Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide

Catherine L. WATKINS*, Dirk SCHMALJOHANN*, Shiroh FUTAKI† and Arwyn T. JONES*†

*Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3NB, Wales, U.K., and †Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

The exact mechanisms by which cell-penetrating peptides such as oligo-arginines and penetratin cross biological membranes has yet to be elucidated, but this is required if they are to reach their full potential as cellular delivery vectors. In the present study, qualitative and quantitative analysis of the influence of temperature, peptide concentration and plasma membrane cholesterol on the uptake and subcellular distribution of the model cell-penetrating peptide octa-arginine was performed in a number of suspension and adherent cell lines. When experiments were performed on ice, the peptide at 2 μM extracellular concentration efficiently entered and uniformly labelled the cytoplasm of all the suspension cells studied, but a 10-fold higher concentration was required to observe similar results in adherent cells. At 37°C and at higher peptide concentrations, time-lapse microscopy experiments showed that the peptide rapidly penetrated the entire plasma membrane of suspension cells, with no evidence of a requirement for nucleation zones to promote this effect. Cholesterol depletion with methyl-β-cyclodextrin enhanced translocation of octa-arginine across the plasma membrane of suspension cells at 37°C, but decreased overall peptide accumulation. Under the same conditions in adherent cells this agent had no effect on peptide uptake or distribution. Cholesterol depletion increased the overall accumulation of the peptide at 4°C in KG1a cells, but this effect could be reversed by re-addition of cholesterol as methyl-β-cyclodextrin–cholesterol complexes. The results highlight the relatively high porosity of the plasma membrane of suspension cells to this peptide, especially at low temperatures, suggesting that this feature could be exploited for delivering bioactive entities.

Key words: cell-penetrating peptide (CPP), cholesterol, endocytosis, fluorescence microscopy, methyl-β-cyclodextrin (MβCD), octa-arginine.

INTRODUCTION

CPPs (cell-penetrating peptides) or protein-transduction domains have now been described for two decades [1,2]. During this period, several different CPP classes have been described that contain a variety of sequences and electrostatic charges, but all show a common ability to traverse biological membranes [3]. The best characterized include peptides rich in the basic residues arginine and lysine such as the HIV-Tat peptide and synthetic oligo-arginines (R6–R18) [4]. Much of the interest in CPPs stems from their proven ability to not only traverse membranes but to also act as delivery vectors, in vitro and in vivo, for bioactive macromolecules with therapeutic potential such as siRNA (small interfering RNA), plasmids, peptide nucleic acids and proteins [5–7]. The precise mechanisms employed by CPPs to translocate through biological membranes is still largely unknown, and as different classes of CPPs exist it is unlikely that a single model will emerge to cover all of the different classes. Translocation was initially believed to be mediated by endocytosis, a notion that was then superseded with the finding that cellular uptake was independent of temperature, receptor and energy [8,9]. In the wake of findings that fixation of cells was responsible for significant artefacts relating to uptake and localization [10,11], the concept of an endocytic uptake mechanism gained stronger prominence as the primary route for cellular CPP entry [12–15]. More recent data, however, suggest that the fraction of peptide that gains access to cells directly through the plasma membrane, rather than via endocytosis, is highly dependent on the extracellular peptide concentration and the presence of serum in the growth medium [16–20]. These studies relate mostly to cationic variants such as HIV-Tat and oligo-arginines.

Our previous studies have shown that two leukaemia cell lines, KG1a and K562, were porous to both HIV-Tat peptide and octa-arginine (R8) when relatively low concentrations of the peptides (≤ 2 μM) were incubated with the cells on ice (4°C) [21]. As expected, no endocytic vesicles were observed, rather the labelling was diffuse in the cytosol, the nucleus and in the case of the D-form of R8, enriched in the nucleolus. Cytosolic diffusion and nuclear accumulation of the D-form of R8 peptide was also reported with incubations at 4°C in adherent HeLa cells [22] and uptake of RRRRRRRRW, was found to be higher at 4°C compared with 37°C in PC-12 and Chinese Hamster cells [23]. These adherent cells were however incubated with higher peptide concentrations of between 5 and 10 μM.

Cholesterol is a major constituent of the mammalian plasma membrane, accounting for between 30 and 40 mol % of the total lipid content [24]. The conformational structure of cholesterol facilitates close interaction with the saturated fatty acid tails of sphingolipids [25], and, together with GPI (glycosylphosphatidylinositol)-anchored proteins, it is found enriched in distinct regions of the plasma membrane called lipid rafts [26]. Cholesterol is fundamental for the function of biological membranes and regulates, among other things, plasma membrane fluidity and endocytosis [27]. Cholesterol is required to maintain caveolae structure and for their invagination as caveosomes [28–30], but extraction of plasma membrane cholesterol with MβCD (methyl-β-cyclodextrin) also affects clathrin-mediated uptake and macropinocytosis [31–33]. Cholesterol depletion has previously

Abbreviations used: CPP, cell-penetrating peptide; FBS, foetal bovine serum; MβCD, methyl-β-cyclodextrin; MβCD–cholesterol complex; PI, propidium iodide; SFM, serum-free RPMI 1640 medium; Tf, transferrin.

1 To whom correspondence should be addressed (email jonesat@cardiff.ac.uk).
been reported to inhibit the uptake of Tat peptides in two cell lines [34]; however, MβCD treatment caused an enhanced cytoplasmic labelling of KG1a suspension and adherent HeLa cells at physiological temperatures using peptide concentrations of 2 and 10 μM respectively [16,17].

In the present study, we have performed qualitative and quantitative analysis of the cellular uptake and distribution of fluorescently labelled R8 in suspension cell lines (KG1a, KG1 and K562) and adherent cells (HeLa and A549) at different temperatures, and further investigated a role for cholesterol in peptide uptake. Overall the results show that the plasma membranes of suspension cells have significantly greater permeability to this peptide at both low and physiological temperatures, but this is not due to a peptide-induced increase in cell porosity. We also show that the effects of MβCD on KG1a cells is specifically due to cholesterol extraction rather than other common effects associated with this agent [35].

EXPERIMENTAL

Reagents

Alexa Fluor® 488-C5-maleimide and Alexa Fluor® 488–Tf (transferrin) (termed Alexa488–Tf) were purchased from Invitrogen. PI (propidium iodide), MβCD, cholesterol and Filipin III were from Sigma–Aldrich. Glass-bottomed culture dishes (35 mm) for microscopy were from MatTek Corporation. All tissue culture reagents were from Invitrogen.

Peptide synthesis and conjugation

The R6, R6, R6, R6, R6, G6, C6 peptide (designated R6,8 in the present study) was obtained from the American Peptide Company and was labelled using Alexa Fluor® 488-C5-maleimide sodium salt (termed R6,8–Alexa488) as previously described [16]. Purification of R6,8–Alexa488 was by HPLC using a C18 Luna 100 Å-pore-size (1 Å = 0.1 nm) 5-μm-particle-size semi-preparative column (Phenomenex) and its mass (2126.52 Da) was confirmed using electrospray time-of-flight MS (actual mass, 2126.40 Da).

Cell culture

All cell lines were maintained in a humidified 5% CO2 incubator at 37 °C. Human acute myeloid leukaemia KG1, KG1a cells, and chronic myeloid leukaemia K562 cells were cultured and maintained at a confluency of (0.5–2)×10⁶ cells/ml in RPMI 1640 medium, supplemented with 10% (v/v) FBS (foetal bovine serum), 100 i.u./ml penicillin and 100 μg/ml streptomycin. Human cervical carcinoma HeLa and lung epithelial carcinoma A549 cells were maintained as a subconfluent monolayer in DMEM (Dulbecco’s modified Eagle’s medium) supplemented with 10% (v/v) FBS, 100 i.u./ml penicillin and 100 μg/ml streptomycin.

Cellular localization of R6,8–Alexa488 and Alexa488–Tf in suspension and adherent cells

KG1a, KG1 and K562 cells (0.5 × 10⁶ cells) were washed in complete medium and equilibrated at 4 or 37 °C for 15 min. The medium was replaced with fresh temperature-equilibrated medium containing 2 or 5 μM R6,8–Alexa488 or 100 nM Alexa488–Tf and the cells were then incubated with the probes at these temperatures for 1 h. Cells were then washed twice in SFM (serum-free RPMI 1640 medium), once in imaging medium (SFM without Phenol Red), and finally resuspended in 500 μl of imaging medium. A 100 μl aliquot of the cell suspension was transferred to the centre of glass-bottomed 35 mm culture dishes, and the cells were allowed to settle for 30 s–1 min. They were then analysed on a Leica SP5 confocal laser-scanning microscope equipped with an argon and helium/neon laser and a 63× oil-immersion objective. Cells were either imaged through a single section or through the z-axis to generate maximum projection images. Images were finally arranged using Adobe Photoshop.

A549 and HeLa cells (1.8 × 10⁶ cells) were seeded into sterile glass-bottomed, 35 mm culture dishes and allowed to adhere for 24 h under tissue culture conditions. The cells were equilibrated at 4 or 37 °C for 15 min prior to replacement of the medium with fresh temperature-equilibrated complete medium containing 2, 5 or 20 μM R6,8–Alexa488 or 100 nM Alexa488–Tf. The cells were incubated at these temperatures for 1 h, washed twice in SFM, once in imaging medium and finally incubated in 500 μl of imaging medium for immediate analysis by confocal microscopy as described above.

Time-lapse microscopy of R6,8–Alexa488 uptake in KG1a cells

Cells (1 × 10⁵) were washed in complete medium, resuspended in imaging media containing 10% (v/v) FBS and transferred to 35 mm imaging dishes that were then placed on a 37 °C imaging platform on the confocal microscope. R6,8–Alexa488 was added at final concentrations of 2 or 10 μM and the cells were allowed to settle for ~30 s, images were then acquired every 30 s for 10 min. The bright-field and fluorescence frames were then processed as side-by-side animations using the Leica LAS AF software.

Flow cytometry

Suspension cells (5 × 10⁵) were equilibrated at 4 or 37 °C for 15 min, prior to incubation for 1 h with 0–5 μM R6,8–Alexa488 at either 4 or 37 °C. Cells were then washed three times with ice-cold PBS and resuspended in 200 μl of PBS. Cellular fluorescence was then immediately quantified using a Becton Dickinson FACSCalibur analyser as previously described [16]. Live cells were gated on a forward- and side-scatter basis, and 10,000 viable cells were assayed.

A549 and HeLa cells (0.6 × 10⁵ cells) were seeded into 12-well tissue culture plates and grown to 90% confluency under tissue culture conditions. The cells were equilibrated at 4 or 37 °C for 15 min, prior to incubation for 1 h with 0–5 μM R6,8–Alexa488 at 4 or 37 °C. Cells were washed once with ice-cold PBS, incubated with 0.25 mg/ml trypsin and 0.1 mg/ml EDTA solution at 37 °C for 5 min and then placed as a suspension into 1.5 ml centrifuge tubes. The cells were washed twice in ice-cold PBS and finally resuspended in 200 μl of ice-cold PBS for flow cytometry as described above.

Uptake of R6,8–Alexa488 in MβCD-treated cells

KG1a and K562 cells (5 × 10⁵ cells) were washed once in 37°C SFM and incubated for 30 min at 37°C in 200 μl of SFM containing 5 mM MβCD from a 100 mM stock in PBS; for control cells MβCD was replaced by PBS. Cells were washed in SFM, and incubated for 1 h with 2 μM R6,8–Alexa488 at 37 °C. The cells were then washed three times in SFM, twice in imaging medium and analysed by confocal microscopy or flow cytometry. To assess peptide uptake at 4°C following MβCD treatment, suspension KG1a cells were treated with MβCD as above, equilibrated at 4°C for 15 min prior to incubation with 2 μM R6,8–Alexa488 at 4°C, and analysed as described above.

A549 and HeLa cells (1.8 × 10⁵ cells) seeded into 35 mm imaging dishes were washed once in SFM (37°C), and incubated...
for 30 min at 37°C in 750 μl of SFM containing 5 mM MβCD. The cells were then incubated with the peptide, washed, trypsinized and processed for flow cytometry as described above.

Preparation of 5 mM MβCD complexed with cholesterol

A 5 mM solution of MβCD–chol (MβCD–cholesterol complex) was prepared using an adaptation of a previously described method [36]. Briefly, 16 μl of cholesterol from a stock solution (50 mg/ml in chloroform/methanol (1:1)) was added to a 50 ml glass flask. The solvent was evaporated under nitrogen, and 20 ml of SFM containing 132 mg of MβCD was added. The flask was sealed, sonicated in a bath sonicator for 3 min and finally incubated overnight at 37°C with rotation. The MβCD–chol solution was finally filtered through a 0.45 μm syringe filter into a 50 ml conical flask and stored for up to 7 days at 4°C.

Replenishment of cellular cholesterol with MβCD–chol

KG1a cells (0.5 × 10⁶ cells) were washed in 37°C equilibrated SFM, centrifuged (1500 g for 1 min at 22°C) and medium was replaced with medium containing 5 mM MβCD or MβCD–chol (Table 1). After 30 min at 37°C, the cells were washed with SFM and incubated for 30 min at 37°C in either SFM or MβCD–chol (Table 1). Cells were finally washed in SFM and equilibrated on ice for 15 min prior to a 1 h incubation in ice-cold complete medium containing 2 μM R₈–Alexa488. Cells were washed three times in ice-cold PBS and immediately analysed for R₈–Alexa488 uptake by flow cytometry as described above.

Filipin staining

KG1a cells (0.5 × 10⁶ cells) were treated as described in Table 1, but rather than adding peptide they were stained with Filipin III using a method described previously [37]. Briefly, cells were washed three times in PBS and then fixed with 3% (w/v) paraformaldehyde in PBS for 30 min at room temperature (22°C). The cells were washed three times in PBS, resuspended in 120 μl of PBS and 30 μl aliquots were placed on multiwell microscope slides (Hendley). The cells were allowed to settle for approx. 30 s before removing 25 μl of the surface liquid. The remaining cells were then dried for 3 min and the paraformaldehyde was quenched for 15 min with 50 mM glycine/PBS. The microscope slides were immersed three times in PBS prior to addition of 50 μg/ml Filipin III in PBS. The cells were incubated with this agent for 2 h at room temperature prior to another round of washing in PBS. The wells were covered with a coverslip, sealed with nail varnish and imaged through the UV (350 nm) channel of a Leica DMIRB inverted fluorescence microscope equipped with a 40 × oil-immersion objective. Images were captured on a Qimaging Retiga 1300 camera and Filipin fluorescence of individual cells was quantified using ImageJ software. Each experiment was performed three times and a total of 300 cells were analysed for each experiment, thus the data represent analysis from 900 cells.

Cell-permeability studies

KG1a, KG1 and K562 cells (0.5 × 10⁶ cells) were equilibrated at 4°C for 15 min, washed in complete medium and incubated for 1 h in complete medium containing 2 or 5 μM R₈ and 5 μg/ml PI. The cells were washed three times in ice-cold PBS, resuspended in 200 μl of PBS and analysed by flow cytometry. For MβCD-treated cells, KG1a and K562 cells were pre-incubated with 5 mM MβCD for 30 min, washed in SFM and incubated as above with 2 μM R₈ and PI prior to analysis by flow cytometry. For cholesterol-depletion and -addition experiments, KG1a cells were treated as described in Table 1, washed in complete medium and co-incubated for 1 h in complete medium containing 2 μM R₈ and PI at 4°C. The cells were washed three times in ice-cold PBS and resuspended in 200 μl of PBS prior to analysis by flow cytometry.

A549 and HeLa cells were seeded into 12-well plates at a density of 0.6 × 10⁵ cells/well and grown to confluency under tissue culture conditions. Cells were incubated in the absence or presence of 5 mM MβCD for 30 min, washed once in SFM and incubated with 2 μM R₈ and PI. Cells were washed once with ice-cold PBS, incubated with trypsin/EDTA solution at 37°C for 5 min and then placed as a suspension into 1.5 ml centrifuge tubes. The cells were washed twice in ice-cold PBS and finally resuspended in 200 μl of ice-cold PBS for flow cytometry.

RESULTS

Our previous work has shown that the cellular localization of R₈–Alexa488 peptide in CD34⁺ KG1a leukaemia cells at < 2 μM altered from being vesicular at 37°C to diffuse-cyttoplasmic at 4°C [16]. However, a similar diffuse distribution of peptide was observed in these cells following 37°C incubations when the extracellular peptide concentration was increased or when plasma-membrane cholesterol was sequestered. Therefore, in the present study, we investigated whether these effects could be observed in other suspension cells and adherent cell lines. For suspension cells we used the previously reported KG1a and K562 lines [16,21], and also utilized KG1 cells that are a more differentiated subpopulation of the original KG1a line [38]. Near identical experiments were also performed in adherent HeLa and A549 cells.

We initially incubated all of the leukaemic cell lines for 1 h with either 2 or 5 μM peptide at 37 or 4°C and assessed peptide distribution using confocal microscopy. Alexa488–Tf was also utilized for these studies as this is a well-characterized endocytic marker. As shown in Figure 1, a vesicular pattern of labelling was seen in all cell lines incubated at 37°C with 2 μM R₈–Alexa488. As previously shown, KG1a cells displayed fluorescent vesicles distributed throughout the cytoplasm, whereas the K562 cells showed labelling clustered within the perinuclear region of the cells [39]; KG1 cells showed a vesicular pattern of labelling similar to that of KG1a. When the peptide concentration was increased to 5 μM there was

Table 1 Incubation steps for cells treated with MβCD and/or MβCD–chol complexes to generate Figure 8

<table>
<thead>
<tr>
<th>Condition (Figure 8)</th>
<th>Sample</th>
<th>Step 1 (37°C), 0–30 min</th>
<th>Step 2</th>
<th>Step 3 (37°C), 31–60 min</th>
<th>Step 4 (4°C), 61–120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Control</td>
<td>SFM</td>
<td>Wash</td>
<td>SFM</td>
<td>2 μM R₈–Alexa488</td>
</tr>
<tr>
<td>B</td>
<td>MβCD</td>
<td>5 mM MβCD</td>
<td>Wash</td>
<td>SFM</td>
<td>2 μM R₈–Alexa488</td>
</tr>
<tr>
<td>C</td>
<td>MβCD, MβCD–chol</td>
<td>5 mM MβCD</td>
<td>Wash</td>
<td>5 mM MβCD–chol</td>
<td>2 μM R₈–Alexa488</td>
</tr>
<tr>
<td>D</td>
<td>MβCD–chol</td>
<td>5 mM MβCD–chol</td>
<td>Wash</td>
<td>SFM</td>
<td>2 μM R₈–Alexa488</td>
</tr>
</tbody>
</table>
Intracellular distribution of R₈–Alexa488 and Alexa488–Tf in suspension cells

KG1a, KG1 and K562 cells were incubated at 37 or 4°C with 2 or 5 μM R₈–Alexa488 or 100 nM Alexa488–Tf for 1 h before washing and analysis by confocal microscopy. Images are of 20 individual sections through the z-axis that were overlayed to generate maximum projection profiles. Single sections through the cells are shown in Supplementary Figure S1 (at http://www.BiochemJ.org/bj/420/bj4200179add.htm). Arrows indicate cytoplasmic labelling and the inset in 2 μM K562 cells at 37°C shows direct interference contrast images of cells overlayed with fluorescent images. Scale bars = 10 μm.

In HeLa cells, two independent studies have shown that strong cytoplasmic labelling of R9–R12 emanates as a wave of peptide from a distinct region of the plasma membrane [17,18]. We therefore incubated KG1a cells with either 2 or 10 μM R₈–Alexa488 and performed time-lapse confocal microscopy every 30 s for 10 min in the continued presence of the peptide. Shown in Figure 2 are individual frames showing bright-field or 488 nm fluorescence profiles immediately following peptide addition (0) and then after 5 and 10 min; movies spanning the entire 10 min experiment are shown as Supplementary Movies 1–4 (at http://www.BiochemJ.org/bj/420/bj4200179add.htm). At a peptide concentration of 2 μM there was little evidence of vesicular labelling throughout the experiment, but at 10 μM peptide concentrations, there was very strong diffuse fluorescence in a number of cells within 3 min, and after 10 min the majority of cells had quantities of intracellular fluorescence equivalent to the background and were then only visible through the bright-field view (Figure 2B and Supplementary Movies 3 and 4). Some cells, however, were more resistant to this effect, and a small fraction was almost devoid of fluorescence even after 10 min. We also performed the same peptide experiments in the presence of PI, but the peptide showed no evidence of enhancing the uptake of this probe (results not shown). Similar results were obtained when
performed at 37 °C

Alexa488–Tf for 1 h before washing and analysis by confocal microscopy. (B) Alexa488 seen at 4 °C analysis by confocal microscopy. Images shown are of 20 individual sections through the z-axis that were overlayed to generate maximum projection images. Arrows show plasma-membrane labelling. Scale bars = 10 μm.

identical experiments were performed in K562 cells (results not shown).

To also exclude the possibility that the distribution of R8–Alexa488 seen at 4 °C in Figure 1 was a consequence of a general increase in plasma-membrane permeability, we co-incubated, on ice, all of the suspension cells with 2 or 5 μM R8 and PI and then quantified PI uptake by flow cytometry. Less than 3% of untreated cells were PI positive and R8 had no significant effect in any of the three cell lines on the uptake of this probe.

Several of these experiments were then performed in adherent cell lines. HeLa and A549 cells displayed vesicular labelling at both 2 and 5 μM peptide concentrations when experiments were performed at 37 °C (Figure 3). When identical experiments were performed on ice, only plasma-membrane labelling was observed in A549 cells, but some evidence of cytoplasmic labelling was observed in HeLa cells at 5 μM peptide (Figure 3A). We therefore incubated both cell lines with 20 μM peptide at 4 and 37 °C (Figure 3B). At 37 °C some HeLa cells displayed evidence of diffuse, as well as vesicular labelling, however, no diffuse cytosolic labelling was observed in A549 cells. When cells were incubated at this increased peptide concentration on ice there was strong diffuse cytosolic labelling in HeLa cells but approx. 40% of the A549 cells had no evidence of cytosolic labelling, and in these cells the peptide was localized, primarily to the plasma membrane (Figure 3B). Again the maximum projection images are shown and single section images shown in Supplementary Figure S2 (at http://www.BiochemJ.org/bj/420/bj4200179add.htm) show more distinct plasma-membrane labelling.

Quantification of R8–Alexa488 uptake at 4 and 37 °C

We then quantified the amount of peptide internalized at 4 and 37 °C, initially in the suspension cell lines. At all studied concentrations, the K562 cell line internalized significantly higher (∼2.5-fold) amounts of the peptide compared with KG1 and KG1a cells at 37 °C, however, at 4 °C, fluorescence was significantly higher (∼2.0-fold) in KG1 and KG1a cell lines (Figure 4A). Analysis of cellular fluorescence profiles of the leukaemia cells following 4 °C incubations show that all of the cell lines exhibit two distinct populations, one of high fluorescence and one of low fluorescence (Figures 5A and 5B); this was previously noted in KG1a cells [16].

These experiments were then performed in adherent cell lines and HeLa cells accumulated significantly higher amounts of R8–Alexa488 compared with A549 cells and suspension cells (Figures 4A and 4C). However, at 4 °C, peptide accumulation was much lower in both adherent cell lines compared with the suspension cells (Figure 4D). Cellular FACS profiles from representative experiments are shown in Figures 5(C) and 5(D). Under all conditions only one major peak of fluorescence was observed, but increasing the peptide concentration increased the range of fluorescence intensities in both cell lines and thus a broadening of the peaks.

Effects of cholesterol depletion on the uptake of R8–Alexa488 at 37 °C

Our previous work has shown that pre-incubating KG1a cells with MβCD resulted in an influx of 2 μM R8–Alexa488 into the cytosol when peptide incubations were performed at 37 °C [16]. We extended these studies to include K562, HeLa and A549 cells, and for this the cells were pre-incubated with 5 mM MβCD before washing and adding R8–Alexa488 at 2 μM for 1 h at 37 °C. Figure 6(A) shows that MβCD-treated KG1a cells exhibit a predominantly diffuse cytoplasmic labelling, but peptide-labelled vesicles were also observed. Similar, though less pronounced, effects were observed in K562 cells and the prominent perinuclear region labelling was also clearly in evidence. This enhanced diffuse labelling was not extended to the adherent A549 and HeLa cells, as MβCD-treated cells display R8–Alexa488 localized to distinct intracellular vesicles. The likelihood that the cytosolic labelling of R8–Alexa488 observed in KG1a and K562 following MβCD-mediated cholesterol sequestration was due to increased permeability was again ruled out using PI co-incubation experiments. MβCD treatment had no effect on the number of PI-positive cells which remained at <2% of the total.

To quantify the effects of MβCD on peptide uptake, the cells were treated with 5 mM MβCD, as above, prior to measuring
cellular fluorescence using flow cytometry, MβCD treatment of KG1a and K562 resulted in a significant reduction in the average cell fluorescence: 36% ($P \leq 0.01$) in KG1a and 58% ($P \leq 0.01$) in K562 cells. MβCD-treated HeLa cells showed a 20% decrease of cell-associated fluorescence, whereas A549 cells showed a 5% increase in cell fluorescence (Figure 6B); however, neither of these were significantly different from control cells.

As HeLa and A549 cells still exhibited vesicular labelling of both R₈–Alexa488 and Tf following 5 mM MβCD treatment, the concentration of MβCD was increased to 10 mM and the cells were pre-incubated with this compound for 30 or 60 min prior to the addition of peptide. Some HeLa cells displayed weak diffuse fluorescence, however, R₈–Alexa488-containing vesicles were also clearly visible. Under the same experimental conditions the peptide in the A549 cells was still localized to distinct vesicles. These vesicles appeared to be larger in size and much fewer in number than those seen in untreated cells, and the degree of plasma-membrane labelling was also more prominent (Supplementary Figure S3 at http://www.BiochemJ.org/bj/420/bj4200179add.htm). Increasing the MβCD pre-incubation time to 60 min enhanced the degree of diffuse cytoplasmic labelling, but Tf in these cells was largely contained on the plasma membrane. Cellular morphology was also significantly altered, and cells tended to lift from the tissue culture plastic during the experiments. The A549 cells were much more resilient under these harsh conditions and continued to display peptide and Tf-labelled vesicles (Supplementary Figure S3).

Effects of cholesterol depletion on the uptake of R₈–Alexa488 at 4 °C

The present study and our previous work has highlighted the effects of MβCD on the uptake of R₈–Alexa488 at 37 °C in KG1a cells [16], and we investigated whether similar effects were observed when MβCD-treated cells were treated with the peptide on ice. KG1a cells were pre-incubated in 5 mM MβCD and incubated on ice with 2 μM R₈–Alexa488. Figure 7 shows that MβCD treatment results in a significant increase ($P \leq 0.01$) in the proportion of cells in the high-fluorescence peak: 56% in control cells compared with 86% in MβCD-treated cells. The fluorescence of the high peak in MβCD-treated cells was also significantly higher than control cells ($P \leq 0.01$). Thus, in KG1a cells, MβCD decreased and increased cellular accumulation of the peptide at 37 and 4 °C respectively. Common to both conditions was the accompanying prominence of diffuse cytoplasmic labelling.

Addition and replenishment of cholesterol using MβCD–chols

Complexes were prepared as described in the Experimental section and were added to either control cells or cells previously depleted of cholesterol (Table 1); the cells were then incubated with the peptide on ice. As previously shown in Figure 7, MβCD treatment of control cells led to the loss of the low peak as 87% of the cell population now accumulated a much higher quantity of
Figure 5 Cellular fluorescence profiles following R8-Alexa488 uptake in suspension and adherent cells

Suspension (A and B) or adherent (C and D) cells were incubated for 1 h with 1–5 μM R8-Alexa488 at 37°C (A and C) or 4°C (B and D) prior to washing and quantifying peptide uptake by flow cytometry. Suspension cells incubated at 37°C with the peptide display a single peak of fluorescence (A), whereas those incubated at 4°C (B) display two peaks of fluorescence, designated and quantified as 'low' and 'high' in Figure 4(B).

The polyene antibiotic Filipin III binds cholesterol and may be used, in conjunction with fluorescence microscopy, to visualize cellular cholesterol. We therefore analysed Filipin staining intensity and distribution in cells treated as above (Table 1). The cells were fixed and incubated with Filipin at the point in the experiment where the peptide would normally have been added. The right-hand columns in Figure 8 show representative images of Filipin labelling in cells, and comparison of control and MβCD-treated cells in Figures 8(A) and 8(B) highlight the ability of this agent to extract cholesterol. The intensity of staining in Figure 8(C) was appreciably higher than that in Figure 8(B), suggesting that some cholesterol replenishment had occurred in cells that were previously treated with MβCD and then incubated with MβCD–chol complexes (Figure 8C). Figure 8(D) confirms the effectiveness of MβCD as a cholesterol donor, as control cells incubated with complexes had increased Filipin staining. We quantified the fluorescence of 900 individual cells for each condition and Figure 8(E) confirms the microscopy data and shows that MβCD–chol complexes increased the fluorescence of control cells by ~40%, and addition of the complexes to cholesterol-depleted cells restored cholesterol levels to control levels.

DISCUSSION

Recent studies from independent laboratories show that increasing the concentrations of cationic CPPs above a certain threshold leads to a dramatic increase in the fraction that is diffusely localized in the cytoplasm [16,17,20]. Time-lapse imaging experiments
Figure 6 Effects of cholesterol depletion on the intracellular distribution and uptake of R₈–Alexa488

Cells were pre-incubated for 30 min in the absence (Control) or presence (MβCD) of 5 mM MβCD prior to washing and incubation for 1 h with 2 μM R₈–Alexa488. The cells were analysed by confocal microscopy (A), or flow cytometry (B). (A) Images shown are from 20 individual sections through the z-axis to generate maximum projection profiles. Scale bars = 10 μm. (B) Fluorescence of control cells was set to 100 %. Statistical analysis for comparing the uptake of R₈–Alexa488 in untreated cells compared with uptake in MβCD-treated cells was performed using a Student’s t test. **P<0.01, compared with control cells.

Figure 7 Effects of cholesterol depletion on the uptake of R₈–Alexa488 in KG1a cells at 4 °C

Cells were pre-incubated for 30 min in the absence (Control) or presence (MβCD) of 5 mM MβCD at 37 °C, prior to washing and incubation for 1 h with 2 μM R₈–Alexa488 at 4 °C. Cells were washed and immediately analysed by flow cytometry. Values above the peaks indicate the percentage of the total cell population in each peak area obtained from three experiments performed in duplicate. Overlay panel: untreated, black line; control, black fill; MβCD, grey line.

suggesting it is an active process [17]. We did not observe these nucleated regions in leukaemia cells when similar time-lapse microscopy experiments were performed during addition of the peptide and thereafter in its continued presence. This suggests that the noted peptide aggregation at the plasma membrane, preceding translocation, is not a common entry mechanism. We also show extensive diffuse cytoplasmic labelling in suspension and adherent cell lines when peptide incubations were performed on ice. The concentration required to visualize this effect was much higher in adherent cells compared with the leukaemia cells, but overall the data argue that in these experiments, peptide translocation across the plasma membrane is an energy-independent process. In line with this, flow cytometry analysis showed that accumulation of the peptide following incubations on ice at 2 μM was 10- or 20-fold higher in K562 and KG1/KG1a cells respectively compared with adherent cells. Studies in Jurkat
Figure 8 Effects of cholesterol replenishment on the uptake of R₈-Alexa488 in KG₁a cells

(A–D) KG₁a cells were incubated under conditions described in Table 1 prior to analysis of R₈–Alexa488 uptake at 4 °C by flow cytometry (left-hand column) or Filipin staining (right-hand column). Values above the peaks indicate the percentage of the total cell population in each peak area. Data are from one representative experiment, each experiment was performed three times in duplicate. Scale bars = 10 μm. (E) Quantification of Filipin fluorescence. Results are normalized to control cells (100 %). Statistical analysis for comparing Filipin fluorescence was performed using one-way ANOVA followed by a Dunnetts post-hoc test. **P<0.01, compared with control cells.
cells, another suspension cell line, using relatively high peptide concentrations of 12.5–25 μM showed pronounced cytosolic labelling of R7–R9 at room temperature and 3 °C incubations [40,41].

When KG1a cells were incubated at 37 °C for 10 min with the peptide at 2 μM we were unable to observe any significant vesicular labelling and longer incubations are required for these to be clearly seen. This is consistent with a requirement, under these conditions, for time and endocytosis for uptake to be visualized. However we cannot refute the possibility that even at these low concentrations, an undetected fraction of peptide gains access to the cells directly across the plasma membrane. Increasing the peptide concentration to 10 μM in KG1a cells resulted in a very rapid cytosolic accumulation with no evidence of a requirement for endocytosis or indeed any energy-dependent process. At intermediate concentrations (2–10 μM) it is difficult to ascertain how much of the peptide actually enters KG1a cells via endocytosis or directly through the plasma membrane and, in view of these studies and other recent publications [17,18,20], the same could be said for other cell types.

Although all cell lines in the present study have a capacity to allow peptide entry directly through the plasma membrane, at 4 °C the adherent cells are much more refractory to this. The reason for this is currently unknown, but the peptide did not induce leakage of PI in any of the studied cell lines. As endocytosis is an energy-dependent process, lowering the temperature of peptide incubations to 4 °C should effectively eliminate the involvement of endocytosis in internalization, thus direct permeation of peptide through the plasma membrane is responsible for the observed results. All of these cell lines will have unique plasma membrane compositions in terms of lipids, proteins and carbohydrates and these may influence membrane porosity to R8 and other CPPs. A549 cells were the most resistant to peptide entry under all conditions and these are models for alveolar type II pneumocytes, the cells responsible for the production and secretion of pulmonary surfactant for alveolar type II pneumocytes, the cells responsible for the porosity to R8 and other CPPs. A549 cells were the most resistant to peptide labelling, MβCD caused an overall reduction in peptide uptake. These kinds of experiments are often performed to confirm that the effects of MβCD are solely due to cholesterol depletion from the plasma membrane [35]. Flow cytometry and microscopy of KG1a and other suspension cells following peptide incubation on ice reveal a distinct and significant population of cells that have very low levels of internalized peptide. These, based on the flow cytometry profiles, were termed the low-peak population [16]. Adding additional cholesterol to these cells had little effect on the fluorescence profiles, but the overall increase in cholesterol values was small and may not have been sufficient to cause an effect. Cholesterol depletion however, resulted in the disappearance of this population and all the cells internalized higher amounts of peptide. Cells in this low-peak population may therefore have higher plasma-membrane cholesterol levels and the peptide is therefore less able to gain access to the cell interior. In support of this is the fact that we could reverse the effects of MβCD treatment by adding cholesterol, thus demonstrating the critical role of this cholesterol in CPP translocation under these conditions.

These studies have shed further light on cellular and experimental parameters that influence the uptake, through the plasma membrane or endocytic pathways, and intracellular distribution of cationic CPPs in different cell lines. This could help in the design of new CPP-strategies for the cellular delivery of therapeutic macromolecules, a major goal for this field of research.

FUNDING

This work was supported by the Biotechnology and Biological Sciences Research Council (grant number BB/D013038 to A.T.I.J.) and Grants-in-Aid for Scientific Research, Ministry of Education, Culture, Sports, Science and Technology of Japan (to S.F.).

REFERENCES

9Vivès, E., Brodin, P. and Lebleu, B. (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010–16017
Direct translocation of the cell-penetrating peptide octa-arginine across the plasma membrane

34 Wadia, J., 82, 310–315

Received 9 January 2009/6 February 2009; accepted 13 February 2009
Published as BJ Immediate Publication 13 February 2009. doi:10.1042/BJ20090042

© The Authors Journal compilation © 2009 Biochemical Society
SUPPLEMENTARY ONLINE DATA

Low concentration thresholds of plasma membranes for rapid energy-independent translocation of a cell-penetrating peptide

Catherine L. WATKINS*, Dirk SCHMALJOHANN*, Shiroh FUTAKI† and Arwyn T. JONES*†

*Welsh School of Pharmacy, Cardiff University, Cardiff, CF10 3NB, Wales, U.K., and †Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan

Figure S1 Cellular distribution of R₈-Alexa488 and Alexa488–Tf in suspension cells
A single section through a central region of cells shown in Figure 1 of the main text.

Figure S2 Cellular distribution of R₈–Alexa488 and Alexa488–Tf in HeLa and A549 cells
A single section through a central region of cells shown in Figure 3 of the main text.

1 To whom correspondence should be addressed (email jonesat@cardiff.ac.uk).

© The Authors Journal compilation © 2009 Biochemical Society
Figure S3 Effects of increased MβCD concentration and incubation time on the intracellular distribution of R₈–Alexa488 and Alexa488–Tf in HeLa and A549 cells.

Cells were pre-incubated for 30 or 60 min with 10 mM MβCD prior to addition of R₈–Alexa488 or Alexa488–Tf and analysis by confocal microscopy.