The Biochemical Journal is conducted by the Biochemical Society and is published by the Cambridge University Press. During 1948 and subsequently, the Journal will be issued in multiple volumes per year. Each volume will consist of approximately 640 pages, published in four parts at intervals of about two months.

The Biochemical Society was instituted solely for the advancement of the Science of Biochemistry, and holds meetings at different centres for the communication of original papers, and for the discussion of current problems. Persons interested in Biochemistry are eligible for election. Members whose subscriptions are not in arrears are entitled to receive the Biochemical Journal without further payment. Further information may be obtained from the Hon. Secs., Professor J. N. Davidson, Department of Biochemistry, The University, Glasgow, W. 2, and Dr J. H. Birkinshaw, London School of Hygiene and Tropical Medicine, Keppel Street, London, W.C. 1, or from the Hon. Treas., Dr J. H. Bushill, 149 Hammersmith Road, London, W. 14.

Subscriptions to the Biochemical Journal. For non-members of the Biochemical Society the subscription to the Biochemical Journal is £3. 10s. 0d. per volume, payable in advance to the Cambridge University Press, Bentley House, 200 Euston Road, London, N.W. 1, to Dr J. H. Bushill, The Laboratories, Cadby Hall, London, W. 14, or to any bookseller. In the United States of America the Journal may be purchased from the University of Chicago Press, 5750 Ellis Avenue, Chicago, Ill., the American agents of the Cambridge University Press for the sale of the Biochemical Journal.

Communications respecting the sale of single issues or back numbers of the Journal should be addressed to the Cambridge University Press, Bentley House, 200 Euston Road, London, N.W. 1.

Claims for the replacement of Journals lost in transmission will not be entertained if they are received later than three months after the date of the posting of the Journal.

Prices of back numbers of the Journal.

* Volumes 1 to 10.
 Index Authors and Subjects in Vols. 1–10. In paper covers
 Out of print.

* Volumes 11–16.
* Volumes 17.
* Volumes 18 and 19.
* Volumes 20–25.
* Volumes 26–28.
* Volumes 29–33.
* Volumes 34–36.
* Volumes 37 to 39. Reserved for Members of the Biochemical Society only.
 Volumes 40 and 41.
 Index Authors and Subjects in Volumes 11–20.
 Index Authors and Subjects in Volumes 21–30.

(Out of print.)

5s. 3d. net. (By post 5s. 5d.)

(Out of print.)

60s. net.

(Out of print.)

60s. net per volume.

70s. net per volume.

10s. net. (By post 10s. 4d.)

15s. net. (By post 15s. 4d.)

* Odd numbers from these Volumes, where available, can be quoted for on application.

Binding. Quotations can be given by the publishers for bound copies of back numbers; also for buckram binding cases, and for binding subscribers' sets. (Suspended.)
DIRECTIONS TO CONTRIBUTORS

Papers submitted for publication in the Biochemical Journal should be as concise as possible. In the interests of the Journal it will be necessary for the Editors to return any typescript which does not satisfy this condition. Special attention is directed to the sections below concerning the preparation of the typescript. Care in this matter will hasten publication. Typescripts which do not conform to the conventions of the Biochemical Journal will be returned to authors for revision.

Communications. Papers submitted for publication should be sent to Prof. E. J. King (Biochemical Journal), British Postgraduate Medical School, Ducane Road, London, W. 12. Communications respecting the purchase of reprints should be addressed to The University Press, Cambridge.

General. Submission of a paper to the Editorial Board will be held to imply that it represents the results of original research not previously published; that it is not under consideration for publication elsewhere, and that if accepted for the Biochemical Journal it will not be published otherwise in the same form, either in English or in any other language, without the consent of the Editorial Board.

Contributors who reside outside Great Britain are requested to nominate somebody in Great Britain who is willing to correct the proofs of their papers. Papers from such contributors should be accompanied by a statement of the number of reprints required.

Unless confusion would otherwise arise, contributors' names should appear as initials (but female authors may use one given name in full) and surnames only, without titles or suffixes. The name and address of the laboratory where the work was performed should be given. Any necessary descriptive material regarding the author, e.g. Beit Memorial Fellow, should appear in brackets after the author's name, or at the end of the paper, and not in the form of a footnote.

Typescripts should carry an indication of the name and address of the person to whom the proof of the paper is to be sent, and should give also a shortened version of the paper's title, not exceeding forty-five letters and spaces in length, suitable for a running title in the published pages of the work.

Form of Papers Submitted for Publication. The onus for preparing a paper in a form suitable for sending to press lies in the first place with the author. Authors should consult a current issue in order to make themselves familiar with the Biochemical Journal's practice concerning typographical and other conventions, use of cross-headings, lay-out of tables, etc. Attention to these and other details (mentioned below) in the preparation of the typescript before this is sent to the Editors will shorten the time required for publication. The need for undue amounts of editorial revision caused by badly prepared typescript will lead to delay in publication for which the Editors cannot accept responsibility. Papers on specialized aspects of the subject should be presented in such a way as to make them intelligible, without undue difficulty, to the ordinary reader of the Journal. In any case sufficient information should be made available to permit repetition of the published work by any competent reader of the Journal.

Papers intended for publication should be in double-spaced typing on sheets of uniform size with adequate margins. Top copies only should be submitted. The paper should be written in the English language and should, in general, be divided into the following parts: (a) Introductory paragraph, containing the reasons for publication of the work; (b) Experimental methods adopted: with chemical papers the experimental part will normally appear towards the end, but with other types of publication Methods should appear after Introduction; (c) Results: these should be given as concisely as possible, preferably in the form of figures or tables. Tables and figures illustrating the same data will only rarely be permitted. Illustrative protocols only should be included; (d) Discussion: it is desirable that the presentation of the results and the discussion of their significance should be considered separately; (e) Summary: a brief self-contained summary, amounting to not more than 3% of the length of the paper, should be included; the paragraphs of the summary should be numbered; (f) References: these should be given in the text thus: Barnett & Robinson (1942), Culbertson & Thomas, 1933; where a paper to be cited has more than two authors, the [p.t.o.]
names of all the authors should be given when reference is first made, e.g. (Osborne, Mendel & Ferry, 1919); subsequent citations should appear thus: (Osborne et al. 1919). Where more than one paper by the same authors has appeared in one year the reference should be given as follows: Osborne & Mendel (1914a); Osborne & Mendel (1914b); or Osborne & Mendel (1914a, b); (Osborne & Mendel, 1914a, 1916; Barnett & Robinson, 1942).

References. At the end of the paper references should be given in alphabetical order according to the name of the first author of the publication quoted, and should include the authors' initials; the title of the paper should not be included. Titles of journals should be abbreviated in accordance with the system used in the World List of Scientific Periodicals (1935: 2nd ed. Oxford: University Press). Examples of such abbreviations will be found in the current numbers of the Biochemical Journal and a useful list has recently been published in the Journal of Physiology (1945, 104, 232). References to books and monographs should include the town of publication and the name of the publisher, as well as the date of publication and the number of the edition to which reference is made. Thus:

Statistical Treatment of Data. In general the publication is not necessary of all the individual results of a number of similar experiments. A statement of the number of individual results, their mean value, the standard error of the mean value, and the extreme range (highest and lowest values in the series) is usually sufficient.

A statement that a significant difference probably exists between the mean values of two groups of data should be accompanied by the calculated probability that the observed difference is significant.

Illustrations. Illustrations, which should be approximately twice the size of the finished block, should each be on a separate sheet, packed flat and bearing the author's name. Diagrams should be in Indian ink and should be drawn on plain white paper, Bristol board, or faintly blue-lined paper. Curves based on experimental data should carry clear indications of the experimentally determined points. Letters, numbers, etc., should be written lightly in pencil. On the back of each figure should be written the author's name and the title of the paper. Legends and captions should be typed separately from the illustrations, each on a separate sheet, and numbered correspondingly with the relevant illustration. Figures should be comprehensible without reference to the text.

Tables. Tables should carry headings describing their content and should be comprehensible without reference to the text. The dimensions of the data, e.g. g./100 ml., should be given at the top of each column, and not repeated on each line of the table. Tables should not normally be included in the body of the text, but should be typed on separate sheets. Their approximate position in the text should be indicated.

Chemical Formulae. These should be written as far as possible on a single horizontal line. With inorganic substances, formulae may be used, particularly in the experimental portion, at the discretion of the editors. With salts it must be stated whether or not the anhydrous material is used, e.g. anhydrous CuSO₄, or which of the different crystalline forms is indicated, e.g. CuSO₄·5H₂O, CuSO₄·H₂O.

Description of Solutions. Solutions of common acids and bases should always be expressed in terms of normality (N), and salts preferably in terms of molarity (x), e.g. x·HCl; 0.1x·NaH₂PO₄. Fractional concentrations should preferably be expressed in the decimal system, e.g. 0.25 N·HCl (not x/4 HCl). The term '%', must be used in its correct sense, i.e. g./100 g. of solution. For 'per cent by volume', i.e. ml./100 ml., the term 'vol. % (v/v)' may be employed. To indicate that a given weight of substance is contained in 100 ml. of solution, the term 'w/o (w/v)' (weight per volume) may be used.

Symbols and Abbreviations. Authors should refer to current numbers of the Biochemical Journal for information in this connexion. The chemical nomenclature adopted is that followed by the Chemical Society (see J. chem. Soc. 1936, p. 1067). With a few exceptions the symbols and abbreviations are those adopted by a committee of the Chemical, Faraday and Physical Societies in 1937 (see J. chem. Soc. 1944, p. 717). Spectrophotometric terms and symbols are those proposed by the Society of Pure Analysts and other Analytical Chemists (see The Analyst, 1942, 67, 164). The attention of authors is particularly drawn to the following symbols: m=(millim) = 10⁻⁶ and μ=(micro) = 10⁻⁴. Note also that ml. (millilitres) should be employed instead of c.c., and μg. (micrograms) instead of y.

Nomenclature of Micro-organisms. Binomial Latin names of micro-organisms, the generic name only with a capital, must be used in accordance with the International Rules of Nomenclature. Binomials should be underlined once (for italic) in the typescript. A name must be given in full at the first mention in a paper; in subsequent mention the generic name may be abbreviated, but the abbreviation must be unambiguous. Single initial letter abbreviations should, in general, be avoided (thus: Staph. aureus, Strept. pyogenes not S. aureus, S. pyogenes). Scientific epithets or trivial names are not underlined and should be without capitals.

Microfungi should be designated as in Ainsworth & Bisby's (1945) A Dictionary of the Fungi, 2nd ed. (Kew: Imperial Mycological Institute).

Bacteria. The Editorial Board prefers that the nomenclature of Bergey's Manual of Determinative Bacteriology (1948), 6th ed. (Baltimore: Williams and Wilkins) should be followed. Where authors wish, for good reasons, to use a name other than that in Bergey's Manual, the name as in Bergey's Manual should be inserted in brackets at the first full citation, thus Chromobacterium prodigiosum (Serratia marcescens).

Reprints. Where at least one author of a paper is a member of the Biochemical Society, twenty-five reprints are supplied free of cost. If the supply of paper permits, an author may purchase additional reprints if he notifies the Press on the appropriate form immediately the proof of the paper is received, but only in exceptional circumstances will more than a total of 175 additional reprints be supplied.
CONTENTS

INDEX OF AUTHORS

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appleyard, J.</td>
<td>596</td>
</tr>
<tr>
<td>Bailey, K.</td>
<td>lviii</td>
</tr>
<tr>
<td>Ball, S.</td>
<td>516</td>
</tr>
<tr>
<td>Blaschko, H.</td>
<td>xlvi i</td>
</tr>
<tr>
<td>Booth, R. G.</td>
<td>liv</td>
</tr>
<tr>
<td>Bradford, N. M.</td>
<td>lvi</td>
</tr>
<tr>
<td>Brady, T.</td>
<td>lxii, lxv</td>
</tr>
<tr>
<td>Brownlee, G.</td>
<td>liii</td>
</tr>
<tr>
<td>Case, E. M.</td>
<td>1</td>
</tr>
<tr>
<td>Catch, J. R.</td>
<td>li</td>
</tr>
<tr>
<td>Conway, E. J.</td>
<td>lxi, lxii, lxiv, lxv</td>
</tr>
<tr>
<td>Darmon, S. E.</td>
<td>508</td>
</tr>
<tr>
<td>Davies, A. W.</td>
<td>lxiii</td>
</tr>
<tr>
<td>Davies, R. E.</td>
<td>609, 621, lviii</td>
</tr>
<tr>
<td>Diaper, D. G. M.</td>
<td>581</td>
</tr>
<tr>
<td>Dickens, F.</td>
<td>1</td>
</tr>
<tr>
<td>Dirnhuber, P.</td>
<td>628</td>
</tr>
<tr>
<td>Downey, M.</td>
<td>lxii</td>
</tr>
<tr>
<td>Eden, E.</td>
<td>xlix</td>
</tr>
<tr>
<td>Ellis, E.</td>
<td>lvii</td>
</tr>
<tr>
<td>Ennor, A. H.</td>
<td>549, 557</td>
</tr>
<tr>
<td>Fearon, W. R.</td>
<td>lxi</td>
</tr>
<tr>
<td>Folley, S. J.</td>
<td>xlvii</td>
</tr>
<tr>
<td>Forster, M. G.</td>
<td>lvi</td>
</tr>
<tr>
<td>French, T. H.</td>
<td>xlvii</td>
</tr>
<tr>
<td>Friedmann, R.</td>
<td>li</td>
</tr>
<tr>
<td>Gage, J. C.</td>
<td>574</td>
</tr>
<tr>
<td>Glover, J.</td>
<td>lxiii</td>
</tr>
<tr>
<td>Goodwin, T. W.</td>
<td>516</td>
</tr>
<tr>
<td>Gutfreund, H.</td>
<td>544</td>
</tr>
<tr>
<td>Hale, J. H.</td>
<td>xlvii</td>
</tr>
<tr>
<td>Hartles, R. L.</td>
<td>lx</td>
</tr>
<tr>
<td>Holton, P.</td>
<td>xlviii</td>
</tr>
<tr>
<td>Hughes, D. E.</td>
<td>492, lviii</td>
</tr>
<tr>
<td>Jenkins, G. N.</td>
<td>li</td>
</tr>
<tr>
<td>Jones, T. S. G.</td>
<td>lii, lix</td>
</tr>
<tr>
<td>Kirby, A. H. M.</td>
<td>lv</td>
</tr>
<tr>
<td>Kleczkowski, A.</td>
<td>523</td>
</tr>
<tr>
<td>Krampitz, L. O.</td>
<td>598</td>
</tr>
<tr>
<td>Krebs, H. A.</td>
<td>lxi</td>
</tr>
<tr>
<td>Laidlaw, J. C.</td>
<td>1</td>
</tr>
<tr>
<td>Lees, H.</td>
<td>528, 531, 534</td>
</tr>
<tr>
<td>Lindley, H.</td>
<td>481</td>
</tr>
<tr>
<td>Longmuir, N. M.</td>
<td>621</td>
</tr>
<tr>
<td>McCance, R. A.</td>
<td>577</td>
</tr>
<tr>
<td>McDonald, I. W.</td>
<td>584</td>
</tr>
<tr>
<td>Macfarlane, M. G.</td>
<td>587, 590</td>
</tr>
<tr>
<td>McIlwain, H.</td>
<td>485, 492</td>
</tr>
<tr>
<td>Malpress, F. H.</td>
<td>lv</td>
</tr>
<tr>
<td>Marston, H. R.</td>
<td>564</td>
</tr>
<tr>
<td>Moore, T.</td>
<td>lxiii</td>
</tr>
<tr>
<td>Morton, R. A.</td>
<td>516, lxiii</td>
</tr>
<tr>
<td>Nolan, J.</td>
<td>lxiv</td>
</tr>
<tr>
<td>O'Malley, E.</td>
<td>lxi</td>
</tr>
<tr>
<td>Rawlinson, W. A.</td>
<td>xlvi</td>
</tr>
<tr>
<td>Reid, E.</td>
<td>liv</td>
</tr>
<tr>
<td>Rogers, H. J.</td>
<td>633</td>
</tr>
<tr>
<td>Roper, J. A.</td>
<td>485, 492</td>
</tr>
<tr>
<td>Rose, F. L.</td>
<td>574</td>
</tr>
<tr>
<td>Roughton, F. J. W.</td>
<td>609</td>
</tr>
<tr>
<td>Ryan, M. T.</td>
<td>lxiv</td>
</tr>
<tr>
<td>Schütz, F.</td>
<td>628</td>
</tr>
<tr>
<td>Scott, M.</td>
<td>574</td>
</tr>
<tr>
<td>Sellers, K. C.</td>
<td>xlix</td>
</tr>
<tr>
<td>Short, E. I.</td>
<td>lii</td>
</tr>
<tr>
<td>Sloane Stanley, G. H.</td>
<td>xlviii</td>
</tr>
<tr>
<td>Smith, J. C.</td>
<td>581</td>
</tr>
<tr>
<td>Smith, J. N.</td>
<td>538</td>
</tr>
<tr>
<td>Smith, R. H.</td>
<td>lii</td>
</tr>
<tr>
<td>Stern, J. R.</td>
<td>lvii</td>
</tr>
<tr>
<td>Stocken, L. A.</td>
<td>549, 557</td>
</tr>
<tr>
<td>Sutherland, G. B. B. M.</td>
<td>509</td>
</tr>
<tr>
<td>Thompson, H. W.</td>
<td>601</td>
</tr>
<tr>
<td>Tristram, G. R.</td>
<td>508</td>
</tr>
<tr>
<td>Trotter, I. F.</td>
<td>601</td>
</tr>
<tr>
<td>Tuerkischer, E.</td>
<td>603</td>
</tr>
<tr>
<td>Werkman, C. H.</td>
<td>598</td>
</tr>
<tr>
<td>Wertheimer, E.</td>
<td>603</td>
</tr>
<tr>
<td>Widdowson, E. M.</td>
<td>577</td>
</tr>
<tr>
<td>Williams, R. T.</td>
<td>538, lx</td>
</tr>
<tr>
<td>Williams-Ashman, H. G.</td>
<td>li</td>
</tr>
<tr>
<td>Wilson, J.</td>
<td>598</td>
</tr>
<tr>
<td>Wokes, E.</td>
<td>601</td>
</tr>
<tr>
<td>Work, E.</td>
<td>xlix</td>
</tr>
<tr>
<td>Young, F. G.</td>
<td>liv</td>
</tr>
<tr>
<td>Young, L.</td>
<td>1</td>
</tr>
</tbody>
</table>
Index of Authors

Note. Entries marked with an asterisk (*) refer to communications made in title only.
Entries marked with a section mark ($) refer to contributions made to Symposia.
Small roman numerals refer to pages in Proceedings of the Biochemical Society.

ABUL-FADL, M. A. M. Colorimetric estimation of manganese by means of the Folin-Ciocalteu phenol reagent xxxvi, xxxvii
ABUL-FADL, M. A. M. & KING, E. J. The inhibition of acid phosphatase by d-tartrate xxviii
ADAMS, D. H. & THOMPSON, R. H. S. The selective inhibition of cholinesterases 170
ALDRIDGE, W. N. A new method for the determination of 1,2-dithiols 52
APPLEYARD, J. The effect of alcohols on the hydrolysis of sodium phenolphthalein diphasphate by prostasic extracts 296
ARCHER, H. E., CHAPMAN, L., RHODEN, E. & WARREN, F. L. The estimation of urethane (ethyl carbamate) in blood 58
ARNSTEIN, H. R. V., CATCH, J. R. & COOK, A. H. The biosynthesis of penicillins by Penicillium notatum xviii
ASTRUP, T. & ØHLENSELGER, V. The determination of glutathione and other substances contained in yeast 211
BACON, J. S. D. & BELL, D. J. Fructose and glucose in the blood of the foetal sheep 397
BAILEY, K. The purity of adenosinetriphosphate preparations by enzymic degradation lviii
BAILEY, K. & WEBB, E. C. Purification of yeast hexokinase and its reaction with ββ’-dichlorodiethyl sulphide 60
BALSAMO, V. J. SCARRIBRICE, R. xiv
BALL, S., GOODWIN, T. W. & MORTON, R. A. Studies on vitamin A. 5. The preparation of retinene,—vitamin A aldehyde 516
BANKS, T. E., BOUSSONEL, J. C., DEWEY, H. M., FRANCIS, G. E., TOPPER, R. & WORMALL, A. The use of radioactive isotopes in immunological investigations. 2. Fate of injected 3H-containing proteins xlii
BARTLETT, S. see ASCHAFFENBURG, R. xxx
BELL, D. J., GUTFREUND, H., CLEH, R. & OOSTON, A. G. Physicochemical observations on some glycosides 405
BELL, D. J. see also BACON, J. S. D. 397
BIDE, A. E. see SMITH, E. L. xvii
BIDWELL, E. & VAN HEYNINGEN, W. E. The biochemistry of the gas gangrene toxins 5. The κ-toxin (collagenase) of Clostridium welchi 140
BIDWELL, E. see also VAN HEYNINGEN, W. E. 130
BIRKENSHAW, J. H., STICKINGS, C. E. & TESSER, P. Biochemistry of the wood-rotting fungi. 5. The production of d-threitol (l-erythritol) by Armillaria mellea (Vahl) Quelét 329
Bissett, N. G., BROOKSBANK, W. B. L. see Bissett, N. G. 366
BROWNLEE, G. & SHORT, E. I. Antagonism by amino-acids of renal tubule damaging substances present in 'aerosporin' preparations liii
BUES, A. M. Pathologic effects of ionizing radiations and radioactive materials xxii
BULL, G. & LOVEL, K. W. Differential determination of reduced and oxidised haemoglobin with a photoelectric photometer xxxviii
CAMPBELL, J. G. see LEVY, G. A. 462, iv
CATCH, J. R. see FRIEDMANN, R. The isolation and partial purification of 'aerosporin' lii

Biochem. 1949, 42
INDEX OF AUTHORS

- Gernow, J. Determination of silica and alumina in coal miners' lungs xxvii
- Gibson, Q. H. The reduction of methaemoglobin in red blood cells and tissues on the cause of idiopathic methaemoglobinemia 13
- Glover, J. & Morton, R. A. Vitamin A in the intestine (pyloric caeca) of the halibut ixii
- Goodwin, T. W. see Ball, S. 516
- Gordon, A. H. see Consden, R. 443, xi
- Gordon, J. J. & Quastel, J. H. Effects of organic arslenicals on enzyme systems 337
- Goulden, F. & Warren, F. L. A polarographic study of some stilbene derivatives of biological interest 420
- Goulden, F. see also Warren, F. L. 151
- Graham, A. F. see Kerr, L. M. H. 191
- Gray, C. H. & Holt, L. B. The preparation of coproporphyrin III from toxic filtrates of Corynebacterium diptheriae cultures vii
- Gray, C. H. & Thorpe, E. F. J. The fate of 2,4-dimethyl-3-carboxethoxy-pyrrrole-5-carboxylic acid and 2,4-dimethyl-5-carboxethoxy-pyrrrole-3-carboxylic acid in the rabbit vii
- Gulland, J. M. see Elmore, D. T. 308
- Guttfreund, H. The osmotic pressure of insulin solutions 156
- Guttfreund, H. The molecular weight of insulin and its dependence upon pH, concentration and temperature 544
- Guttfreund, H. see also Bell, J. D. 405
- Haddian, Z. & Piri, N. W. The preparation and some properties of hyaluronic acid from human umbilical cord 260
- Haddian, Z. & Piri, N. W. The effects of serum and of hyaluronic acid derivatives on the action of hyaluronidase 266
- Hale, J. H. see Rawlison, W. A. xliv
- Hall, D. A. The biosynthesis of a member of the folic acid group of factors ix
- Harms, A. J. The purification of antitoxic plasmas by enzyme treatment and heat denaturation 390
- Harrison, C. V. see King, E. J. xxxvii
- Harteis, R. L. & Williams, R. T. The fate of N-acyl derivatives of ambamide and V 235 ix
- Hartree, E. F. see Keilin, D. 221, 230
- Haslwood, G. A. D. see Bisset, N. G. 366
- Heathcote, J. G. The isolation of hydroxylysine picrate from a gelatin hydrolysate 305
- Heathcote, J. G. Flaviamates of lysine xiv
- Emsly, A. H. & Booth, W. R. 447
- Hilditch, T. P. & Pethak, S. P. The component acids of herring visceral fat 316
- Hingerty, D. see Conway, E. J. 372
- Hoch, H. Eufrophoresis studies on human serum 181
- Holden, M. An alkali-producing mechanism in macerated leaves 332
- Holt, L. B. see Gray, C. H. viii
- Holton, P. see Blaschko, H. xviii
- Hopkins, F. G. & Morgan, E. J. Studies on glyoxalase. 1. A new factor 23
- Hughes, D. E. see Bradford, N. M. lvii
- Hughes, D. E. see also McILwain, H. 492
- Hunt, J. N. A method for estimating peptic activity in gastric contents 104
- Irving, J. T. see Walker, A. R. P. 452
- Jacob, J. C. The electrophoretic analysis of protein extracts from striated rabbit muscle. 2. Denaturation in acetate buffers 71
- James, S. P. see Bray, H. G. 274
- Jenkins, G. N. & Forster, M. G. The solubility of calcium phosphate and dental tissues in incubated mixtures of saliva and flour of different extraction rates iv
- Johns, A. T. The production of propionic acid by decarboxylation of succinic acid in a bacterial fermentation ii
- Jones, T. S. G. The chemical nature of aerospemin xxxv
- Jones, T. S. G. The chemical nature of 'aerospemin' iii
- The optical configuration of the leucine and threonine components lix
- Jones, T. S. G. The determination of amino-acids by polarographic reduction of their copper complexes lix
- Jones, T. S. G. see also Catch, J. R. iii
- Jordan, D. O. see Elmore, D. T. 308
- Kader, M. M. A. see Ellinger, P. ix, xxxiii
- Keilin, D. & Hartree, E. F. Properties of glucose oxidase (notatin) 221
- Keilin, D. & Hartree, E. F. The use of glucose oxidase (notatin) for the determination of glucose in biological material and for the study of glucose-producing systems by manometric methods 230
- Keely, M. The hexokinase activity of retinal extracts xx
- Kerr, L. M. H. see also Levy, G. A. 402, iv
- Keyser, J. W. The apparent amino content of human plasma proteins by the Sakaguchi reaction xxxix
- King, E. J., Harrison, C. V. & Ray, S. C. Experiments with mineral dusts in the lungs of animals xxxviii
- King, E. J. see also Abul-Faide, M. A. M. xxvii
- King, E. J. see also Coxon, R. V., xxiv, xxxvii
- King, E. J. see also Wotton, I. D. P. xxxvii
- Klatskin, C., Norris, F. W. & Wokes, F. Nicotinic acid in cereals. 1. The effect of germination 414
- Klatskin, C., Norris, F. W. & Wokes, F. Changes in nicotinic acid content of cereals occurring during germination vii
- Kleczwiski, A. Proteolytic activity of preparations of crystallized ribonuclease 523
- Klyne, W. The determination of small quantities of water in acetone xxxvi
- Klyne, W. & Paterson, J. Y. F. Further observations on the steroids of pregnant mares' urine i
- Klyne, W. see also Domingo, W. R. xxxv
- Klyne, W. see also Paterson, J. Y. F. ii
- Kon, S. K. see Aschaffenburg, R. xxx
- Kon, S. K. see also Braude, R. xxxi
- Krampitz, L. O. see Wilson, J. 598
- Krebs, H. A. Observations on the decarboxylation of glutamine by Clostridium welchii v
- Krebs, H. A. Carbonic anhydrase as a tool in studying the mechanism of enzymic reactions involving HCO₃⁻, CO₄ or HOCO⁻ 1
- Krebs, H. A. & Egglishon, L. V. Metabolism of acetoacetate in animal tissues. 2. 294
- Laidlaw, J. C. & Young, L. Studies on the synthesis of ethereal sulphates in vivo 1 (Proc.)
- Lake, H. J. see Bray, H. G. 434
- Latner, A. L. A colorimetric method for the estimation of ergothioneine in human blood xx
- Latner, A. L. & Mowbray, R. Blood ergothioneine values in normal individuals and thyrotoxicosis xxxv
- Lees, H. The effects of various organic materials on soil nitrification 528
- Lees, H. The immobilization of mineral nitrogen in soils by different organic materials 531
- Lees, H. The effects of zinc and copper on soil nitrification 534
- Lees, H. The possible importance of copper in soil nitrification xvii
- Lees, H. A simple automatic soil percolator xxiii
- Leslie, I. see Davidson, J. N. xv

41-2
INDEX OF AUTHORS

WENNER, V. see VERZÁR, F. 35, 42, 48
WERKMAN, C. H. see WILSON, J. 598
WERTHEIMER, E. see TURKISCHER, E. 603
WESTALL, R. G. Note on the behaviour of inorganic salts on the filter-paper partition chromatogram. Addendum to Filter-paper partition chromatography of sugars. 1. General description and application to the qualitative analysis of sugars in apple juice, egg white and foetal blood of sheep (Partridge, S. M.) 249
WHEATLEY, V. R. An improved diacetyl reaction for the estimation of urea in blood xli
*WHEATLEY, V. R. see also MACLAGAN, N. F. xlv
WIDDOWSON, E. M. & McCANCE, R. A. Sexual differences in the storage and metabolism of iron 577
WILLIAMS, P. C. see SMITH, A. E. W. 253
WILLIAMS, R. T. see DODGSON, K. S. 357
WILLIAMS, R. T. see also HARTLES, R. L. lx
WILLIAMS, R. T. see also SMITH, J. N. 351, 538
WILLIAMS-ASHMAN, H. G. The influence of thyroxine and 2,4-dinitrophenol on the succinoxidase activity of rat liver lx
WILSON, J., KRAMPTZ, L. O. & WERKMAN, C. H. Reversibility of a phosphoroclastic reaction 598
WINIKOFF, D. & TRIKOJUS, V. M. N1-Diethylsulphanilamide: a reagent for the colorimetric estimation of thyroxine 475
WORWOD, A. J. The micro-estimation of amino-nitrogen and its application to paper partition chromatography xxviii
WOKES, F. see KLATZKIN, C. 414, vii
WOKES, F. see also TROTTER, I. F. 601
WOLF, G. see BOYLAND, E. xxxii
WOOD, P. B. see BRAY, H. G. 434
WOOTTON, I. D. P. & KING, E. J. An improved technique for blood iron estimations with undiluted titanous chloride from a micrometer burette made from a tuberculin syringe xxxvii
WORDEN, A. N. see BLAKEMORE, F. xxx
WORK, E. The amino-acids present in trypsin and the trypsin inhibitor from soya bean xlix
WORMALL, A. see BANKS, T. E. xlii
WORMALL, A. see also FRANCIS, G. E. 469, xlii
YOUNG, F. G. see REID, E. xix, liv
YOUNG, L. see LAIDLAW, J. C. 1 (Proc.)
Absorption of ammonia from sheep rumen (McDonald, I. W.) 584
Absorption, intestinal, of vitamin A (Eden, E. & Sellers, K. C.) xlix
Absorption spectra of acetylsuccinic isomers (infrared) *(Daron, S. E., Sutherland, G. B. B. M. & Tristram, G. E.) 508
Absorption spectra of p-aminophenyl glucuronide and analogues (ultraviolet) *(Smith, J. N. & Williams, R. T.) 538
Absorption spectra of ascorbic acid analogues (infrared) *(Trotter, I. E., Thompson, H. W. & Wokes, F.) 601
Absorption spectrum of dienoestrol and glucuronide *(Dodon, K. S., Garton, G. A., Stubbs, A. L. & Williams, R. T.) 357
Absorption spectrum of hexoestrol and glucuronide *(Dodon, K. S., Garton, G. A., Stubbs, A. L. & Williams, R. T.) 357
Absorption spectra of leucine isomers (infrared) *(Daron, S. E., Sutherland, G. B. B. M. & Tristram, G. E.) 508
Absorption spectrum of retinene *(Ball, S., Goodwin, T. W. & Morton, R. A.) 516
Absorption spectra of retinene derivatives *(Ball, S., Goodwin, T. W. & Morton, R. A.) 516
Absorption spectrum of stilboestrol and glucuronide *(Dodon, K. S., Garton, G. A., Stubbs, A. L. & Williams, R. T.) 357
Absorption spectrum of vitamin A *(Morton, R. A. & Stubbs, A. L.) 195
Absorption spectrum of vitamin A esters *(Morton, R. A. & Stubbs, A. L.) 195
p-Acetamidophenol in urine after acetanilide *(Smith, J. N. & Williams, R. T.) 538
p-Acetamidophenylsulphuric acid in urine after acetanilide *(Smith, J. N. & Williams, R. T.) 538
Acetanilide metabolism *(Smith, J. N. & Williams, R. T.) 538
Acetate buffers, denaturation of proteins by *(Jacob, J. J. C.) 71
Acetoacetate metabolism *(Krebs, H. A. & Eggleston, L. V.) 294
Acetone microestimation in water *(Klyne, W.) xxxvi
Acetylsuccinic isomers, absorption spectra (infrared) *(Daron, S. E., Sutherland, G. B. B. M. & Tristram, G. E.) 508
Adenine flavin dinucleotide see Flavin adenine dinucleotide
Adenosine triphosphate see ATP
Adrenal cortical hormone see Deoxycorticosterone; see also Eschatin
Adrenalectomy, effect on glycogen formation *(Verzar, F. & Wenner, V.) 42
Adrenaline, effect on glucose utilization *(Cohen, J. A. & Needham, D. M.) xxii
Adrenaline, effect on glycogen synthesis *(Tuerkis, E. & Wertheimer, E.) 603
Aerosporin, chemistry *(Catch, J. R. & Jones, T. S. G.) lii
Aerosporin, chemistry (Jones, T. S. G.) xxxv, lix
Aerosporin, isolation *(Catch, J. R. & Friedmann, R.) lii
Alcohols, effect on prostatic phosphatase *(Appleyard, J.) 596
Alcohol estimation by microdiffusion *(Ryan, M. T., Nolan, J. & Conway, E. J.) lxiv
Alkali production by macerated leaves *(Holden, M.) 332
Alkylfluorophosphonates, selective inhibition of pseudocholinesterase *(Adams, D. H. & Thompson, R. H. S.) 170
Alkyl fluorophosphonates see also Fluorophosphonates
Alloxan diabetes, glycogen synthesis in *(Tuerkis, E. & Wertheimer, E.) 603
*Alumina estimation in lung *(Gurnow, I.) xxxvii
Ambamide, metabolism of N-acyl derivative *(Hartless, R. L. & Williams, R. T.) lx
Amberlite IR 4 for separation of acidic amino-acids *(Consden, R., Gordon, A. H. & Martin, A. J. P.) 443, xi
Amides, enzymatic hydrolysis *(Bray, H. G., James, S. P., Ryman, B. E. & Thorpe, W. V.) 274
Amides, metabolism *(Bray, H. G., James, S. P., Ryman, B. E. & Thorpe, W. V.) 274
Amino-acids, acidic, separation by anion exchange resin *(Consden, R., Gordon, A. H. & Martin, A. J. P.) 443, xi
*Amino-acids, assimilation by yeast *(Taylor, E. S.) i
Amino-acids, effect on kidney damage by aerosporin *(Brownlee, G. & Short, E. L.) liii
Amino-acids, electrophoretic preparation *(Butler, J. A. V. & Stephen, J. M. L.) x, xxiii
Amino-acid, new, in aerosporin *(Catch, J. R. & Jones, T. S. G.) lii
Amino-acids, nomenclature (rules) 1
Amino-acids, polarographic reduction of Cu complexes *(Jones, T. S. G.) lx
*Amino-acid composition of salmine *(Tristram, G. R.) vi
Amino-acid composition of soya bean trypsin inhibitor *(Work, E.) xlix
Amino-acid composition of trypsin *(Work, E.) xlix
p-Aminobenzoic acid metabolism *(Smith, J. N. & Williams, R. T.) 351
Amino groups, free, of haemoglobin *(Porter, R. R. & Sanger, F.) 297
Amino-nitrogen, micro-estimation *(Woiwod, A. J.) xxvii
p-Aminophenyl glucuronide and analogues, absorption spectra *(Smith, J. N. & Williams, R. T.) 538
Ammonia absorption from sheep rumen *(McDonald, I. W.) 584, xiii
Ammonium cyanate, isomerization into urea *(Dirnhuber, P. & Schutz, F.) 628
<table>
<thead>
<tr>
<th>INDEX OF SUBJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androstenediol, effect on breakdown of muscle glyogen (Verzar, F. & Wenner, V.) 48</td>
</tr>
<tr>
<td>Anion exchange resin for separation of acidic amino-acids (Consden, R., Gordon, A. H. & Martin, A. J. F.) 443, xi</td>
</tr>
<tr>
<td>Antibasalnemias in mealworm nutrition (Fraenkel, G.) xvi</td>
</tr>
<tr>
<td>Antibacterial activity of fuscin (Michael, S. E.) xi</td>
</tr>
<tr>
<td>Antibacterial activity of glutamic acid analogues (Roper, J. A. & Mellnain, H.) 485</td>
</tr>
<tr>
<td>Antibacterial activity of mycelianamide (Oxford, A. E. & Raistrick, H.) 325</td>
</tr>
<tr>
<td>Antibiotics see Antibacterial activity</td>
</tr>
<tr>
<td>Antitoxic plasmas, purification (Harms, A. J.) 390</td>
</tr>
<tr>
<td>Antitoxins see Toxins</td>
</tr>
<tr>
<td>Antrypol see Suramin</td>
</tr>
<tr>
<td>Apple juice sugars, chromato graphic analysis (Partridge, S. M.) 238</td>
</tr>
<tr>
<td>Barium, Bacterium dysenteriae, Bacteriostatics see Antibacterial activity</td>
</tr>
<tr>
<td>Ascorbic acid activity (Ellinger, P., & Kader, M. M. A.) ix</td>
</tr>
<tr>
<td>Bacteriostatics see Antibacterial activity</td>
</tr>
<tr>
<td>Bacterium coli; formation of nicotinamide (Ellinger, P., & Kader, M. M. A.) ix</td>
</tr>
<tr>
<td>Bacterium dyentraceria, specific polysaccharide (Partridge, S. M.) 251</td>
</tr>
<tr>
<td>Barium, effect on citrate formation (Krebs, H. A. & Eggleston, L. V.) 294</td>
</tr>
<tr>
<td>Barrit reaction for creatine estimation (Enn, A. H. & Stocken, L. A.) 557, xvi</td>
</tr>
<tr>
<td>Bayer 205 see Suramin</td>
</tr>
<tr>
<td>3:4-Benzpyrene, effect of solvents on carcino genesis by (Weil-Malherbe, H.) xxxii</td>
</tr>
<tr>
<td>3:4-Benzpyrene elimination, effect of solvents (Weil-Malherbe, H.) xxxii</td>
</tr>
<tr>
<td>Bilirubin, complexes with serum proteins (Martin, N. H.) xv</td>
</tr>
<tr>
<td>*Bilirubin, modified procedure (Coxon, R. V. & King, E. J.) xxxix, xxxvii</td>
</tr>
<tr>
<td>*Biological elements, periodic classification (Fearon, W. R.) lxi</td>
</tr>
<tr>
<td>Blood ergothioneine, estimation (Latner, A. L.) xxx</td>
</tr>
<tr>
<td>Blood ergothioneine in thyrotoxicosis (Latner, A. L. & Mowbray, R.) xxxv</td>
</tr>
<tr>
<td>Blood (foetal), chromatographic analysis of sugars (Partridge, S. M.) 238</td>
</tr>
<tr>
<td>Blood (foetal), fructose in (Bacon, J. S. D. & Bell, D. J.) 397</td>
</tr>
<tr>
<td>Blood (foetal), glucose in (Bacon, J. S. D. & Bell, D. J.) 397</td>
</tr>
<tr>
<td>Blood glycoproteins, fractionation (Staub, A. M. & Rimming ton, C.) 5</td>
</tr>
<tr>
<td>Blood group A specific substance in hog gastric mucin (Partridge, S. M.) 251</td>
</tr>
<tr>
<td>Blood iron, estimation (method) (Wootton, I. D. P. & King, E. J.) xxxvii</td>
</tr>
<tr>
<td>Blood, persistence of suramin in (Spinks, A.) 109</td>
</tr>
<tr>
<td>Blood, persistence of suramin analogues in (Spinks, A.) 109, vi</td>
</tr>
<tr>
<td>Blood plasma, diabietic, effect on hexokinase (Smith, R. H.) lii</td>
</tr>
<tr>
<td>Blood plasma, estimation of suramin (Gage, J. C., Rose, F. L. & Scott, M.) 574</td>
</tr>
<tr>
<td>Blood plasma, potassium and sodium levels (Conway, E. J. & Hingerty, D.) 372</td>
</tr>
<tr>
<td>Blood plasma see also Plasma</td>
</tr>
<tr>
<td>Blood sugars of foetus, chromatographic analysis (Partridge, S. M.) 238</td>
</tr>
<tr>
<td>Blood-urea estimation by diacetyl reaction (Weatley, V. R.) xli</td>
</tr>
<tr>
<td>Brain, accumulation of l-glutamate in (Stern, J. R.) lii</td>
</tr>
<tr>
<td>Bread pytate P, effect on calcium metabolism (Walker, A. P., Fox, F. W. & Irving, J. T.) 452</td>
</tr>
<tr>
<td>§British anti-lewisite, development (Thompson, R. H. S.) xxvi</td>
</tr>
<tr>
<td>Caffeine, selective inhibition of cholinesterase (Adams, D. H. & Thompson, R. H. S.) 170</td>
</tr>
<tr>
<td>Calcium metabolism, effect of phytic acid (Walker, A. P., Fox, F. W. & Irving, J. T.) 452</td>
</tr>
<tr>
<td>Calcium phosphate, solubility in saliva (Jenkins, G. N. & Forster, M. G.) lii</td>
</tr>
<tr>
<td>Calf disease, prevention by antibodies (Blakemore, F., Davies, A. W., Eylenburg, E., Moore, T., Sellers, K. C. & Worden, A. N.) xxx</td>
</tr>
<tr>
<td>Calf disease, prevention by vitamin A (Blakemore, F., Davies, A. W., Eylenburg, E., Moore, T., Sellers, K. C. & Worden, A. N.) xxx</td>
</tr>
<tr>
<td>Cancer, liver catalase in (Weil-Malherbe, H. & Schade, R.) xxxix</td>
</tr>
<tr>
<td>Carbohydrates, chromatographic analysis (Partridge, S. M.) 238</td>
</tr>
<tr>
<td>Carbohydrates, nomenclature (rules) 1</td>
</tr>
<tr>
<td>Carbohydrate synthesis, influence of eschatin (Chiu, C.-Y. & Needham, D. M.) xix</td>
</tr>
<tr>
<td>Carbon monoxide estimation by microdiffusion (Ryan, M. T., Nolan, J. & Conway, E. J.) lixiv</td>
</tr>
<tr>
<td>Carbonic anhydrase in HCl formation by gastric mucosa (Davies, R. E. & Roughton, F. J. W.) 618</td>
</tr>
<tr>
<td>Carbonic anhydrase in study of enzymic reactions (Krebs, H. A.) lxi</td>
</tr>
<tr>
<td>Carboxylase, yeast, mode of action (Conway, E. J. & O’Malley, E.) lxi</td>
</tr>
<tr>
<td>Carcinogenesis by 3:4-benzpyrene, effect of solvents (Weil-Malherbe, H.) xxxii</td>
</tr>
<tr>
<td>Carcinogenesis by N-ethyl-3:4:5:6-dibenzacarbazole (Kirby, A. H. M.) lv</td>
</tr>
<tr>
<td>Catalase, action of arsenicals (Gordon, J. J. & Quastel, J. H.) 337</td>
</tr>
<tr>
<td>Catalase, liver, in cancer (Weil-Malherbe, H. & Schade, R.) xxxix</td>
</tr>
<tr>
<td>*Cell for micro-electrophoresis (Mitchell, P. D.) x</td>
</tr>
<tr>
<td>Cell proliferation, β-glucuronidase in (Levvy, G. A., Kerr, L. M. H. & Campbell, J. G.) 463</td>
</tr>
<tr>
<td>Cellulose digestion by rumen symbiotics, products (Marston, H. R.) 564</td>
</tr>
<tr>
<td>Cephalin, effect on thymol flocculation test (Maclagan, N. F.) xli</td>
</tr>
<tr>
<td>Cereals, nicotinic acid in germination (Klatzkin, C., Norris, E. W. & Wokes, E.) 414, vii</td>
</tr>
<tr>
<td>Chemical warfare agents, biochemical reactions, Symposium xxv</td>
</tr>
<tr>
<td>Chloroformylamines, pharmacology (Boyland, E.) xxvii</td>
</tr>
<tr>
<td>Chloroformylamines, pharmacology (Eörsi, L. A., Spinks, A. & Tottey, M. M.) xliii</td>
</tr>
<tr>
<td>Choline dehydrogenase, action of arsenicals (Gordon, J. J. & Quastel, J. H.) 337</td>
</tr>
<tr>
<td>Cholinesterase, action of arsenicals (Gordon, J. J. & Quastel, J. H.) 337</td>
</tr>
</tbody>
</table>
INDEX OF SUBJECTS

Cholinesterase inhibition by alkylfluorophosphonates (Mackworth, J. F. & Webb, E. C.) 91
Cholinesterase, selective inhibition (Adams, D. H. & Thompson, R. H. S.) 170

Chromatography see Anion exchange resin; see also Paper chromatography; see also Paper partition chromatography; see also Partition chromatography

Chymotrypsin, action on ribonuclease (Kleckowski, A.) 529
Chymotrypsinogen, action of thiols on (Peters, R. A. & Wakelin, R. W.) xvi
Citrate formation from acetocetate (Krebs, H. A. & Eggleston, L. V.) 294
Citric acid cycle see Tricarboxylic acid cycle

Clostridium cedenetium lecithinase, immunology (Macfarlane, M. G.) 590
Clostridium sordellii lecithinase, immunology (Macfarlane, M. G.) 590

Clostridium welchii, decarboxylation of glutamine (Krebs, H. A.) xv

Clostridium welchii, large scale production of toxins (van Heyningen, W. E.) 127

Clostridium welchii α-toxin, reaction with antitoxin (van Heyningen, W. E. & Bidwell, E.) 130

Clostridium welchii κ-toxin, collagenase activity (Bidwell, E. & van Heyningen, W. E.) 140

Coenzyme I in oxygenic cells (Bradford, N. M., Davies, R. E., Ellis, E. & Hughes, D. E.) liv

Co-factor of glyoxalase (Hopkins, F. G. & Morgan, E. J.) 23

Collagen, attack by κ-toxin of Clostridium welchii (Bidwell, E. & van Heyningen, W. E.) 140
Collagenase action of κ-toxin of Clostridium welchii (Bidwell, E. & van Heyningen, W. E.) 140
Collagenase, electrophoresis (Charlwood, P. A.) 150

Copper, effect on soil nitrification (Lees, H.) 534, xvii
Copper complexes of amino-acids, polarographic reduction (Jones, T. S. G.) lxix

Coproporphyrin III preparation from Corynebact. diphtheriae (Gray, C. H. & Holt, L. B.) viii

Corn-steep liquor, penicillin precursors in (Mead, T. H. & Stack, M. V.) xviii

Corticosteroid-like substances, extraction from urine (Robinson, A. M. & Warren, P. L.) xxiii

Corticoesterone, effect on breakdown of muscle glycogen (Verzar, F. & Wenner, V.) 48

Corynebacterium diphtheriae, coproporphyrin III from (Gray, C. H. & Holt, L. B.) viii

Corynebacterium diphtheriae haem, relationship to cytochromes (Rawlison, W. A. & Hale, J. H.) xvii

Corynebacterium diphtheriae, prothetic groups of intracellular haems (Rawlison, W. A. & Hale, J. H.) xvii

Coxzyme see Cozyme I
Creatine estimation by Barratt reaction (Ennor, A. H. & Stocken, L. A.) 557, xvi
Curare, selective inhibition of pseudocholinesterase (Adams, D. H. & Thompson, R. H. S.) 170

Cytochrome, combined, of proteins, reaction with bisulphite (Lindley, H.) 481

Cytochromes, relationship to haems of Corynebact. diphtheriae (Rawlison, W. A. & Hale, J. H.) xvii

Cytochrome oxidase, action of arsenicals (Gordon, J. J. & Quastel, J. H.) 397

Decarboxylation of β-(2:5-dihydroxyphenyl)-alanine (Blaschko, H. & Stanley, G. H. S.) iii

Decarboxylation of glutamine (Krebs, H. A.) v

Decarboxylation of succinate by Propionibacteria (Johns, A. T.) ii

Decarboxylation of tyrosine (Blaschko, H. & Stanley, G. H. S.) iii

Decarboxylation of tyrosine derivatives (Blaschko, H. & Stanley, G. H. S.) iii

Denaturation of muscle proteins by acetate buffers (Jacob, J. J. C.) 71

Dental tissues, solubility in saliva (Jenkins, G. N. & Forster, M. G.) liv

Deoxy corticosterone, effect on muscle glycogen (Verzar, F. & Wenner, V.) 35, 48

Deoxy corticosterone, insulin as antagonist (Verzar, F. & Wenner, V.) 35

Deoxy corticosterone see also Eschatin Diabetic blood plasma, effect on hexokinase (Smith, R. H.) liii

Diabetogenic extracts of pituitary, fractionation (Reid, E. & Young, F. G.) liv

Diabetogenic extracts of pituitary, inhibition of hexokinase by (Reid, E., Smith, R. H. & Young, F. G.) xix

Diacetyl reaction for urea estimation (Wheatley, V. R.) xli

ββ'-Dichlorodiethyl-N'-methylamine, selective inhibition of cholinesterase (Adams, D. H. & Thompson, R. H. S.) 170

ββ'-Dichlorodiethyl sulphide see Mustard gas

Dienoestrol, absorption spectrum (Dodgson, K. S., Garten, G. A., Stubbs, A. L. & Williams, R. T.) 357

Dienoestrol, colorimetric estimation (Warren, F. L., Goulden, F. & Robinson, A. M.) 151

Dienoestrol glucononide, absorption spectrum (Dodgson, K. S., Garten, G. A., Stubbs, A. L. & Williams, R. T.) 357

Dienoestrol metabolism (Smith, A. E. W. & Williams, P. C.) 253

N²-Diethylsulphanilamide for thyroxine estimation (Winkoff, D. & Trikojus, V. M.) 475

Digestion of proteins (dogs) (Dent, C. E. & Schilling, J. A.) xxix

β-(2:5-Dihydroxyphenyl)-alanine, decarboxylation (Blaschko, H. & Stanley, G. H. S.) iii

DL-3:5-Diido-4-hydroxyphenyllactic acid, conversion into thyroxine analogue (Saul, J. A. & Trikojus, V. M.) 80

2:4-Dimethyl-3-carboxethoxy-pyrrole-5-carboxylic acid metabolism (Gray, C. H. & Thorpe, E. J. F.) vii

2:4-Dimethyl-5-carboxethoxy-pyrrole-3-carboxylic acid metabolism (Gray, C. H. & Thorpe, E. J. F.) vii

2:4-Dinitrophenol, effect on succinoxidase (Williams-Asman, H. G.) li

Dipetides related to gramicidin S, synthesis (Syng, R. L. M.) 99

Diphtheria toxoid, electrophoresis (Charlwood, P. A.) 425

1:2-Dithiole, estimation (Aldridge, W. N.) 52

Dopa decarboxylase, action on β-(2:5-dihydroxyphenyl)-alanine (Blaschko, H. & Stanley, G. H. S.) iii

Dust, mineral, in lung (King, E. J., Harrison, C. V. & Ray, S. C.) xxxviii

Eel, oil content (Shorland, F. B. & Russell, J.) 429

Egg white sugars, chromatographic analysis (Partridge, S. M.) 238

Electrophoresis of collagenase (Charlwood, P. A.) 150

Electrophoresis of diphtheria toxoid (Charlwood, P. A.) 425

Electrophoresis of seromucoid (Staub, A. M. & Rimington, C.) 5

Electrophoresis of serum proteins (Hoch, H.) 181

Electrophoresis of striated muscle proteins (Jacob, J. J. C.) 71

Electrophoresis see also Micro-electrophoresis

Electrophoretic separation of amino-acids (Butler, J. A. V. & Stephen, J. M. L.) x, xxiii

Electrophoretic separation of peptides (Butler, J. A. V. & Stephen, J. M. L.) x, xxiii

Electrophoretic separation of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528

Electrophoresis of thiols (Gray, A. M. & Robinson, T.) 528
Enzymes, action of arsenicals (Gordon, J. J. & Quastel, J. H.) 337
Enzymes, action of lachrymators (Mackworth, J. F.) 82
Enzymes, inhibition by alkyl fluorophosphonates (Webb, E. C.) 96
Enzymes, nuclear, of wheat (Booth, R. G.) liv
§Enzymes, reactions with lachrymators (Dixon, M.) xxvi
§Enzymes, reactions with mustard gas (Needham, D. M.) xxv
Ergotamine, effect on glycogen synthesis (Tuerkischer, E. & Wertheimer, E.) 603
Ergothioneine estimation in blood (Latner, A. L.) xxxv
Ergothioneine in blood in thyrotoxicosis (Latner, A. L. & Mowbray, R.) xxxv
Erythritol see Threitol
Erythrocytes, methaemoglobin reduction in (Gibson, Q. H.) 13
Eschatin, effect on carbohydrate synthesis (Chiu, C.-Y. & Needham, D. M.) xix
Escherichia coli see Bacterium coli
Eserine inhibition of cholinesterases (Adams, D. H. & Thompson, R. H. S.) 170
Esterase, action of arsenicals (Gordon, J. J. & Quastel, J. H.) 337
Esterase, inhibition by alkyl fluorophosphonates (Webb, E. C.) 96, xxvii
Ethereal esterases, synthesis in vivo (Laidlaw, J. C. & Young, L.) 1 (Proc.)
Ethyl carbamate see Urethane
N’-Ethyl-3:4:5:6-dibenzearbazole, carcinogenic
Flavonoid nucleotides, see Flavonoids
Flavin nucleotides, see Flavin nucleotides
Flavin nucleotide of cereals, see Flavin nucleotide
Flavin nucleotide of muscle, see Flavin nucleotide
Flavin nucleotide of yeast, see Flavin nucleotide
Flavin mononucleotide see Flavin mononucleotide
Fatty acids
Fatty acid metabolism in liver, role of phosphates (Ennor, A. H. & Stocken, L. A.) 549
Fatty acids of herring visceral fat (Hilditch, T. P. & Pathak, S. P.) 316
Fatty acids of tubercle bacilli lipids (Polgar, N.) 206
Fatty acids, saturated, steam-volatile, separation by buffered partition columns (Searlsrick, R., Baldwin, E. & Moor, V.) xiv
Fatty liver, distribution of acid-soluble phosphates (Ennor, A. H. & Stocken, L. A.) 549
Fibroblasts, nucleic acid content (Davidson, J. N., Leslie, I. & Waymouth, C.) xv
Fish oils of freshwater eels (Shorland, F. B. & Russell, J.) 429
Flavin adenine dinucleotide as prosthetic group of notatin (Keilin, D. & Hartree, E. F.) 221
*Flavin nucleotides, paper chromatography (Crammer, J. L.) v
Flour extraction rate, effect on solubility of calcium phosphate (Jenkins, G. N. & Forster, M. G.) liv
Flour extraction rate, effect on solubility of dental tissues (Jenkins, G. N. & Forster, M. G.) liv
Fluorophosphonates, action on enzymes (Webb, E. C.) 96
Fluorophosphonates, action on esterases (Webb, E. C.) 96
Fluorophosphonates, inhibition of cholinesterase (Mackworth, J. F. & Webb, E. C.) 91
§Fluorophosphonates, reaction with esterases (Webb, E. C.) xxvi
Fluorophosphonates see also Alkyl fluorophosphonates
Foetal blood see Blood, foetal
Foetus, phospholipid synthesis in (Popjak, G.) xi
Folic acid factor, biosynthesis (Hall, D. A.) ix
Folic acid in mealworm nutrition (Fraenkel, G.) xvi
Fructose in foetal blood (Bacon, J. S. D. & Bell, D. J.) 397
Fungi, wood-rotting, production of threitol (Birkenshaw, J. H., Stickings, C. E. & Tessier, P.) 329
Fuscin, antibacterial activity (Michael, S. E.) xl
Fuscin formation by Oidiodendron fuscum (Michael, S. E.) xl
Gas gangrene see Clostridium welchii
Gas gangrene toxins see Toxins
Gastric contents, estimation of peptic activity (Hunt, J. N.) 104
Gastric HCl, site of formation (Bradford, N. M. & Davies, R. E.) xi
Gastric mucin, blood group A specific substance in (Partridge, S. M.) 251
Gastric mucous, isolated, ulceration in (Davies, R. E. & Longmuir, N. M.) 621
Gastric mucosa, production of HCl (Davies, R. E.) 609
Gastric mucosa, secretion of water (Davies, R. E. & Terner, C.) xiii
Gelatin, attack by k-toxin of Clostridium welchii (Bidwell, E. & van Heyningen, W. E.) 140
Gelatin, hydroxylysin from hydrolysate (Heathcote, J. G.) 305
Germination of cereals, nicotinic acid in (Klatzkin, C., Norris, F. W. & Wokes, F.) vii
Glucose estimation by notatin (Keilin, D. & Hartree, E. F.) 230
Glucose identification by notatin (Keilin, D. & Hartree, E. F.) 230
Glucose in foetal blood (Bacon, J. S. D. & Bell, D. J.) 397
Glucose oxidase of Penicillium notatum see Notatin
Glucose-1-phosphate in glycogen formation, effect of adrenalectomy (Verzar, F. & Wilener, V.) 42
Glucose utilization, influence of adrenaline (Cohen, J. A. & Needham, D. M.) xxi
Glucuronic acid estimation (Levvy, G. A.) 2
Glucuronic acid liberation from conjugated glucuronides (Levvy, G. A.) 2
β-Glucuronidase action on conjugated glucuronides (Levvy, G. A.) 2
β-Glucuronidase assay by phenol glucuronide (Kerr, L. M. H., Graham, A. F. & Levvy, G. A.) 191
β-Glucuronidase, effect of liver poisons (Levvy, G. A., Kerr, L. M. H. & Campbell, J. G.) 462
β-Glucuronidase in cell proliferation (Levvy, G. A., Kerr, L. M. H. & Campbell, J. G.) 462
β-Glucuronidase in ox spleen (Mills, G. T.) xxi
β-Glucuronidase, increase in tissue injury (Levvy, G. A., Kerr, L. M. H. & Campbell, J. G.) iv
Glucuronides, conjugated, action of β-glucuronidase (Levvy, G. A.) 2
Glucuronides in urine after synthetic oestrogens (Dodgson, K. S., Garthet, G. A., Stubbs, A. L. & Williams, K. T.) 357
Glucuronide of p-acetamidophenol in urine after acetanilide (Smith, J. N. & Williams, R. T.) 538
Glucuronide of dienoestrol, isolation, properties (Simpson, S. A. & Smith, A. E. W.) 258
Glucuronide of hexoestrol, isolation, properties (Simpson, S. A. & Smith, A. E. W.) 258
Glucuronide of stilboestrol, isolation, properties (Simpson, S. A. & Smith, A. E. W.) 258
Glucuronides of synthetic oestrogens in urine (Smith, A. E. W. & Williams, P. C.) 253
Glucuronide, phenolic, in assay of β-glucuronidase (Kerr, L. M. H., Graham, A. F. & Levvy, G. A.) 191
L-Glutamic acid accumulation in brain (Stern, J. R.) ivii
Glutamic acid analogues, antibacterial activity (Roper, J. A. & McIlwain, H.) 485
INDEX OF SUBJECTS

Vitamin A esters, absorption spectrum (Morton, R. A. & Stubbs, A. L.) 195
Vitamin A in halibut gut (Glover, J. & Morton, R. A.) lxiii
Vitamin A, intestinal absorption (Eden, E. & Sellers, K. C.) xlix
Vitamin A, spectrophotometric assay in liver oils (Morton, R. A. & Stubbs, A. L.) 195
Vitamin A, storage, quantitative aspects (Davies, A. W. & Moore, T.) lxiii
Vitamin B_1 conjugate in mealworm nutrition (Fraenkel, G.) xvi
Vitamin B_7 in mealworm nutrition (Fraenkel, G.) xvi
Vitamin C, metabolism in piglet (Braude, R., Kon, S. K. & Porter, J. W. G.) xxxi
Vitamin C see also Ascorbic acid

Wheat, nuclear enzymes (Booth, R. G.) liv
Wood-rotting fungi, production of d-threitol (Birkenshaw, J. H., Stickings, C. E. & Tessier, P.) 329

X-rays, mechanism of action on bacterial toxins (Ephrati, E.) 383

Yeast analysis (Astrup, T. & Øhlenschläger, V.) 211
Yeast, assimilation of amino-acids (Taylor, E. S.) i
Yeast carboxylase, mode of action (Conway, E. J. & O'Malley, E.) lxii
Yeast, formation of succinate by (Brady, T.) lxii
Yeast glutathione determination (Astrup, T. & Øhlenschläger, V.) 211
Yeast hexokinase, activation by Mg ions (Bailey, K. & Webb, E. C.) 60
Yeast hexokinase, crystallization (Bailey, K. & Webb, E. C.) 60
Yeast hexokinase, inhibition by SH poisons (Bailey, K. & Webb, E. C.) 60
Yeast hexokinase, reaction with mustard gas (Bailey, K. & Webb, E. C.) 60
Yeast, high acid formation, source of H ions (Conway, E. J. & Brady, T.) lxv
Yeast, 'outer metabolic chamber' in cell (Downey, M. & Conway, E. J.) lxii

Zinc, effect on soil nitrification (Lees, H.) 534