1-8-14 peptide, in which two IP₃ (Figures 2A–2D). A maximally effective concentration of the peptide reduced the maximal response to IP₃ by 77 ± 7% (Figure 2C). The IC₅₀ for 1-8-14 peptide was 767 μM (pIC₅₀, 3.1 ± 0.25) (Figure 2C). Neither a mutant 1-8-14 peptide, in which two IP₃(1-8-14C) nor scrambled (1-8-14 S) peptide had any effect on IP₃-evoked Ca²⁺ release (Figure 2C). Both MLCK peptide (isolectric point, 14.0) and 1-8-14 peptide (pI 11.6) are very basic and might therefore have inhibited IP₃-evoked Ca²⁺ release by binding directly to IP₃R. We demonstrated previously that this was not the case for MLCK peptide [35], and it is also unlikely for the 1-8-14 peptide. The 1-8-14 and 1-8-14S peptides are equally basic, but only the former inhibited IP₃R; the percentage inhibition caused by 3 mM 1-8-14 peptide is similar for all IP₃ concentrations (≈75%), and neither was the inhibition reduced by increasing the IP₃ concentration beyond that required to stimulate maximal Ca²⁺ release (Figure 2B). We conclude that 1-8-14 peptide inhibits IP₃-evoked Ca²⁺ release by binding to IP₃R.

The 1-8-14 peptide is only 16 residues long. A longer peptide (30 residues, 1-8-14S), which includes additional N- and C-terminal residues that are conserved in all IP₃Rs (Figure 1B and Supplementary Figure S1), also inhibited IP₃-evoked Ca²⁺ release without affecting Ca²⁺ uptake (Figure 2D). Although IP₃R may be slightly more sensitive to the longer peptide (IC₅₀, 326 μM; pIC₅₀, 3.5 ± 0.25) than to the 1-8-14 peptide (767 μM, 3.1 ± 0.25); the difference was not statistically significant. Subsequent studies used the shorter 1-8-14 peptide because it was less expensive.

The results shown in Figure 2(E) demonstrate that the effects of a maximally effective concentration of 1-8-14 peptide (3 mM) are fully reversible. These experiments, which require extensive washing of the cells between successive challenges with the peptide, confirm that the inhibition of IP₃Rs by the 1-8-14 peptide, like that by MLCK peptide [35], does not result from dissociation of CaM from IP₃R [36]. Our previous study demonstrated that MLCK peptide more potently inhibited IP₃R when the cytosolic free Ca²⁺ concentration was increased [35]. Similar results were obtained with 1-8-14 peptide (Figure 2F). We conclude that 1-8-14 peptide inhibits IP₃-evoked Ca²⁺ release by binding to the IP₃R and the inhibition is enhanced at elevated cytosolic Ca²⁺ concentrations.

Inhibition of single-channel currents through IP₃Rs by 1-8-14 peptide

In patch-clamp recordings from the nuclear envelope of DT40 cells expressing rat IP₃R1, a maximally effective concentration of IP₃ stimulated IP₃R activity and this was massively attenuated by the 1-8-14 peptide (3 mM) (Figures 3A and 3B). Our results are consistent with the peptide causing a 50% decrease in the mean channel open time (τₒ) (Figure 3C). However, the overall channel activity (NPₒ) was so low under these conditions that we cannot reliably estimate the number of active IP₃Rs (N) within each patch. We cannot therefore entirely eliminate the possibility that each patch fortuitously included several IP₃Rs and that their clustering caused τₒ to fall from ∼10 ms to ∼5 ms as we reported previously [40]. An effect on τₒ would be unusual because most regulators of IP₃Rs affect the duration of closed states (τᵣ). Because it was impossible to determine the number of active IP₃Rs in the presence of 1-8-14 peptide (see above), we could not reliably determine τᵣ. The single-channel conductance (γₒ) was unaffected by 1-8-14 peptide: it was 214 ± 6 pS (n = 3) and 209 ± 6 pS (n = 3) for control and peptide-treated IP₃Rs respectively (Figure 3D).

These results establish that a peptide derived from an endogenous 1-8-14 motif within the SD of the IP₃R is similar to MLCK peptide in causing substantial and reversible inhibition of IP₃Rs that is independent of CaM. This conclusion is consistent with our suggestion that MLCK peptide inhibits IP₃Rs by mimicking an endogenous 1-8-14 motif, and so perhaps ‘unzipping’ an interdomain interaction [43] that is essential for activation of IP₃Rs.

1-8-14 peptide uncouples IP₃ binding from activation of IP₃Rs

Removal of the SD increases the affinity of both full-length IP₃Rs and the NT for IP₃ [33]. We [33] have suggested that this reflects the use of binding energy to drive conformational rearrangement of SD-IBC interfaces during the initial steps of IP₃R activation [5,44].

1-8-14 peptide (3 mM) increased specific binding of [³H]IP₃ to full-length IP₃R1. Similar results were obtained with the NT, but IP₃ binding to the IBC was unaffected (Figure 4A). The latter demonstrates that 1-8-14 peptide does not interact directly with either the IP₃-compartment site or with IP₃. Neither the mutant (1-8-14C) nor scrambled (1-8-14S) peptide had any effect on IP₃ binding to the NT (Figure 4A). These results with IP₃R fragments expressed in E. coli, which lack CaM, also further support our conclusion that the effects of 1-8-14 peptide are entirely independent of CaM.

Comparison of the effects of 1-8-14 peptide on stimulating [³H]IP₃ binding to the NT (EC₅₀, 615 μM; pEC₅₀, 3.21 ± 0.19) (Figure 4B) with its inhibitory effect on IP₃-evoked Ca²⁺ release (IC₅₀, 767 μM; pIC₅₀, 3.1 ± 0.25) (Figure 2C) demonstrates that each is similarly sensitive to the peptide. These results are consistent with our hypothesis that the 1-8-14 peptide disrupts an interaction between the SD and IBC that is essential for IP₃R activation. The peptide thereby inhibits IP₃-evoked Ca²⁺ release (Figure 2) and IP₃R activity (Figure 3) and, by uncoupling IP₃ binding from subsequent conformational changes, it stimulates...
An essential 1-8-14 calmodulin-binding motif in IP₃ receptors

Figure 2 Inhibition of IP₃R by 1-8-14 peptide

(A) Typical recording of the free Ca²⁺ concentration within the endoplasmic reticulum of a population of permeabilized DT40-IP₃R1 cells showing Ca²⁺ uptake after addition of MgATP (1.5 mM), release of Ca²⁺ after addition of IP₃ (10 μM, with 1 μM thapsigargin to inhibit Ca²⁺ re-uptake) and inhibition of that release by 1-8-14 peptide (3 mM, present throughout as indicated, upper trace). Results are means ± S.E.M. for three replicates from a single experiment. (B) Concentration-dependent release of intracellular Ca²⁺ stores by IP₃ alone or after pre-incubation for 2.5 min with 1-8-14 peptide (3 mM). Inhibition by 1-8-14 peptide at each IP₃ concentration is also shown (%). 1-8-14 peptide caused a significant decrease in the maximal response (P < 0.001) without significantly changing the sensitivity to IP₃. (C and D) Permeabilized cells pre-incubated for 10–20 min with the indicated concentrations of peptide were stimulated with IP₃ (10 μM, in the continued presence of peptide). Results show the Ca²⁺ content of the stores before addition of IP₃, and the Ca²⁺ release evoked by IP₃. (E) Permeabilized cells were pre-incubated alone or with 1-8-14 peptide (3 mM) for 10–20 min, washed and then resuspended in CLM. Ca²⁺ release by IP₃ (10 μM) was then measured after a further incubation for 10–20 min with the indicated concentrations of 1-8-14 peptide. The Ca²⁺ release evoked by IP₃ with and without peptide is shown for naive cells and after the pre-treatment with 3 mM peptide. The results establish that the effects of 1-8-14 peptide are reversible. (F) Permeabilized cells pre-incubated with or without 1-8-14 peptide (1 mM) for 10–20 min were stimulated with a maximally effective concentration of IP₃ in the continued presence of peptide in CLM with the indicated free Ca²⁺ concentration. Results show the inhibition of IP₃-evoked Ca²⁺ release (%) by 1-8-14 peptide at each free Ca²⁺ concentration. Results in (B)–(F) are means ± S.E.M. (n ≥ 3). *P < 0.05, **P < 0.01 and ***P < 0.001.

IP₃ binding (Figure 4). Subsequent experiments used mutagenesis of residues within the endogenous 1-8-14 motif to test this hypothesis further.

Mutations within the endogenous 1-8-14 sequence increase IP₃-binding affinity

If, as we suggest, the 1-8-14 peptide disrupts an essential interaction between the endogenous 1-8-14 sequence and another domain within the NT, we might expect mutation of appropriate residues in the SD to both disrupt IP₃R activation and increase IP₃-binding affinity. We tested the latter prediction by examining IP₃ binding to the NT in which each of the critical (1, 8 and 14) hydrophobic/aromatic residues that are important for Ca²⁺–CaM binding to 1-8-14 motifs [45] was replaced with a charged hydrophilic residue (glutamate). The same hydrophobic residues are essential for MLCK [35] and 1-8-14 (Figure 2C) peptides to disrupt IP₃R activation.

NTs of IP₃R1 with point mutations in positions equivalent to the 1- (F53E), 8- (L60E) or 14-position (Y66E) of the
Figure 3 Inhibition of IP$_3$R gating by 1-8-14 peptide

(A) Typical recordings from excised nuclear patches stimulated with IP$_3$ (10 μM) with and without 1-8-14 peptide (3 mM) in the pipette solution. The holding potential was +40 mV. The closed state is shown. (B and C) NPo (B) and τo (C) for IP$_3$R stimulated with IP$_3$ alone or with 1-8-14 peptide (3 mM, +Pep). Results for IP$_3$RL60E are also shown. *P<0.05, **P<0.001 and ***P<0.0001 relative to native IP$_3$R without peptide. (D) Single-channel current (i)–voltage (V) relationships for the three stimulation conditions. Results in (B)–(D) are means ± S.E.M. (n⩾3).

Figure 4 1-8-14 peptide directly stimulates IP$_3$ binding to the NT of IP$_3$R

(A) Specific equilibrium binding of [3H]IP$_3$ (1.5 nM) to membranes from rat cerebellum (full-length IP$_3$R, FL) or to isolated NT or IBC, alone or in the presence of 3 mM of the indicated peptide. *P<0.05 and **P<0.01 relative to control; comparisons were performed on the raw data. (B) Concentration-dependent effects of 1-8-14 peptide on specific [3H]IP$_3$ binding to NT in CLM with 220 nM free Ca$^{2+}$ concentration, plotted as the increase in specific [3H]IP$_3$ binding as a percentage of that evoked by the maximal concentration of peptide. Results are means ± S.E.M. (n⩾3).

endogenous 1-8-14 motif (Figure 1A) were expressed in E. coli. Expression levels of the NT and its mutants were not identical (Figure 5A), but they were each sufficient to allow the affinity for IP$_3$ and the effects of peptides to be determined after cleavage of the His$_6$ tag, but without further purification [33]. As expected, IP$_3$ bound to the IBC with greater affinity (17-fold) than to the NT (Figure 5B) [33,46,47], consistent with our suggestion that, in the absence of the SD, less binding energy is diverted into conformational changes [33]. Mutation of critical residues within the endogenous 1-8-14 motif significantly increased the affinity of the NT for IP$_3$ (Figure 5B and Table 1), although none was as effective as complete removal of the SD. This is consistent with our observation that neither the 1-8-14 (Figure 2) nor MLCK [35] peptide entirely inhibits IP$_3$-evoked Ca$^{2+}$ release, whereas removal of the SD totally uncouples IP$_3$ binding from IP$_3$R activation [48]. Although maximally effective concentrations of MLCK (100 μM) or 1-8-14 (3 mM) peptides similarly increased IP$_3$ binding to the NT, neither peptide had any effect on [3H]IP$_3$ binding to the NT with mutations in any of the critical 1-8-14 residues (Figures 5C and 5D). Mutation of a residue immediately preceding the critical 1-position of the 1-8-14 motif (K52E), which did not increase the affinity of IP$_3$ for the NT (Supplementary Figure S2A at http://www.biochemj.org/bj/449/bj4490039add.htm), had no effect on the responses to MLCK or 1-8-14 peptides (Figures 5C and 5D) and neither did it affect IP$_3$-evoked Ca$^{2+}$ release [33] (Supplementary Figure S2B). These results establish that mutation of critical residues within the endogenous 1-8-14 motif selectively increases IP$_3$-binding affinity and these effects are non-additive with those of either MLCK or 1-8-14 peptide.

Mutations within the 1-8-14 motif selectively increase agonist affinity

Our hypothesis is that the apparent affinity of agonists (such as IP$_3$) for native IP$_3$Rs is reduced because some of their binding energy is diverted into the conformational changes that activate
An essential 1-8-14 calmodulin-binding motif in IP3 receptors

Figure 5 Mutations within the 1-8-14 motif mimic the effect of 1-8-14 peptide on IP3 binding

(A) Western blot (typical of three independent experiments) with an anti-His antibody of lysates (5 μg of protein/lane) from bacteria expressing NT with the indicated mutations. The 80 kDa molecular-mass marker is shown. (B) Concentration-dependent effect of IP3 on specific [3H]IP3 binding to the IBC, NT and mutated NT. (C and D) Effects of MLCK peptide (C, 100 μM) and 1-8-14 peptide (D, 3 mM) on specific binding of [3H]IP3 (1.5 nM) to the IBC, NT and mutated NT. Results in (B)–(F) are means ± S.E.M. (n ≥ 3). *P < 0.05, **P < 0.01 and ***P < 0.001 relative to control; comparisons were performed on the raw data.

Table 1 Binding of IP3 and heparin to N-terminal fragments of IP3R1

<table>
<thead>
<tr>
<th>Fragment</th>
<th>pKd/IP3 (Kd, nM)</th>
<th>Affinity relative to NT</th>
<th>pKd/heparin (Kd, ng/ml)</th>
<th>Affinity relative to NT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT</td>
<td>7.40 ± 0.11 (40.0)</td>
<td>1</td>
<td>6.62 ± 0.06 (239)</td>
<td>1</td>
</tr>
<tr>
<td>F53E</td>
<td>7.97 ± 0.05** (10.8)</td>
<td>4</td>
<td>6.92 ± 0.06** (120)</td>
<td>2</td>
</tr>
<tr>
<td>L60E</td>
<td>7.84 ± 0.08* (14.5)</td>
<td>3</td>
<td>6.70 ± 0.04 (200)</td>
<td>1.2</td>
</tr>
<tr>
<td>Y66E</td>
<td>7.64 ± 0.04 (22.8)</td>
<td>2</td>
<td>6.77 ± 0.03 (171)</td>
<td>1.4</td>
</tr>
<tr>
<td>IBC</td>
<td>8.62 ± 0.05*** (2.4)</td>
<td>17</td>
<td>6.93 ± 0.04** (117)</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Mutations within the endogenous 1-8-14 sequence on binding to the NT of heparin, a competitive antagonist of IP3, demonstrated that removal of the SD increased the affinity of the NT for IP3 17-fold, causing only a 2-fold increase in the affinity for heparin. Point mutations within the endogenous 1-8-14 motif also caused larger increases in the affinity for IP3 than for heparin (Figures 5E and 5F, and Table 1). These results are important because they demonstrate that the effects of the SD and of mutations within the 1-8-14 sequence on ligand binding are specific for an agonist of the IP3R. They thereby demonstrate the importance of the 1-8-14 motif in specifically mediating activation of IP3Rs.

Mutations within the endogenous 1-8-14 motif uncouple IP3 binding from gating of IP3Rs

It proved difficult to establish stable DT40 cell lines expressing rat IP3R1 in which critical residues within the 1-8-14 motif were mutated, but we succeeded with two mutants (Figure 6A). The first (IP3R1/E6) is mutated at the 8-position of the 1-8-14 motif within the endogenous 1-8-14 sequence on binding to the NT of heparin, a competitive antagonist of IP3. The results demonstrate that, whereas removal of the SD increased the affinity of the NT for IP3 17-fold, it caused only a 2-fold increase in the affinity for heparin. Point mutations within the endogenous 1-8-14 motif also caused larger increases in the affinity for IP3 than for heparin (Figures 5E and 5F, and Table 1). These results are important because they demonstrate that the effects of the SD and of mutations within the 1-8-14 sequence on ligand binding are specific for an agonist of the IP3R. They thereby demonstrate the importance of the 1-8-14 motif in specifically mediating activation of IP3Rs.
The endogenous 1-8-14 motif is essential for activation of IP₃R

(A) Expression of IP₃R in DT40 cells stably expressing each of the indicated mutants. Each lane was loaded with 4 × 10⁵ cells and probed with antisera to IP₃R1 (upper panel) or β-adaptin (lower panel). The R568Q mutant (which reduces the affinity of the IP₃R for IP₃) [50] is shown because it provides a control for functional assays of cells expressing IP₃R at low density. Molecular-mass markers are shown on the right. The Western blot is typical of three independent experiments. The lower panel shows summary results (means ± S.E.M., n = 3), where IP₃R expression was calculated from blots that included DT40-IP₃R1 membranes in which levels of expression were established by equilibrium competition [3H]IP₃ binding. (B) Typical responses to IP₃ (10 μM) from DT40 cells lacking IP₃R (KO) or expressing wild-type IP₃R1 or IP₃R with the indicated mutations (see the text for details). (C) Summary results show the Ca²⁺ content of the loaded stores (histograms) for each of the indicated cell lines. (D) Specific [3H]IP₃ binding (1.5 nM) to full-length IP₃R (FL) with the indicated mutations (L60E or FY, see the text for details) in permeabilized DT40 cells alone or in the presence of 100 μM MLCK peptide. Results in (C) and (D) are means ± S.E.M. (n ≥ 3). (E) Typical records from active excised nuclear patches of DT40 cells expressing IP₃R1 or IP₃R1L60E stimulated with IP₃ (10 μM). The holding potential was +40 mV. C denotes the closed state. Summary data are provided in Figures 3(B)–3(D). **P < 0.01, ***P < 0.001 and ****P < 0.0001 relative to IP₃R1 (A and C) or control (D).

We were concerned that the lower level of expression of mutant IP₃R relative to wild-type (~30–50 %, Figure 6A) might have contributed to the lack of detectable IP₃-evoked Ca²⁺ release. However, in another stable DT40 cell line where the IP₃-binding site was mutated (R568Q), causing a ~10-fold decrease in IP₃ affinity [50], IP₃R expression (~15 % of wild-type) was less than half that of the cell lines with mutations in the 1-8-14 motif (Figure 6A). Nevertheless, IP₃ caused a readily detectable release of Ca²⁺ from the intracellular stores of DT40-IP₃R₄₆₆₈Q cells (49 ± 2 % of that detected in DT40-IP₃R₁ cells) (Figures 6B and 6C). We conclude that the lack of detectable Ca²⁺ release in cells expressing IP₃R with a mutant 1-8-14 motif is not attributable to reduced IP₃R expression. Neither is it likely that the lack of response to IP₃ from mutant IP₃R reflects a more global disruption of IP₃R structure because each of the full-length mutant IP₃Rs bound IP₃, although, as predicted, addition of MLCK peptide increased IP₃ binding to only the wild-type IP₃R (Figure 6D). Furthermore, DT40 cells expressing IP₃R₁ with a mutation in an adjacent residue (DT40-IP₃R₁K₅₂E) responded normally to IP₃ [33] (Supplementary Figure S2B). These results are consistent with the suggestion that mutations within the endogenous 1-8-14 motif mimic addition of exogenous MLCK peptide by uncoupling IP₃ binding from the conformational changes that lead to opening of the IP₃R pore. Single-channel analyses provide further support for this conclusion.

Yamazaki et al. [51] reported recently the functional effects of mutations within IP₃R including some within the 1-8-14 motif (F53D and Y66A). We note, however, that some of their
mutations, e.g. Y167A, which is clearly implicated in IP₃R activation, abolished IP₃-evoked Ca²⁺ release from microsomes without affecting Ca²⁺ signals evoked by activation of the BCR (B-cell receptor) in intact cells. This unexplained disparity casts some doubt over whether in these assays responses from intact cells faithfully report the activity of IP₃R. In DT40 cells expressing an IP₃R with five mutations that included Y66A (the 14-position of the 1-8-14 motif), activation of the BCR evoked a Ca²⁺ signal, suggesting that the mutant IP₃R was functional [51]. However, in this IP₃R, the mutant had one hydrophobic residue replaced by another and this might not radically affect the behaviour of the 1-8-14 motif. In preliminary analyses of cells expressing IP₃Rs in which the first position of the 1-8-14 motif was mutated (F53D), Ca²⁺ signals were also observed after activation of the BCR [51]. This may reflect a limitation of the BCR-based assay (see above) or it may provide evidence for a lesser role of the 1-position in the 1-8-14 motif. We have not succeeded in establishing a DT40 cell line expressing IP₃Rs with only this mutation, although our results do clearly show that IP₃Rs with mutations in both the 1- and 14-positions (IP₃R⁷⁷) are barely responsive to IP₃R₁ (Figure 6).

Mutation of the endogenous 1-8-14 motif attenuates IP₃Rs gating without affecting single-channel conductance

In keeping with the reduced expression of IP₃R₁₆₀₆₆ in DT40 cells (Figure 6A), the frequency with which functional IP₃Rs were detected in excised nuclear patches was much lower for nuclei from paired experiments with DT40-IP₃R₁₆₀₆₆ cells (three of 48 patches) than from DT40-IP₃R₁ cells (five of 13 patches). In parallel analyses, functional IP₃Rs were never detected in DT40-KO cells (none of 30 patches). The single-channel conductances (γₜₜ) of the mutant IP₃R₁₆₀₆₆ (209 ± 8 pS) and normal IP₃R (214 ± 6 pS) were indistinguishable (Figure 3D), but Nₚₜ was massively decreased in the mutant (Figures 3B and 6E). Our interpretation of the latter is, as we described in our analyses of the 1-8-14 peptide, limited by our inability, when Nₚₜ is so low for IP₃R₁₆₀₆₆, to estimate reliably the number of active IP₃Rs within a patch. Nevertheless, it is clear that the major effect on single-channel behaviour of mutating the endogenous 1-8-14 motif of IP₃R₁ (Figures 3B–3D and 6E) and of adding 1-8-14 peptide to normal IP₃R₁ (Figure 3) is similar: both decrease Nₚₜ without affecting γₜₜ. These results establish that mutations in the endogenous 1-8-14 motif or addition of 1-8-14 peptide uncouple ligand binding from channel gating without compromising the behaviour of the pore.

Conclusions: interactions between endogenous 1-8-14 and CaM-like motifs mediate activation of IP₃Rs

CaM [22] or related EF-hand-containing proteins [14,25], peptides that comprise 1-8-14 CaM-binding motifs [35,36] (Figures 2–4) or disruption of a conserved endogenous 1-8-14-like motif within the SD of IP₃Rs inhibit IP₃-evoked Ca²⁺ release (Figures 5 and 6) by massively reducing Nₚₜ of IP₃R (Figures 3 and 6E). We conclude that an endogenous 1-8-14 motif within the SD (Figure 1) is essential for IP₃R activation. Where it has been examined, the inhibitory proteins or peptides are more potent when Ca²⁺ is bound to the IP₃R [26,35] (Figure 2F). We therefore speculate that the endogenous 1-8-14 motif may interact with an unidentified domain that includes an EF-hand-like structure and that these interactions might be related to Ca²⁺ regulation of IP₃R (Figure 7). We suggest that competing peptides (CaM-like or 1-8-14 motifs) or mutagenesis of the endogenous 1-8-14 motif inhibit IP₃Rs by disrupting this essential interaction in a manner similar to the "unzipping" of interdomain interactions in RyRs [32,43,52]. The scheme is appealing because IP₃ regulates binding of Ca²⁺ to IP₃Rs and thereby leads to channel gating [34,53]. The identity of this Ca²⁺-binding site is unknown. It is, however, clear that Ca²⁺ regulates IP₃ binding to the NT only when the SD is present [42], suggesting that a Ca²⁺-binding site within the NT may be regulated by interactions between the SD and IBC. One
possibility is that an endogenous EF-hand-like structure might provide the Ca\(^{2+}\)-binding site and that its interaction with the 1-8-14 motif links IP\(_3\) and Ca\(^{2+}\) binding (Figure 7A). Bioinformatic analyses had suggested the presence of two possible EF-hand-like structures within the IBC [9,54], but neither is evident in high-resolution structures of the IBC [55] and NT [5,56]. Neither have we succeeded in identifying a complementary partner of the 1-8-14 motif. Another possibility is suggested by comparison of the structures of the NT with and without IP\(_3\) bound [5,56], which reveal that Phe\(^{53}\) (the first hydrophobic residue in the \(\beta\)-domain of the IBC (Glu\(^{426}\)). This brings Glu\(^{26}\) closer to three other acidic residues (Glu\(^{245}\), Asp\(^{268}\) and Glu\(^{286}\)). The rearrangement is interesting because these four residues have been proposed to form a Ca\(^{2+}\)-binding site (Ca-I) [55]. Furthermore, a peptide (residues 378–450) that includes most of these residues binds Ca\(^{2+}\), and the binding is abolished by mutation of the acidic residues [42]. A second possibility is therefore that IP\(_3\)-evoked movement of the critical 1-8-14 motif contributes to formation of an effective Ca\(^{2+}\)-binding site within the IBC by bringing a fourth acidic residue into appropriate association with three others.

We conclude that a conserved 1-8-14 motif within the SD is essential for IP\(_3\)R activation and speculate that its interaction with either an endogenous CaM-like motif or acidic residues within the IBC may link IP\(_3\) and Ca\(^{2+}\) binding. Inhibition of IP\(_3\)R by CaM and related proteins probably results from disruption of this essential interaction.

AUTHOR CONTRIBUTION

Yi Sun and Ana Rossi performed the Ca\(^{2+}\)-release and IP\(_3\)-binding analyses. Tauliq Rahman performed the single-channel analyses. Colin Taylor directed the study, and with input from all authors, wrote the paper.

FUNDING

Supported by the Wellcome Trust [grant number 085295], Biotechnology and Biological Sciences Research Council [grant number BB/H009736/1] and a studentship from the Engineering and Physical Sciences Research Council (to Y.S.). A.R. is a fellow of Queens’ College, Cambridge. T.R. is a Drapers Research Fellow of Pembroke College, Cambridge.

REFERENCES

37 Sugawara, H., Kurosaki, M., Takata, M. and Kurosaki, T. (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J. 16, 3078–3088

Received 26 June 2012/13 September 2012; accepted 26 September 2012
Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034

© The Authors Journal compilation © 2013 Biochemical Society
SUPPLEMENTARY ONLINE DATA

Activation of IP₃ receptors requires an endogenous 1-8-14 calmodulin-binding motif

Yi SUN¹², Ana M. ROSSI¹, Taufiq RAHMAN and Colin W. TAYLOR³

Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, U.K.

Figure S1 A conserved 1-8-14 motif in all IP₃Rs and RyRs

Alignments (with first and last residues numbered) of the N-terminal region of rat IP₃R1–IP₃R3 (SwissProt accession numbers NP_001007236, NP_112308 and NP_037270 respectively), chicken IP₃R1–IP₃R3 (SwissProt accession numbers XP_414438, XP_001235613 and XP_418035 respectively), Xenopus IP₃R1–IP₃R3 (SwissProt accession numbers NP_001084015, ABP88141 and ABP88140 respectively), Drosophila IP₃R (SwissProt accession number NP_730942), Caenorhabditis elegans IP₃R (SwissProt accession number NP_001023170) and rabbit RyR1–RyR3 (SwissProt accession numbers P11716, P30957 and Q9TS33 respectively) highlighting the residues proposed to form a 1-8-14 CaM-binding motif. The consensus sequence for a 1-8-14 motif is shown in the first row, with its three critical (1, 8 and 14 hydrophobic residues) and net charge of +3 to +6. A similar 1-8-14 motif is conserved in all IP₃R, which closely resembles a type A (1-5-8-14) motif, where position 5 is also a large hydrophobic residue. The motif within IP₃R differs from a classic 1-8-14 consensus sequence by having a tyrosine residue at position 14. All subtypes of RyR also have a similar 1-8-14 motif within a similar position in the three-dimensional structure, although the sequence lacks the usual net positive charge of a consensus 1-8-14 motif.

¹ These authors contributed equally to this work.
² Present address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, U.K.
³ To whom correspondence should be addressed (email cwt1000@cam.ac.uk).

© The Authors Journal compilation © 2013 Biochemical Society
Figure S2 Mutation of a non-critical residue (K52E) within the 1-8-14 motif has no effect on IP$_3$ binding or IP$_3$-evoked Ca$^{2+}$ release

(A) Structure of the SD of IP$_3$R1 (PDB code 1XZZ) highlighting the 1-8-14 motif (red), the critical 1-8-14 hydrophobic residues (blue) and Lys52 (yellow). (B) Equilibrium competition binding of IP$_3$ (with 0.75 nM [3H]IP$_3$) to native NT and NTK52E. (C) IP$_3$-evoked Ca$^{2+}$ release from DT40-IP$_3$R1 and DT40-IP$_3$R1K52E cells. Results are means ± S.E.M. (n ≥ 3).
Table S1 Peptides used in the present study

All peptides were synthesised by Sigma or New England Peptide. The isoelectric point (pI) is shown for each peptide calculated from http://www.innovagen.se/custom-peptide-synthesis/peptide-property-calculator/peptide-property-calculator.asp. Ac, acetyl.

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Sequence</th>
<th>Source</th>
<th>pI</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLCK</td>
<td>Ac-RKWKQKTHAVRAGRL-NH₂</td>
<td>Ca²⁺–CaM-binding site of smooth muscle MLCK</td>
<td>14.0</td>
</tr>
<tr>
<td>1-8-14</td>
<td>Ac-KKFRDAFLKAPMNR-NH₂</td>
<td>Fragment of IP₃R₁ (residues 51–66) containing the 1-8-14 motif</td>
<td>11.5</td>
</tr>
<tr>
<td>1-8-14C</td>
<td>Ac-KKEFRDAFLKAPMNR-NH₂</td>
<td>Inactive form of 1-8-14 peptide (mutations highlighted in bold and underlined)</td>
<td>10.8</td>
</tr>
<tr>
<td>1-8-14S</td>
<td>Ac-AMRFLKYLPKRFDKNA-NH₂</td>
<td>Scrambled form of 1-8-14 peptide</td>
<td>11.6</td>
</tr>
<tr>
<td>1-8-14L</td>
<td>Ac-LNNPPLKFRDAFLKAPMNRYSQKFWKA-NH₂</td>
<td>Longer fragment of IP₃R₁ (residues 46–75) containing the 1-8-14 motif</td>
<td>11.7</td>
</tr>
</tbody>
</table>

Table S2 Primers used in the present study

Primers used for introducing mutations in the N-terminal fragment or full-length IP₃R₁. The mutated bases are highlighted.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F53E Forward</td>
<td>GGGGACCTTACAGATGGCCACCCAGAAGAGAGACTGCTT</td>
</tr>
<tr>
<td>F53E Reverse</td>
<td>GGAGGCACTGCTCTTGCTGGGATATTGTAAGTCCC</td>
</tr>
<tr>
<td>L60E Forward</td>
<td>GAAATTACAGACGCTCTTAAAAGGTGTCTATTGACAGATATTGCA</td>
</tr>
<tr>
<td>L60E Reverse</td>
<td>TGACGATAATGCTCTGCTTGATGCAAGATCTTAAAGAGGAGCTCTGATATTCC</td>
</tr>
<tr>
<td>Y66E Forward</td>
<td>CTCTTTAAGCTATGCTCTTGAATGAGAGTGCACAGAAAAGCAG</td>
</tr>
<tr>
<td>Y66E Reverse</td>
<td>CTGCTTTGAGCATGCTGGATTATGACATGACTTAGTAAAGAG</td>
</tr>
<tr>
<td>K52E Forward</td>
<td>AAACATCATGGCCCATGAGAGCTGAGCTGACAGATATTG</td>
</tr>
<tr>
<td>K52E Reverse</td>
<td>GAGGCACTGCTGATATTGCTTGAGGTGATTT</td>
</tr>
</tbody>
</table>

Received 26 June 2012/13 September 2012; accepted 26 September 2012
Published as BJ Immediate Publication 26 September 2012, doi:10.1042/BJ20121034