The organophosphate-degrading enzyme from Agrobacterium radiobacter displays mechanistic flexibility for catalysis

*School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia, and †Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia

The OP (organophosphate)-degrading enzyme from Agrobacterium radiobacter (OpdA) is a binuclear metallohydrolase able to degrade highly toxic OP pesticides and nerve agents into less or non-toxic compounds. In the present study, the effect of metal ion substitutions and site-directed mutations on the catalytic properties of OpdA are investigated. The study shows the importance of both the metal ion composition and a hydrogen-bond network that connects the metal ion centre with the substrate-binding pocket using residues Arg254 and Tyr257 in the mechanism and substrate specificity of this enzyme. For the Co(II) derivative of OpdA two protonation equilibria (pK_a1 ~5; pK_a2 ~10) have been identified as relevant for catalysis, and a terminal hydroxide acts as the likely hydrolysis-initiating nucleophile. In contrast, the Zn(II) and Cd(II) derivatives only have one relevant protonation equilibrium (pK_a ~4–5), and the μOH is the proposed nucleophile. The observed mechanistic flexibility may reconcile contrasting reaction models that have been published previously and may be beneficial for the rapid adaptation of OP-degrading enzymes to changing environmental pressures.

Key words: Agrobacterium radiobacter, crystal structure, hydrogen bonding, OpdA, organophosphate-degrading enzyme, organophosphate pesticide, site-directed mutagenesis.

INTRODUCTION

The intensive application of pesticides has facilitated the development and expansion of agriculture globally. Despite considerable evidence of environmental toxicity, the use of these pesticides continues. Pesticides are classified according to chemical functional groups, and the most widely and commonly used compounds are the OPs (organophosphates). Approx. 50,000 OPs are known to have some biological activity; the derivatives of major commercial and toxicological interest are esters or thiols derived from phosphoric, phosphinic or phosphoramidic acids. The most toxic OPs reported are the nerve agents sarin (GB), cyclosarin (GF), soman (GD) and VX [1].

A number of enzymes are capable of hydrolysing a broad range of OP triesters into less or non-toxic compounds [2,3]. These enzymes are possible bioremediators because of their ability to decontaminate OP-containing waters and soils [2,3]. The most thoroughly characterized phosphotriesterases have been isolated from Flavobacterium sp. A.T.C.C. 27551 [4], Pseudomonas diminuta (OPH) [5] and Agrobacterium radiobacter (OpdA) [6]. These enzymes belong to the binuclear metallohydrolase [7,8] family and share high sequence and structural homology. Phosphotriesterases are highly promiscuous enzymes, hydrolysing a large range of substrates [2,3]. These enzymes are also promiscuous with respect to bivalent metal ions that can reconstitute catalytic activity in vitro; while the preferred in vivo composition is generally unknown at least for OpdA, it could be shown that heterobinuclear Fe(II)/Zn(II) centres form readily [9]. OpdA has a higher turnover number for methyl- rather than ethyl-substituted substrates, in contrast with other characterized phosphotriesterases. The two most significant amino acid sequence differences between OpdA and OPH are (i) 20 additional amino acids at the C-terminus of OpdA, which appear to be irrelevant for catalysis [10], and (ii) variation of three amino acids located in the substrate-binding pocket (Arg254/His254, Tyr257/His257 and Phe272/Leu272 in OpdA/OPH) [11].

Structural studies have confirmed that the metal-ion-co-ordinating ligands in OpdA and OPH are identical (Figure 1). The metal ions, referred to as α- and β-, are bridged by a carboxylated lysine residue (Lys289) and a hydroxide/water molecule. The α-metal ion is also co-ordinated to the side chains of His55, His57 and Asp101, while the β-metal ion is more solvent-exposed, co-ordinating to the side chains of His203 and His206 [12–14]. The number of solvent molecules terminally co-ordinated to the β-metal ion is subject to debate, and their relevance to catalysis is not completely clear [12,13]. No terminally co-ordinated solvent molecules to the α-metal ion have yet been observed, although it has been suggested, based on DFT (density functional theory) calculations, that an α-metal-ion-co-ordinated hydroxide would be perfectly positioned for a nucleophilic attack [15].

The mechanism of phosphotriester hydrolysis by OPH has been studied extensively [16–18]. In a proposed reaction scheme based largely on crystal structures with bound inhibitors, the phosphoryl oxygen of the substrate binds to the β-metal ion. The P–O bond is then broken by a nucleophilic attack from the bridging water/hydroxide molecule [16]. Theoretical studies have suggested that, once the substrate is co-ordinated to the β-metal ion, the bridging water/hydroxide becomes pseudo-monodentate with principal co-ordination to the α-metal ion, a process which is anticipated to increase the nucleophilicity of this hydroxide [19]. A similar mechanism whereby substrate binding results in the shift of a bridging hydroxide into a pseudo-terminal position has also been proposed for the distinctly related binuclear metallohydrolase purple acid phosphatase [20–22]. The cleavage of the P–O bond...
In an effort to increase our understanding of the mechanism of action of OpdA and to probe (i) the effect of hydrogen-bonding interactions, and (ii) the role of the metal ions in the catalytic cycle of OpdA, we have generated several metal ion derivatives of wild-type OpdA and mutated two amino acids that are known to be involved in substrate binding, i.e. Arg255 and Tyr257 (F. Ely, K.S. Hadler, N. Mitić, L.R. Gahan, D.L. Ollis, J.A. Larrabee and G. Schenk, unpublished work). Furthermore, the crystal structure of the Y257F mutant in the absence and presence of EPO has been solved to probe the effect of substrate binding on the binuclear metal centre.

EXPERIMENTAL

Materials

Pfu DNA polymerase and DpNI were purchased from Promega, and oligonucleotide primers were synthesized by Sigma Genesis. dNTPs were purchased from Bio-Rad Laboratories, and *Escherichia coli* BL21(DE3) host cells were from Novagen. All chromatographic devices were purchased from GE Healthcare. The protease inhibitor cocktail was from Roche. Ethyl-paraoxon was purchased from Sigma.

Protein expression and purification

The expression and purification of OpdA have been described previously in detail [11]. Briefly, the recombinant plasmid pETMCSI [29] containing the OpdA gene was transferred by heat-shock into *E. coli* BL21(DE3) host cells, and single colonies were inoculated in Terrific Broth medium, supplemented with 1 mM CoSO$_4$ and 50 μg/ml ampicillin, at 37°C with stirring at 200 rev./min for 48 h. Approx. 30 g of cells were harvested by centrifugation and disrupted using a French Press. OpdA was purified from the soluble fraction of the lysate using a MonoS HR column followed by a Sephacryl S-200 column (GE Healthcare). Samples from each purification step, as well as the purity of the final OpdA sample, were analysed by SDS/PAGE. The protein concentration was determined at 280 nm using $\varepsilon = 29280$ M$^{-1}$·cm$^{-1}$ (monomer) [11]. Approx. 10 mg of pure OpdA were obtained per litre of cell culture.

Site-directed mutagenesis

The pETMCSI::OpdA vector was used as a template to generate the Y257F and R254H mutants. A pair of primers containing the desired mutations was used for each mutant. PCRs were performed under standard conditions using Pfu DNA polymerase and 5% (w/v) DMSO in the reaction mixture. The PCR product was analysed on a 1% (w/v) agarose gel and the amplification product was incubated with 10 units of DpNI for 2 h at 37°C. The product was then transferred into *E. coli* BL21(DE3) host cells and single colonies were selected. Colony screening and DNA sequencing confirmed the desired mutations. Expression and purification of the mutants were performed as described for the wild-type enzyme.

Metal-ion replacement

A solution containing 1 mg/ml OpdA, 2.5 mM EDTA, 2.5 mM 1,10-phenanthroline, 2.5 mM 2,6-pyridinedicarboxylate, 2.5 mM 8-hydroxyquinoline 5-sulfonic acid, 2.5 mM 2-mercaptoethanol and 10 mM Hepes (pH 7.0) was incubated at 4°C. The enzymatic activity was monitored using 1 mM ethyl-paraoxon in 50 mM
Enzymatic assays

For all kinetic measurements, M(II)-substituted OpdA was diluted in 50 mM Tris/HCl (pH 9.0), with 1 mg/ml BSA. The reactions were monitored for 60 s at 25°C in a Cary 50 Bio Varian UV-Vis spectrophotometer. Chelex resin (Bio-Rad Laboratories) was added to all buffers and, after 30 min of stirring, it was removed by filtration. The pH-rate profiles of Cd(II)-, Co(II)- and Zn(II)-substituted OpdA were determined using ethyl-paraoxon as the substrate, with concentrations ranging from 15 μM to 3.5 mM. The initial velocities were measured by the release of p-nitrophenol at the pH-independent isosbestic wavelength of 347 nm (ε = 5176 M⁻¹·cm⁻¹) [16]. Note that the minimum final concentration of methanol required in the assays to maintain required concentrations of ethyl-paraoxon is 2%. Owing to the lower water solubility of other substrates used in the present study (see below), a final concentration of 10% (v/v) methanol was maintained in all assays. At this concentration of methanol, the rate of ethyl-paraoxon hydrolysis was 2.4-fold lower than at 2%, but the K_m was not affected. OpdA was assayed in the pH range 4.5–11 using a 100 mM acetate, 100 mM Mes, 100 mM Hepes, 100 mM Ches [2-(N-cyclohexylamino)ethanesulfonic acid] and 100 mM Caps [3-(cyclohexylamino)propane-1-sulfonic acid] multi-component buffer.

Substrate specificity

The kinetic parameters for different methyl- and ethyl-substituted substrates were measured in 50 mM Tris/HCl (pH 8.5). The hydrolysis of the substrates ethyl-paraoxon, parathion, methyl-paraoxon and methyl-parathion was measured by the release of p-nitrophenol at 405 nm (ε = 15700 M⁻¹·cm⁻¹). Parathion and methyl-parathion concentrations were varied from 10 to 300 μM and 40 μM to 1.2 mM respectively in the presence of 30% (v/v) methanol. The concentration of ethyl-paraoxon and methyl-paraoxon was varied from 10 to 600 μM and 10 μM to 1.2 mM respectively in the presence of 10% (v/v) methanol.

Kinetic data analysis

The data were analysed by non-linear regression using GraphPad Prism 5 Software. The maximum velocity V and Michaelis constant K_m were obtained using the Michaelis–Menten equation (eqn 1) [30]:

\[v = \frac{VS}{K_m + S} \]

where S represents the substrate concentration and \(v \) the initial velocity.

pK_a values from pH-rate profiles were determined by fitting the experimental data to eqn (2) or eqn (3):

\[\log y = \log[c/(1 + H/K)] \]

(2)

\[\log y = \log \left[\frac{V (1 + k_{\text{cat}})}{1 + (H/K) + (k_{\text{cat}}/K)} \right] \]

(3)

where H is the proton concentration, K represents the protonation equilibria for either the enzyme–substrate complex or the free enzyme, c and a are the pH-independent values of y, and V is the kinetic parameter, which can be either \(k_{\text{cat}} \) or \(k_{\text{cat}}/K_m \) [30]. The equations mathematically correspond to the situation of one (eqn 2) or two (eqn 3) protonation equilibria respectively.

Crystalization, X-ray data collection and refinement

Crystals were grown by hanging-drop vapour diffusion using a mixture of 5 μl of 5 mg/ml OpdA_Y257F in 50 mM Hapes and 1 mM CoSO_4 (pH 7.0) and 5 μl of reservoir solution containing 160 mM calcium acetate hydrate, 80 mM sodium cacodylate, 14.4% (w/v) PEG [poly(ethylene glycol)] 8000 and 20% (w/v) glycerol (pH 6.5). Crystals were formed after 4 days at 18°C. X-ray data were collected for OpdA_Y257F free enzyme, as well as OpdA_Y257F soaked with 2 mM EPO for 20h. Diffraction data were collected with a Raxis IV++ detector, FR-E X-ray generator at the University of Queensland. Crystals were flash-cooled in a stream of liquid nitrogen at 100 K. The crystallization solution was suitable as a cryoprotectant. The structures of free OpdA_Y257F and OpdA_Y257F complexed with EPO were refined using the co-ordinates for OpdA complexed with ethylene glycol (PDB code 2DJ) as a starting point. Refinement was undertaken using REFMAC, in the CCP4 suite of programs [31]. Model building was with the WinCoot program [32], and the final analysis of the stereochemistry was performed using PROCHECK in the CCP4 suite [31]. Co-ordinates have been deposited in the Protein Data Bank with accession code 3OQE and 3OOD for OpdA_Y257F and OpdA_Y257F–EPO respectively (residual electron density in the active site of the free enzyme is due to the presence of cacodylate and PEG in substoichiometric amounts; their presence excludes that of the water molecule co-ordinated to the β-metal ion).

RESULTS AND DISCUSSION

Protein expression, purification and mutagenesis

Recombinant OpdA expression was achieved in cells grown for 48 h at 37°C in the absence of IPTG (isopropyl-β-D-thiogalactopyranoside). It has been shown previously [33,34] that lac-controlled systems, such as pET, may achieve a high level of protein expression in the absence of an inducer. Protein expression occurs during the stationary phase of cell growth in a complex culture medium containing cAMP and acetate at low pH [33,34]. The two-step protocol described in the present study reproducibly yielded approx. 10 mg of OpdA/litre of cell culture with considerably higher purity than reported previously [11].
Kinetic properties of OpdA

Raushel and co-workers [16] have studied the kinetic behaviour of OPH-catalysed paraoxon hydrolysis and demonstrated the importance of a single protonation equilibrium in both the k_{cat} and K_m profiles [16]. The corresponding pK_a values for the Zn(II)/Zn(II), Zn(II)/Cd(II) and Cd(II)/Cd(II) derivatives respectively are reported to be 5.9, 6.2 and 8.0 for k_{cat}, and 6.0, 6.3 and 6.9 for K_m (Table 1) [16]. These pK_a values were ascribed to the deprotonation of the metal-ion-bridging water [16], which is in agreement with predictions from the crystal structures [13,14,35,36]. In addition, pH-titration experiments monitored by electron paramagnetic resonance and computational studies also lend support to the proposal that this single protonation equilibrium is important of a single protonation equilibrium in both the k_{cat} and K_m profiles [16].

In order to study mechanistic variations between OPH- and OpdA-catalysed OP hydrolysis, pH-rate profiles using the substrate paraoxon were measured for the homobinuclear Co(II), Zn(II) and Cd(II) derivatives of OpdA (Figure 2). Similar to OPH, the pH-dependence of k_{cat} is more complex and metal-ion-dependent. Data for the Zn(II)/Zn(II) derivative were fitted to an equation derived for a monoprotic system (eqn 2), whereas the data for the Cd(II)/Cd(II) and Co(II)/Co(II) forms were fitted to an equation derived for a diprotic system (eqn 3) [30].

Table 1 pK_a values for wild-type OpdA with various metal ion compositions, two Co(II)-containing mutants of OpdA and metal ion derivatives of OPH

<table>
<thead>
<tr>
<th>Metal derivative</th>
<th>pK_{a1}</th>
<th>pK_{a2}</th>
<th>pK_e</th>
<th>pK_{a5}</th>
<th>pK_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co(II)/Co(II)</td>
<td>4.8 ± 0.1</td>
<td>10.1 ± 0.3</td>
<td>4.8 ± 0.1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Cd(II)/Co(II)</td>
<td>4.1 ± 0.1</td>
<td>8.4 ± 0.2</td>
<td>5.3 ± 0.1</td>
<td>8.0 ± 0.1</td>
<td>6.9 ± 0.1</td>
</tr>
<tr>
<td>Zn(II)/Zn(II)</td>
<td>4.4 ± 0.1</td>
<td>−</td>
<td>4.9 ± 0.1</td>
<td>5.9 ± 0.1</td>
<td>6.0 ± 0.1</td>
</tr>
<tr>
<td>Zn(II)/Cd(II)</td>
<td>−</td>
<td>−</td>
<td>6.2 ± 0.1</td>
<td>6.3 ± 0.1</td>
<td>−</td>
</tr>
<tr>
<td>Y257F Co(II)</td>
<td>4.8 ± 0.1</td>
<td>10.6 ± 0.3</td>
<td>6.2 ± 0.1</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>R254H Co(II)</td>
<td>5.2 ± 0.1</td>
<td>8.5 ± 0.3</td>
<td>6.4 ± 0.1</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Values are means ± S.E.M. pK_e and pK_{a5} are pK_a values corresponding to the free enzyme and enzyme–substrate complex respectively [30]. *Taken from [16].

Figure 2 Kinetic pH rate profiles of wild-type OpdA with various metal ion compositions

The pH-dependences of k_{cat} and k_{cat}/K_m are shown in the left- and right-hand panels respectively. Similar to OPH, only one protonation equilibrium was associated with k_{cat}/K_m in OpdA, but the pH-dependence of k_{cat} is more complex and metal-ion-dependent. Data for the Zn(II)/Zn(II) derivative were fitted to an equation derived for a monoprotic system (eqn 2), whereas the data for the Cd(II)/Cd(II) and Co(II)/Co(II) forms were fitted to an equation derived for a diprotic system (eqn 3) [30].
The pH-dependence of k_{cat} provides information about catalytically relevant protonation equilibria for the enzyme–substrate complex [30]. The metal ion composition affects the k_{cat} values. At maximum pH, the Zn(II)/Zn(II) and Cd(II)/Cd(II) derivatives have a k_{cat} of 275 and 250 s$^{-1}$ respectively (Figure 2). The Co(II)/Co(II) derivatives reached maximum activity at higher pH values (2000 s$^{-1}$; Figure 2). For the Zn(II)/Zn(II) derivative of OpdA, similar to its OPH counterpart, only one protonation equilibrium is apparent and data were accordingly fitted to an equation derived for a monoprotic system (eqn 2). However, two equilibria appear to be involved for Co(II)/Co(II)– and Cd(II)/Cd(II)–OpdA (Figure 2). These data were fitted to equations derived for a diprotic model (eqn 3). The acid dissociation constants (pK_{a} values) are listed in Table 1. pK_{a} values of OpdA are again ascribed to the metal-ion-bridging water molecule. The increase in reactivity between pH 4 and 7 is consistent with the formation of a bridging hydroxide molecule which can act either (i) directly as a nucleophile to cleave the P–O bond of the substrate (as proposed for the OPH-catalysed reaction), or (ii) as an activator for a terminally bound nucleophile (as proposed previously for the OpdA-catalysed reaction; see above). A comparison of the pK_{a} values between (i) different metal ion derivatives of OpdA, and (ii) OpdA and OPH with identical metal ion composition illustrates how the metal ions modulate the catalytic cycle of OpdA and highlights mechanistic variations between these two closely related OP-degrading enzymes. In OpdA, substrate binding leads to a substantial increase in the acidity of the bridging water molecule; for the Zn(II)/Zn(II) derivative, pK_{a} is 0.5 unit lower than pK_{a}, whereas the difference for Cd(II)/Cd(II) derivatives is 1.2 units (Table 1). In contrast, for the same metal ion derivatives in OPH, either no change [Zn(II)/Zn(II)–OPH] or an alkaline-shift [Cd(II)/Cd(II)–OPH; 1.1 units] is observed. Furthermore, a second pK_{a} for the enzyme–substrate complex (pK_{a}) is observed for the Cd(II)/Cd(II)-derivative only in OpdA [although the negative gradient associated with this pK_{a} (<0.07; Figure 2) indicates that the associated protonation equilibrium is not likely to be mechanistically relevant]. Hence catalytically relevant protonation equilibria in OpdA are not only more acidic than their counterparts in OPH, but substrate binding also affects these equilibria differently. Considering that these enzymes have identical co-ordination spheres and only three amino acid variations in the substrate-binding pocket (see above) it is likely that differences in the hydrogen-bond network, mediated via these three amino acid side chains, are responsible for the observed mechanistic differences (Figure 3).

The behaviour of Co(II)/Co(II)–OpdA is particularly intriguing. In contrast with the other metal ion derivatives of OpdA, substrate binding does not seem to perturb pK_{a} (Table 1). Furthermore, a second deprotonation event (pK_{a}) greatly enhances its reactivity further (Figure 2). Substrate binding to Co(II)-reconstituted OpdA does reduce the magnitude of the exchange interaction between the α- and β-metal ions, an observation that was interpreted as a shift of the bridging water molecule into a pseudo-monodentate position to one of the metal ions. This shift would be expected to increase the pK_{a} of this water molecule (due to a reduction in Lewis activation). The lack of this change suggests that the reduction in Lewis activation may be compensated by increased hydrogen bonding between this ligand and amino acid ligands such as Asp301 (α-metal ion) or His230 (β-metal ion; Figure 3). pK_{a} (~10; Table 1) is of a magnitude similar to that of the [Co(II)(H$_2$O)$_6$]$^{2+}$ complex (9.8; [41]) and is thus ascribed to the deprotonation of a terminal water ligand. Since no terminal water ligand has yet been observed in crystal structures of free OpdA and OPH, this assignment suggests that substrate binding to Co(II)/Co(II)–OpdA promotes the binding of a terminal water ligand to the α-metal ion. This assignment may thus also reconcile two mechanistic schemes proposed for OpdA and may illustrate the catalytic flexibility of this enzyme as will be discussed below.

In summary, the catalytic data collected for several metal ion derivatives of OpdA indicate that this enzyme is active at lower pH values than its close relative OPH, an effect that is likely to be due to differences in hydrogen-bonding interactions that involve the μ-(H)OH group and residues in the substrate binding pocket (i.e. Arg254 and Tyr257; Figure 3). Furthermore, the metal ion composition also modulates the reactivity and possibly the molecular mechanism of hydrolysis, at least in OpdA.

Probing the effect of the hydrogen-bond network on catalysis using site-directed mutagenesis and X-ray crystallography

The structure of wild-type OpdA has revealed the presence of a hydrogen-bond network that connects Asp301, a ligand of the α-metal ion, with the second sphere residues Arg254 and Tyr257 (Figure 3). As these residues are unique to OpdA, and since the above results indicated that hydrogen-bonding interactions may have a significant effect on reactivity and mechanism of otherwise highly conserved enzymes, Arg254 and Tyr257 were replaced by a histidine and a phenylalanine residue respectively. The pH-dependence of both k_{cat} and k_{cat}/K_{m} of the Co(II)-derivatives of the two mutants were determined and compared with those of the wild-type enzyme (Figure 4). Again, only one protonation equilibrium is associated with the pH-dependence of k_{cat}/K_{m} (Table 1). However, the corresponding pK_{a} values are increased...
The differences between the wild-type and mutant enzyme forms is observed for the wild-type enzyme (Figure 1). The main structural data collection and refinement are shown in Table 2. In the free crystals for the R254H mutant were obtained. The statistics for free form and complexed with EPO, were determined (no suitable present study, the crystal structures of the Y257F mutant, both in wild-type OpdA with the bound slow substrate EPO [15]. In the crystallography. Recently, we reported the crystal structure of the corresponding equilibria are not altered and the mechanism of action remains unchanged.

Thus, although the mutations have some effect on the hydrogen-bond network in the active site of OpdA, in particular decreasing the acidity of the pKᵦ of the free enzyme (pKᵦ), the identity of the corresponding equilibria are not altered and the mechanism of action remains unchanged.

The effect of the mutations was also probed by X-ray crystallography. Recently, we reported the crystal structure of wild-type OpdA with the bound slow substrate EPO [15]. In the present study, the crystal structures of the Y257F mutant, both in free form and complexed with EPO, were determined (no suitable crystals for the R254H mutant were obtained). The statistics for data collection and refinement are shown in Table 2. In the free enzyme, the first co-ordination sphere is very similar to the one observed for the wild-type enzyme (Figure 1). The main structural differences between the wild-type and mutant enzyme forms is the relative position of Arg²⁵⁴ and Tyr²⁵⁷, and the co-ordination environment of the Co(II) in the β-site (Figure 5). In wild-type OpdA, the position of Arg²⁵⁴ is rigid due to the hydrogen-bonding interaction between Arg²⁵⁴ and Tyr²⁵⁷, pointing the side chain of Arg²⁵⁴ away from the binuclear centre. In OpdA_Y257F, this interaction no longer exists, enabling Arg²⁵⁴ to be more flexible, thus adopting two different conformations, one as observed in the wild-type enzyme and an additional one where the side chain is straight and in proximity of the β-metal ion (Figure 5). In its straight conformation, Arg²⁵⁴ prevents the second terminal water ligand from binding to the β-metal ion and the µ-OH–β-Co(II) bond length is increased by 0.35 Å [1 Å = 0.1 nm; the distance between µ-OH and α-Co(II) is also slightly increased]. In addition, the Y257F mutation also disconnects the residues in position 254 and 257 from the hydrogen-bond network (Table 1).

Table 2 Data collection and refinement statistics of OpdA_Y257F structures

<table>
<thead>
<tr>
<th></th>
<th>OpdA_Y257F free</th>
<th>OpdA_Y257F–EPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution range (Å)</td>
<td>47.22–1.90 (1.97–1.90)</td>
<td>47.21–1.90 (1.97–1.90)</td>
</tr>
<tr>
<td>Space group</td>
<td>P3₁21</td>
<td>P3₁21</td>
</tr>
<tr>
<td>Unit cell (Å)</td>
<td>a = 109.05, b = 109.05, c = 62.23, α = 90°, β = 90°, γ = 120°</td>
<td>a = 109.02, b = 109.02, c = 62.66, α = 90°, β = 90°, γ = 120°</td>
</tr>
<tr>
<td>Number of reflections</td>
<td>32962</td>
<td>33015</td>
</tr>
<tr>
<td>Rwork (%)</td>
<td>17.57</td>
<td>15.47</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>97.2 (82.1)</td>
<td>96.8 (78.5)</td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>Bond angles (°)</td>
<td>1.960</td>
<td>1.971</td>
</tr>
</tbody>
</table>

Note that, in the wild-type enzyme (left-hand panel), Arg²⁵⁴ is rigidly held in place by an interaction with Tyr²⁵⁷, however, Arg²⁵⁴ is more flexible in OpdA_Y257F (right-hand panel) and in the stretched conformation it can displace one of the water molecules terminally co-ordinated to the β-metal ion.
for the wild-type enzyme [15]). Optimal refinement of the structure is achieved using occupancies of 60 and 40 % for EPO and the reaction product DEP (diethyl phosphate) respectively (Figure 6). EPO is bound in a monodentate fashion to the β-metal ion and DEP bridges the two metal ions in a μ-metal ion bridging water ligands [15]. Interestingly, in the EPO/DEP-bound structure, electron density ascribed to a terminal water ligand at the α-site is also observed (at ~30 % occupancy). This is the first time that the presence of a water ligand terminally co-ordinated to the α-metal ion has been observed and supports the above assignments of pK_{es1} and pK_{es2} (Table 1).

Alterations in the hydrogen-bond network may facilitate rapid evolution of substrate specificity

Other enzymes, where hydrogen-bonding interactions are pivotal in tuning the reaction mechanism (such as OpdQ [26,27]), exhibit a kinetic behaviour dependent on the substrate. To investigate this possibility, kinetic data were measured for Co(II)/Co(II)–OpdA using ethyl-paraoxon, methyl-paraoxon, ethyl-parathion and methyl-parathion as substrates (Table 3). The latter three substrates are poorly soluble in aqueous solution, but concentrations of up to 1.5 mM can be achieved using a 10 % (v/v) methanol/water mixture (see the Experimental section). For most substrates, the two mutants have considerably weaker affinities than the wild-type enzyme (exception: the Y257F mutant has a higher affinity for paraoxon). Similarly, the respective k_{cat} values are lowered in the mutants, resulting in an overall reduction in their catalytic efficiency. However, for the R254H mutation, which mimics the active site of OPH, paraoxon is turned over more rapidly than its methylated counterpart. This is in contrast with what is observed for the wild-type and Y257F mutant forms of OpdA, but it agrees with the preference reported for OPH [11,16]. It needs to be remembered that the OP-degrading activities have evolved over the last few decades [3,6,10]. Thus it is likely that OpdA and OPH have evolved and optimized different substrate specificities by mutating particular amino acids that facilitate such a rapid change. Residues Arg^{254} and Tyr^{257} are, together with Leu^{257}, the only variations in the immediate vicinity of the active sites of OpdA and OPH, but Arg^{254} and Tyr^{257} are intricately connected to the catalytically essential metal ions via an extensive hydrogen-bond network (Figures 3 and 5). Thus it would appear that mutations in positions that affect the hydrogen-bond network are beneficial for the rapid alteration of substrate specificities in OP-degrading enzymes.

Mechanistic implications

The metal ion replacements and site-directed mutations discussed above illustrate that the hydrogen-bond network that links the binuclear metal centre to the substrate-binding pocket is intricately involved in the modulation of the reaction mechanism. The best studied and most reactive derivative of OpdA is the Co(II)/Co(II) form. MCD data have shown that substrate binding does not lead to a change in the co-ordination number of the α-metal ions, but it lowers that of the β-metal ion from six to five. Furthermore, the exchange coupling is weakened (F. Ely, K.S. Hadler, N. Mitic, L.R. Gahan, D.L. Ollis, J.A. Larabee and G. Schenk, unpublished work). These observations were interpreted in terms of a rearrangement in the binuclear centre, whereby the metal-ion-bridging hydroxide is shifted into a pseudo-monodentate position. The data did not allow for a distinction between a shift of the μOH towards the α- or β-metal ion. Two schemes for the reaction mechanism are possible. In the first, the μOH is shifted towards the β-metal ion upon substrate binding. In order to maintain a five-co-ordinate ligand field, a water molecule from the environment is required to bind to the α-metal ion. Alternatively, in the second scheme, the μOH is shifted towards the α-metal ion; no additional ligands are required to account for the experimentally observed co-ordination numbers. The kinetic and crystallographic data reported in the present study support the first scheme at least for the Co(II)/Co(II) derivative of OpdA (Figure 7). The pH-dependence of the catalytic parameters reveals two relevant protonation equilibria ascribed to the metal-ion-bridging hydroxide (pK_{es1} and pK_{es2}) and a terminal (pK_{es2}) water ligand (Table 1). Furthermore, the crystal structure of OpdA_Y257F demonstrates how the addition of a substrate (EPO) leads to the emergence of a terminal water ligand in the co-ordination sphere of the α-metal ion (note that, due to the fractional presence of reaction product, the μOH is obscured in the electron density map). In line with DFT calculations, this terminal water ligand is optimally aligned for a nucleophilic attack on the phosphorus atom of the substrate. The mechanism for Co(II)/Co(II)–OpdA is shown in Figure 7.

In the Zn(II)/Zn(II) derivative of OpdA, no pK_{es2} at high pH is evident (Figure 2), suggesting that only the metal-ion-bridging hydroxide is relevant in this enzyme. Thus the second mechanistic scheme described above (a substrate-induced shift of the μOH towards the α-metal ion) is a plausible model for the catalytic cycle. The same is likely to be the case in the Cd(II)/Cd(II) derivative of OpdA and various metal ion derivatives of OPH [41]. Thus the metal ion composition does modulate the reaction mechanism of OP hydrolysis by OpdA.

Conclusions

The significance of the present work lies in the demonstration of the relevance of both hydrogen-bonding interactions and metal
Table 3 Kinetic constants for OpdA wild-type and mutants with methyl- and ethyl-substituted substrates (pH 8.5)

Values are means ± S.E.M.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Wild-type</th>
<th>OpdA_Y257F</th>
<th>OpdA_R254H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K<sub>m</sub> (μM)</td>
<td>k<sub>cat</sub> (s<sup>-1</sup>)</td>
<td>K<sub>m</sub></td>
</tr>
<tr>
<td>Paraoxon</td>
<td>41.0 ± 4.1</td>
<td>670 ± 23</td>
<td>1.2 × 10<sup>7</sup></td>
</tr>
<tr>
<td>Methyl-paraoxon</td>
<td>290 ± 22</td>
<td>3400 ± 111</td>
<td>1.3 × 10<sup>7</sup></td>
</tr>
<tr>
<td>Parathion</td>
<td>60.0 ± 4.8</td>
<td>340 ± 10</td>
<td>5.6 × 10<sup>6</sup></td>
</tr>
<tr>
<td>Methyl-parathion</td>
<td>990 ± 76</td>
<td>1840 ± 81</td>
<td>1.9 × 10<sup>6</sup></td>
</tr>
</tbody>
</table>

Figure 7 Proposed mechanism for phosphotriester hydrolysis

Scheme proposed for the (A) Co(II)/Co(II)–OpdA derivative and (B) Zn(II)/Zn(II)– or Cd(II)/Cd(II)–OpdA derivatives [12].

AUTHOR CONTRIBUTION

Fernanda Ely, David Ollis and Gerhard Schenk designed the research. Fernanda Ely, Kieran Hadler and Luke Guddat performed the research; Fernanda Ely, Lawrence Gahan, Luke Guddat, David Ollis and Gerhard Schenk analysed the data; and Fernanda Ely and Gerhard Schenk wrote the paper.

ACKNOWLEDGEMENTS

X-ray data were measured at the University of Queensland Remote Crystallization and X-Ray Diffraction Facility.

FUNDING

This work was supported by the Australian Research Council, Discovery Projects Scheme [grant number DP0866613]. F.E. is supported by an International Postgraduate Research Scholarship and the University of Queensland International Living Allowance Scholarship.

REFERENCES