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Regulation of stem cells is essential for development and adult
tissue homoeostasis. The proper control of stem cell self-renewal
and differentiation maintains organ physiology, and disruption of
such a balance results in disease. There are many mechanisms
that have been established as stem cell regulators, such as Wnt
or Notch signals. However, the intracellular mechanisms that
mediate and integrate these signals are not well understood.
A new intracellular pathway that has been reported to be
involved in the regulation of many stem cell types is that of p38
MAPK (mitogen-activated protein kinase). In particular, p38α is
essential for the proper differentiation of many haematopoietic,
mesenchymal and epithelial stem/progenitor cells. Many reports

have shown that disruption of this kinase pathway has pathological
consequences in many organs. Understanding the extracellular
cues and downstream targets of p38α in stem cell regulation may
help to tackle some of the pathologies associated with improper
differentiation and regulation of stem cell function. In the present
review we present a vision of the current knowledge on the roles of
the p38α signal as a regulator of stem/progenitor cells in different
tissues in physiology and disease.
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INTRODUCTION

Embryonic development and maintenance of adult tissue
homoeostasis are physiological processes where stem cells,
which are characterized by their ability to self-renew and
perpetuate themselves, generate differentiated cell types or
replenish functional tissue. Furthermore, they have the potential to
produce differentiated daughter cells that will eventually become
specialized embryonic or adult cells.

Many signalling pathway components are well known as
key players in stem cell differentiation and self-renewal. These
include growth factors [e.g. FGF (fibroblast growth factor) and
BMP (bone morphogenetic protein)], morphogens (e.g. Wnt),
cell–cell contact/communication regulators (e.g. Notch), and
mediators of the extracellular matrix (e.g. integrin-α6) [1–3], all
of which have been reported to control embryonic and adult stem
cell homoeostasis. Other pathways have also been identified as
modulators or co-modulators of stem cell function.

The p38 MAPK (mitogen-activated protein kinase) pathway is
an important mediator of the cellular response to external signals,
and in particular to stress. However, there have been many reports
connecting this kinase pathway to the regulation of embryonic
development and adult tissue turnover.

p38 MAPKs belong to the MAPK family. MAPKs can be
classified into three groups: ERKs (extracellular-signal-regulated
kinases); JNKs (c-Jun N-terminal kinases) and p38 MAPKs [4].
The present review will primarily focus on the role of p38α in
homoeostasis and disease.

p38 MAPKs have been considered as stress-activated protein
kinases that respond to cellular stress and cytokines, with
roles related to inflammation [5]. They can be divided into
two subgroups, dependent on their expression pattern, substrate
specificity and sensitivity to pharmacological inhibitors [6]. The

first group contains p38α and p38β, which are universally
expressed, whereas the second group comprises p38γ and p38δ,
which appear to have more tissue-specific expression patterns
[7,8]. Strong activation of p38 MAPKs by cytokines and cellular
stresses generally promotes the inhibition of cell growth and
induces apoptosis [9,10,11]. The different p38 MAPK isoforms
have been shown to have redundant, specific or even opposite
functions, depending on the cell type involved and the nature of the
stimulus [8,12]. The p38α signalling pathway shows the typical
kinase cascade of the MAPK family, which results in the re-
gulation of a diverse range of cellular functions [13] (Figure 1).

p38α MAPK is ubiquitously expressed and the most abundant
member of the family. It is essential for embryonic development,
while also regulating different cellular functions, including prolif-
eration, differentiation, cell death, adhesion and migration, as well
as the response to stress and metabolic pathways [14]. It does this
through multiple mechanisms, including regulation of transcrip-
tion, mRNA stability, chromatin remodelling and protein syn-
thesis [14]. More recently, p38α has been found to play important
roles in the maintenance of homoeostasis and related pathologies.

p38α IN DEVELOPMENT

p38 MAPKs are widely involved in development, regulating
a plethora of processes, including growth, embryonic
differentiation and tissue homoeostasis [15,16]. The role of
p38 in development was first determined in Drosophila embryos,
where disruption of p38 signalling by deletion of its
upstream activator, MKK [MAPK kinase; lic (licorne)], caused
mislocalization of Oskar mRNA and failure to position the
embryos anterior–posterior and dorsal–ventral axes [17]. p38α
has also been found to play an essential role during development in
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Figure 1 p38α is part of the family of MAPKs

These kinase pathways are activated by external signals, and they form cascades of phosphorylation that lead to the activation of downstream targets and cellular responses. MAPKK, MKK; MAPKKK,
MKK kinase.

other animal models. In zebrafish, suppression of the p38 pathway
affects the cleavage of the future dorsal side of the embryo and
morphogenesis [18,19]. In Xenopus, the lack of p38α affects
early myogenic development, extending proliferation of the
presomitic mesoderm and delaying somitogenesis [20]. In
summary, p38 activity in non-mammalian organisms is essential
for mesenchymal differentiation, which is required for the proper
spatial organization of the animal during development.

Deletion of the mammalian p38α isoform in murine embryos
was shown to be lethal at E10.5 (embryonic day 10.5) [12,21,22].
Lethality was due to placental defects causing p38α − / − embryos
to die from starvation and low oxygenation. Subsequently, the
role of p38α in trophoblast differentiation was demonstrated
as the placental defect being overcome following fusion of
p38α − / − blastocysts with wild-type tetraploid cells (that only
contribute to extraembryonic structures) [12]. Such rescue studies
established an important role for the p38α pathway during early
placentation, but do not suggest that its activity is required for pre-
implantation development. Similarly, disruption of p38 signalling
by compound deletion of the p38 upstream activators MKK3 and
MKK6 in mice, results in embryonic death due to placental defects
[23]. Furthermore, p38α has been shown to be required for the
development of the 8–16-cell stage of in vitro cultured embryos
[24], regulating filamentous actin, as has also been demonstrated
in zebrafish [19].

Elucidation of p38 MAPK functions from studies in knockout
mice has provided valuable information on their relative
importance during embryogenesis, but there is little knowledge
about the developmental roles of p38 MAPKs at the cellular
level. Embryonic lethality further limits in-depth analysis of
the developmental role of p38α at the cellular level in animal
models, but generation of p38α − / − ESCs (embryonic stem
cells) [25,26] has provided a valuable alternative system. It
has been shown that cultured p38α − / − ESCs display several
altered properties. These include augmented cell adhesion,
which correlates with increased phosphorylation of focal
adhesion kinase, and enhanced viability, owing to endogenous
activation of Akt [27]. Induced differentiation of ESCs in vitro
has shown that p38α promotes mesodermal specification, whereas
p38α − / − ESCs tend to differentiate into neurons, reducing
mesodermal commitment to a greater or lesser degree [28,29].

The apparent discrepancy between the dispensability of p38α
for embryo development in knockout animals [12,30,31] and the
in vitro role for p38α in ESC differentiation, can perhaps be
explained by compensation via other p38 isoforms, namely p38β,
p38γ or p38δ. One might speculate that p38β, which shares the

highest homology with p38α [8], is the most likely candidate in
this regard. It is also possible that differences in the in vitro set up,
such as the use of serum containing undefined factors that would
be able to compensate for the loss of function of p38α, may result
in the activation of other MAPK pathways [32].

In summary, these studies suggest that p38α deletion may not
significantly compromise the potential of ESC differentiation
to certain cell types, but it may select for a commitment to
specific cell lineages. p38α is a likely activator of transcription
factors not only involved in embryonic specification [e.g.
Brachyury, MEF2C (myocyte enhancer factor 2C), PPAR
(peroxisome-proliferator-activated receptor)] [29,33,34], but
also in cross-talk with survival pathways (e.g. Akt) [27] and
the regulation of proliferation mediators (e.g. cyclin D1) [35].
The balance between all of these effectors will induce different
cellular activities depending on the state of development and cell
type, producing apparently opposing outcomes.

More recently, the use of embryonic-specific conditional alleles
has revealed specific functions for p38α in later embryonic
development, e.g. embryonic lung development, resulting in mice
dying shortly after birth, most likely being due to disrupted differ-
entiation of the bronchioalveolar epithelium [32]. Other reports
have shown a role for p38α in the branching of the developing
lung, as blocking p38 signalling with the inhibitor SB203580,
or following p38α knockdown by shRNA (small hairpin RNA),
suppressed budding morphogenesis of mouse embryonic lung
explants [36]. The use of more specific conditional alleles will
allow a better dissection of the functions and mediators of p38α
during different stages of embryonic development.

p38α IN ADULT TISSUE HOMOEOSTASIS

The use of conditional floxed alleles and specific small chemical
inhibitors has allowed the study of the functions of p38α in adult
tissues [14]. This approach has revealed important physiological
functions for p38α in lung [37], liver [32], muscle [38], heart
[39], haematopoiesis [40], skin [41] and pancreas [42]. In the
present review we provide an overview of the recent advances in
the study of the role of p38α in regulating adult tissue stem cell
homoeostasis.

p38α in haematopoiesis

The role of p38α as a central regulator of haematopoietic
homoeostasis is well established. The regulation of proliferation,
survival and differentiation of normal haematopoietic cells
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by different cytokines and growth factors occurs via p38α
signalling [43–46]. In the haematopoietic system, p38α exhibits
contradictory functions in different lineages and maturation stages
[47]. In thymic development, p38α inhibits differentiation of
immature thymocytes at specific stages [48]. In mature CD4+

cells, p38α participates in Th1 (T-cell helper 1) inflammatory
response, whereas it needs to be shut down in B-cell pro-activator
Th2 cells [49,50].

A role for p38α in mature granulocytes has also been
reported. p38α is essential for the survival of neutrophils during
inflammation, and suppression of p38α signalling is necessary
to eliminate neutrophils in the termination of the inflammatory
response [51,52]. The same activation/inactivation process is
essential for the survival/apoptosis of eosinophils during the
inflammatory response [53]. The function of p38α activity in
myeloid cells is paradoxical. Whereas in CD34+ progenitor cells,
elevated p38α activity prevents haematopoiesis [54], in other
myeloid cells, p38α mediates activin A-mediated differentiation.
These opposite effects may be due to the role of p38α as a regulator
of transcription factors involved in differentiation and its role in
cytokine expression in response to stress [55]. The roles of p38α
in haematopoiesis are mediated by its activation of different pools
of cell-dependent cytokines [49] or transcription factors [e.g.
C/EBP (CAAT/enhancer-binding protein) and GATA-1] [56,57],
or mediating differentiation signals [58,59]. The level of p38α
activation together with cross-talking to other pathways results
in diverse outcomes, such as apoptosis, survival, differentiation
or progenitor proliferation [58]. A better understanding of
the specific roles of p38α in every stage of haematopoietic
development will help in tackling blood-related diseases.

p38α in muscle regeneration

The p38α MAPK pathway is an important regulator of skeletal
muscle differentiation (myogenesis) [60,61]. The regulation of
myogenesis is essential for normal development, as well as being
important in pathological processes (e.g. muscular dystrophies
and inflammatory myopathies) in which marked muscle loss and
regeneration occurs. The regenerative capacity of adult skeletal
muscle has been demonstrated upon acute muscle damage,
resulting in the post-trauma generation of myotubes after a
few days [62,63]. Early research suggested that budding of
myotubes from injured myofibres was the source of new myofibres
[63]. Satellite cells have been suggested as being the source
for ‘dormant myoblasts’, responding to muscle damage by re-
initiating a process similar to skeletal myogenesis [64]. Satellite
cells are activated from quiescence by the p38 MAPK pathway
[65].

p38α participates in various stages of adult myogenic
differentiation [66]. At early stages, p38α promotes the
active heterodimer transcription complex, MyoD/E47 and
phosphorylates MEF2, inducing the expression of muscle-specific
genes and thereby activating the differentiation program [67,68].
However, at later stages of myogenic differentiation, p38α plays a
suppressive role. Phosphorylation of the myogenic factor MRF4
(muscle-regulatory factor 4) reduces its transcriptional activity,
affecting essential genes involved in terminal differentiation
[69,70]. Nevertheless, the suppressive role of p38α in late
myogenesis has only been demonstrated in vitro and it requires
validation in vivo.

The regulation of myoblast proliferation by p38α represents
a novel role for the p38 pathway in skeletal myogenesis
[38]. p38α − / − myoblasts are characterized by their increased
proliferation, a delay in cell-cycle exit, and impaired myoblast
differentiation and fusion. p38α is the central p38 MAPK

responsible for both in vitro and in vivo regulation of myogenesis
[71].

A key role for p38α in controlling myoblast proliferation is
the antagonism of the JNK/c-Jun pathway, probably via MKP-1
(MAPK phosphatase-1) [72]. The cross-talk between the p38
MAPK and JNK signalling pathways, by still undefined
mechanisms, has been previously described in different cell types
[73–76]. In the context of skeletal myogenesis, two studies have
suggested opposite roles for JNK activity in muscle differentiation
[77,78]. Importantly, JNK activation has been shown to mediate
the increased proliferation potential of p38α-deficient myoblasts,
with inhibition of JNK reverting this phenotype. Moreover,
enhanced activation of JNK in p38α-deficient myoblasts results
in increased levels of its substrate phospho-c-Jun and subsequent
induction of c-Jun/AP-1 (activator protein 1)-mediated c-Jun
gene transcription. This leads to increased recruitment of
c-Jun to the cyclin D1 loci in differentiating myoblasts in vivo,
presumably via the AP-1 sites on the cyclin D1 promoter [79].
p38α controls myoblast proliferation by antagonizing the pro-
proliferative activity of JNK [80].

p38α appears to play contradictory roles in muscle
differentiation (Figure 2). The availability of specific transcription
factors at particular stages of myogenesis, and the effect
(activating or inactivating) that p38α-dependent phosphorylation
induces, together with the cross-talk with other MAPK pathways,
may be responsible for promoting or suppressing differentiation
at early or late stages of myogenesis.

p38α in neurogenesis

Most of the known roles of p38α in neurogenesis are related
to embryonic development. The roles of p38 in early ESC
commitment are due to various insults triggering differentiation
that may involve p38 targets, such as repression of Bcl2
expression, leading to neural differentiation [81], or induction
of BMP2 mRNA, to mesodermal [82] differentiation.

In later stages of embryonic development, p38 activity
prevents neurogenesis (probably due to p38β activity) in
embryonic cortical [83] and oxygen/glucose-deprived hippo-
campal neurons [84]. However, proliferation of adult hippocampal
neural progenitor cells is dependent on adiponectin activation of a
p38/GSK3 (glycogen synthase kinase 3)/β-catenin cascade [85].
Furthermore, p38 signalling promotes adult neural differentiation
by activating neural transcription factors such as neurogenin 1
[86] and oligodendrocyte progenitor cell progression through
Sox10 [SRY (sex-determining region Y)-box 10] activation
[87]. The p38α/MEF2C pathway is a survival signal during
neural differentiation [88]. In addition, p38 activation by TGF
(transforming growth factor)-β promotes differentiation of retinal
ganglion cells and neurite outgrowth [89].

Neurogenesis is a clear example of the opposing functions that
p38α can show in the same organ. The context, as a combination
of the differentiation stage of the cells and the external signals
from the environment, will influence the positive or negative
outcome of p38 signalling in neural differentiation.

p38α in cardiac homoeostasis

The heart undergoes the least amount of tissue turnover, and
regeneration has only been shown in a few species (e.g. newts
and zebrafish). Following myocardial infarction, it has been
suggested that more than one billion cardiomyocytes per patient
would be required for tissue replacement therapy [90]. The
zebrafish model has provided a good system to study cardiac
self-repair [91,92].
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Figure 2 Muscle differentiation model as a paradigm of p38α-dependent tissue stem cell regulation

p38α promotes differentiation and suppresses self-renewal of myoblast progenitors.

The hypothesis of a terminal round of cell division, resulting
in the majority of cardiac myocytes exiting the cell cycle shortly
after birth [93,94], led to the belief that the mammalian heart was
terminally differentiated and lacked the capacity for myocardial
self-renewal following injury. However, the identification of
cardiac progenitor cells has led to the belief that the heart is
also regulated by an adult stem cell compartment [95–101].

p38α has been shown to be a key regulator of mammalian
cardiomyogenesis. This includes roles in cardiomyocyte
differentiation, division, apoptosis and hypertrophy [102].
Furthermore, p38 MAPK has been shown to control myoblast
differentiation at multiple levels, including regulation of
transcription factor activity, chromatin remodelling and stability
of mRNAs encoding muscle differentiation regulators. p38α
regulates cardiac differentiation transcription factors, such as
GATA4 [103], MEF2C [104] and SRF (serum-response factor)
[105]. Furthermore, it has also been suggested that C/EBPβ and
TEF-1 (transcriptional enhancer factor 1) mediate p38 MAPK
function in cardiomyocytes following myocardial injury [106],
thereby playing a central role in the repair response.

p38α activity in post-injury hearts plays an important role
in cellular and myocardial remodelling, affecting both the
contractility of myocytes and the extracellular matrix. Dissecting
the underlying mechanisms involved in the myocyte cell,
autonomous effects as well as the cross-talk interaction between
myocytes, fibroblasts and inflammatory cells, should provide a
very promising area for future investigation.

p38α in other tissues

p38 also plays roles in other mesenchymal tissues. It has been
extensively reported that p38 plays a role in bone regeneration
and repair [107]. As in other cellular contexts, the observed roles
of p38α in bone differentiation may be contradictory depending
on the activation of p38α as an inflammatory mediator or as
a regulator of differentiation factors. p38, upon activation by
chondrogenic cytokines in MSCs (mesenchymal stem cells), is
an essential mediator of bone formation [107–109]. Osteoblast
differentiation is regulated by p38 MAPK activation of RUNX1
(Runt-related transcription factor 1) [110]. However, p38α is
directly involved in osteoclast differentiation and bone-resorbing
activity induced by inflammation [111]. In adipose tissue, there
are also opposing reports identifying p38α as an inhibitor [34]
or inducer [112] of adipocyte differentiation. In general, early
activity of p38 in MSCs promotes bone differentiation [113], but

a later activation of the p38 pathway in MSCs leads to their
specification into white or brown adipocytes [112,114].

The p38α pathway is also essential for mature differentiation
of epithelial tissues. Differentiation of human pancreatic islets
regulated by TGF-β or activin A is dependent on p38
activation of the transcription factor PAX6 (paired box 6)
[115,116]. The MKK3/p38 cascade regulates the expression of
specific pancreatic factors, for example neurogenin-3, which
allows pancreatic endocrine cell differentiation [117].

Intestinal homoeostasis can be disrupted by specific deletion of
p38α in the colonic epithelium [55]. This intestinal function
of p38α maybe mediated through the induction of intestinal genes
such as Schlafen-3 [118].

There is also increasing evidence for a pivotal role of p38α
at various levels of lung differentiation. p38α is essential in late
lung development differentiation, and lack of p38 causes neonatal
lethality [32,119]. This role is conserved in the adult lung, and
p38α is necessary to maintain adult lung homoeostasis [37].
Furthermore, although p38 can be involved in lung regeneration
induced by acute inflammation [120], it is also a mediator of
TGF-β-dependent epithelial to mesenchymal transition in
bleomycin-induced lung fibrosis [121].

In mammary development, p38α plays a negative role in
differentiation by reducing the proliferation needed for ductal
expansion and branching morphogenesis [122].

Regulation of caspase 14 in skin by p38 is necessary for
normal differentiation of epidermal keratinocytes [123], and
shape-induced terminal differentiation of skin stem cells needs
p38α activity [124].

In general, the role of p38α in adult epithelial tissues is
determined by the prevalence of its inflammatory functions
(usually directing to tissue injury) or the activation of
differentiation factors allowing tissue homoeostasis.

p38α DISRUPTION IN DISEASE

Cellular behaviour in response to extracellular stimuli is mediated
through intracellular signalling pathways, such as the p38 MAPK
pathways, and abnormal phosphorylation events can be a cause of,
or contribute towards, disease progression in a variety of disorders
(Figure 3). The best-known and most widely reported role of p38α
in disease is related to its function in cytokine signalling and
promotion of pathological inflammation [125]. Several disease
models, including rheumatoid arthritis, psoriasis, Alzheimer’s
disease [126], IBD (inflammatory bowel disease) [127,128],
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Figure 3 Diversity of cellular processes and physiological functions regulated by the p38 MAPK family

The pathological consequences of the abnormal activation of the pathway are shown at the bottom of the Figure. COX-2, cyclo-oxygenase 2; MPP, Mg2 + -dependent protein phosphatase.

Crohn’s disease [129], tumorigenesis [14], cardiovascular disease
and stroke [130] are all postulated to be mediated, at least
in part, by the p38α pathway. Furthermore, previous studies
support a role for p38 MAPK in the development, maintenance
and/or exacerbation of a number of pulmonary diseases, such
as asthma, cystic fibrosis, idiopathic pulmonary fibrosis and
COPD (chronic obstructive pulmonary disease) [131]. However,
evidence highlights the importance of the differentiation roles of
p38α in relation to pathological processes [132].

Many of the inflammation-dependent diseases associated with
p38α activity are linked to cytokine-induced differentiation [133].
Activation of p38 MAPK signalling mediates direct or indirect
inflammatory cytokine expression, such as IL (interleukin)-
1β, IL-6 and TNF (tumour necrosis factor)-α. These cytokines
synergistically stimulate the production of other inflammatory
cytokines, MMPs (matrix metalloproteinases) and prostanoids
[134,135]. p38α has also been involved in the regulation
of IL-3, IL-8, MIP1α (macrophage inhibitory protein 1α),
GM-CSF (granulocyte/macrophage colony-stimulating factor),
VEGF (vascular endothelial growth factor), urokinase-type
plasminogen activator and inducible nitric oxide synthase [13,21].
The duration of phosphorylation is crucial in regulating cell fate.
Sustained p38α phosphorylation is frequently associated with
induction of cellular apoptosis [136,137]; in contrast, transient
phosphorylation can be associated with growth-factor-induced
survival [138]. Thus the opposite cellular outcome may influence
the advance or regression in pathological states.

TNF production in the bone is induced by p38 in rheumatoid
arthritis and responsible for bone destruction and inhibition of
chondrocyte differentiation, promoting fibrosis in the damaged
tissue [139,140]. Increased levels of p38α phosphorylation are
seen in the epidermal cells of psoriatic lesions, playing an
essential role in promoting the characteristic flaky skin [123].
In asthma, p38 and its downstream target MAPKAPK2 (MAPK-
activated protein kinase) are involved in type 2 Th2 cell final
activation and differentiation, and production of MCP (monocyte
chemoattractant protein)-1 by lung epithelial cells [141,142].

Activation of p38 MAPK induces pro-inflammatory cytokines
in IBD, such as IL-1β and TNF-α, both in production and
secretion. This regulation takes place in non-immune cells,
such as HIMECs (human intestinal microvascular endothelial
cells), intestinal epithelium, fibroblasts and myofibroblasts, which
participate in IBD and are subject to the direct or indirect effect
of p38 MAPK [143,144], and in immune cells such as monocytes
and macrophages [145]. Chronic p38α-mediated inflammatory
events disrupt homoeostasis and prevent epithelial differentiation,
consequently promoting fibroblast maturation and proliferation.

The role of p38α in the neural system has been best
demonstrated in relation to neurodegenerative diseases [132].
Disrupted p38 activation has been shown in animal models
of neurodegeneration [126] and deposition of tau protein in
related pathologies (e.g. Alzheimer’s disease) [146]. Although
some of the functions are due to the control of inflammatory
cytokines released by p38 [147], it has been found that p38α
can phosphorylate tau, thereby reducing its ability to promote
microtubule assembly [148,149]. In addition, p38α expression
in spinal cord neurons seems to be related to neuropathic pain
[150,151]. It has also been shown that p38 mediates the survival
of cerebellar granule neurons [152].

The p38 MAPK pathway can have both protective and
detrimental effects in cardiovascular diseases [132]. It plays an
important role in cardiovascular remodelling after injury [153].
After myocardial infarction, p38 activation is a negative regulator
of cardiomyocyte proliferation [154]. This potentiates tissue
apoptosis [155] and promotes fibrosis [156,157]. Conversely,
p38α induces proliferation of vascular smooth muscle cells and
vascular regeneration after carotid injury [153].

The complexity of the functions of p38α in the maintenance of
haematopoiesis influences its role in haematopoietic diseases. On
one hand, p38α is responsible for enhanced stem cell apoptosis, a
characteristic of low-grade myelodysplastic syndromes [54,158].
On the other hand, an imbalance towards proliferation may lead
to the development of myeloproliferative syndromes, such as
leukaemia, lymphomas and myelomas [159–161]. p38 MAPK
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is selectively activated by IFNα (interferon α) and mediates the
growth-suppressive effects of IFNα in CML (chronic myeloid
leukaemia) cells [162].

Finally, the variety of cellular processes involving p38 include
many that oppose the oncogenic transformation of solid tissues.
As a result, p38α has been considered a tumour suppressor
[163,164]. Although most of the suppressor activity is apparently
due to promotion of growth arrest and induction of apoptosis
[165,166], p38 also contributes to the loss of a malignant
phenotype by inducing terminal differentiation of solid epithelial
cancer cells [37,167,168].

The paradoxical and contradictory effects of p38α in disease
are again closely related to its functions as an inflammatory or
differentiation mediator.

CONCLUDING REMARKS

A broad range of intracellular mediators and extracellular insults
are involved in p38α activation and function in the cell. They are
responsible for the contradictory roles of this pathway not only in
different tissues, but also within the same organs and cell types.
These opposite roles seem to be related to duration and level of
kinase activity. In general, long-term and high levels of p38α
activity are involved in the inflammatory response, which usually
leads to promotion and progression of disease. High, but transient
activation, is linked to apoptosis and may suppress disease (e.g.
cancer) or promote pathological processes (e.g. cardiomyopathy).
However, constitutive low-level activity promotes differentiation
and negatively regulates proliferation. It is this marginal but
constant activity that has been reported as being essential for
correct stem cell regulation.

Many p38 inhibitors have been developed to tackle
inflammatory diseases [6]. Inhibition of p38 prevents the response
to inflammatory cytokines and cytokine production at the same
time. However, many trials have been stopped owing to toxicities
in several tissues. This may be due to the variety of p38α functions
and the non-specific cellular inhibition by those drugs [169].
Inhibition of constitutive p38 activity may also interfere with
proper cellular turnover and organ physiology. Investigation of
the cellular and functional roles of p38α in specific physiological
and pathological processes in every organ will allow a better
understanding of the responses to drugs targeting this kinase
pathway. Cellular and molecular specific drugs directed against
mediators of the p38α signalling will improve future use of
chemical inhibitors of this pathway in disease therapy.
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