Max is a ubiquitous transcription factor with a bHLHZip [basic HLH (helix–loop–helix) leucine zipper] DNA-binding/dimerization domain and the central component of the Myc/Max/Mad transcription factor network that controls cell growth, proliferation, differentiation and apoptotic cell death in metazoans. Max is the obligatory DNA-binding and dimerization partner for all the bHLHZip regulators of the Myc/Max/Mad network, including the Myc family of oncoproteins and the Mad family of Myc antagonists, which recognize E-box DNA elements in the regulatory regions of target genes. Max lacks a transcription regulatory domain and is the only member of the network that efficiently homodimerizes.Binding of Max homodimers to E-box elements suppresses the transcription regulatory functions of its network partners and of other non-network E-box-binding regulators. In contrast with its highly regulated partners, Max is a constitutively expressed and phosphorylated protein. Phosphorylation is, however, the only Max post-translational modification identified so far. In the present study, we have analysed Max post-translational modifications by MS. We have found that Max is acetylated at several lysine residues (Lys-57, Lys-144 and Lys-145) in mammalian cells. Max acetylation is stimulated by inhibitors of histone deacetylases and by overexpression of the p300 co-activator/HAT (histone acetyltransferase). The p300/HAT also directly acetylates Max in vitro at these three residues. Interestingly, the three Max residues acetylated in vivo and in vitro by p300 are important for Max nuclear localization and Max-mediated suppression of Myc transactivation. These results uncover novel post-translational modifications of Max and suggest the potential regulation of specific Max complexes by p300 and reversible acetylation.

Key words: histone acetyltransferase, Max, MS, Myc, nuclear localization, p300.

INTRODUCTION

Max is a DNA-binding transcription factor and the central and obligatory partner of a network of transcription regulators that control cell proliferation, differentiation, apoptotic cell death and cell transformation. This network includes the family of Myc oncoproteins (c-Myc, N-Myc, L-Myc) that stimulate cell division and growth and are deregulated in many types of cancer, and several Myc antagonists (i.e. Mad1, Mxi1/Mad2, Mad3, Mad4, Mnt/Rox and Mga) that inhibit cell proliferation and/or function during cell differentiation. While Max is a stable and ubiquitous protein that is constitutively expressed, the biosynthesis and stability of Myc and most of its network antagonists are highly regulated [1]. Max and all the other members of the Myc/Max/Mad network have a highly related bHLHZip [basic HLH (helix–loop–helix) leucine zipper] DNA-binding and dimerization domain and recognize common E-box DNA elements characterized by the core consensus sequence CACGTG. Although Max can bind DNA as a homodimer, Myc, Mad and Mnt proteins do not efficiently homodimerize, but bind E-box DNA elements only as heterodimers with Max [2–12]. Thus Max is essential for the transcription functions of the other regulators of the network. In addition, Max complexes can also impinge on the functions of other bHLHZip proteins [such as USF (upstream stimulatory factor)], which recognize the same E-box sequences but do not dimerize with members of the Myc/Max/Mad network [1,13–17].

A model for transcription activation by Myc–Max heterodimers involves the recruitment by Myc of several HATs (histone acetyltransferases)-containing co-activator complexes and Myc-induced hyperacetylation of chromatin within the regulatory regions of target genes [18–24]. Consistent with this, the Myc antagonists Mad and Mnt proteins inhibit transcription of target genes through conserved repressin domains, which recruit mSin3 (mammalian Sin3) co-repressor complexes containing HDACs (histone deacetylases) [10,25–29]. In contrast, Max does not have a transcription regulatory domain and has generally been viewed as an obligatory but passive partner for the other factors of the network [1,4,6,30]. Max overexpression, however, has been shown to inhibit both Myc-dependent transcription activation and Myc/Ras-dependent cellular transformation, possibly via competition of Max homodimers (or Mnt–Max or Mad–Max heterodimers) with Myc–Max complexes for binding to E-box elements on target genes [4,5,30–36]. These inhibitory effects of Max have been shown to require a functional bHLHZip domain [35,37] and a 26-amino-acid region at the extreme C-terminus of Max that is important for efficient DNA binding by Max homodimers [37,38] and includes a nuclear localization signal and protein kinase CK2 phosphorylation sites [6,31,33,37].

Post-translational modifications play an important role in regulating the output of the Myc/Max/Mad network. For instance, Myc is a target for several post-translational modifications, which interplay to regulate its stability and transactivating functions and are often controlled by specific signalling pathways [22,38–46]. In

Abbreviations used: acetyl-K, acetyl-lysine; HLH, helix–loop–helix; bHLHZip, basic HLH leucine zipper; DAPI, 4′,6-diamidino-2-phenylindole; EMSA, electrophoretic mobility-shift assay; ESI, electrospray ionization; GCN5, positive general control of transcription-5; HA, haemagglutinin; HAT, histone acetyltransferase; HDAC, histone deacetylase; HEK-293 cell, human embryonic kidney cell; hTERT, human telomerase reverse transcriptase; LC, liquid chromatography; MALDI–TOF, matrix-assisted laser-desorption ionization–time-of-flight; MS/MS, tandem MS; Q-TOF, quadrupole–time-of-flight; TSA, trichostatin A.

1 These authors contributed equally to this work.

2 To whom correspondence should be addressed (email ernest.martinez@ucr.edu).
contrast, Max appears to be constitutively phosphorylated in vivo, most likely by protein kinase CK2, within an N-terminal region preceding its bHLHZip domain and within a C-terminal acidic region required for Max suppression of Myc functions [33,47–50]. Max phosphorylation by protein kinase CK2 at its N-terminal region in vitro has been shown to inhibit DNA binding by Max homodimers, but not by Myc–Max or Mad–Max heterodimers [7,48], and both N-terminal and C-terminal protein kinase CK2 sites inhibit Max’s ability to interfere with Myc functions in vivo [33,50]. Interestingly, contrary to the traditional view of Max being unregulated, de-phosphorylation of Max during Fas-induced apoptosis stimulates cleavage of Max N-terminal region by caspase 5 and enhances DNA binding by cleaved Max homodimers [38].

We have reported recently that Max can be specifically acetylated by p300, but not by GCN5 (general control of amino acid synthesis-5) or TIP60 (HIV-1 Tat interacting protein, 60 kDa) HATs, in vitro [46]. In the present study, we demonstrate that Max is acetylated in mammalian cells at three lysine residues, Lys-57, Lys-144 and Lys-145 (co-ordinates in Max p21 isoform) that are also the major direct targets for p300-mediated acetylation in vitro. Interestingly, we show that these three residues are important for the nuclear localization of Max and its ability to suppress Myc-activated transcription. These results identify novel Max posttranslational modifications and suggest the possibility that the subcellular localization and transcription activities of specific Max complexes may be regulated by p300-mediated Max acetylation.

MATERIALS AND METHODS

Plasmids

The bacterial expression vectors for His$_x$-tagged human Max short isoform (pET-His-Max) [51], His$_x$-tagged human GCN5 short form (pRSSETA-His-GCN5-S) [52] and FLAG-tagged human p300 HAT domain (pET28c-FLAG-p300[1195–1810]) [53] and the mammalian expression vectors for FLAG-tagged mouse c-Myc (pCBS-FLAG-cMyc) [54], untagged human Max short isoform (pSP271-Max) [30] and FLAG-tagged human Max proteins were eluted with BC-100, dialysed to BC-100, 0.2 mM PMSF, BC-350 (containing 350 mM KCl) and BC-500. Max proteins were eluted with 0.4 mg/ml FLAG peptide in BC-100 for 24 h, and stored at −80°C. FLAG–p300 HAT domain was expressed in BL21-CodonPlus(DE3)-RP bacteria (Stratagene) and purified from the soluble fraction by batch binding to heparin–Sepharose (Amersham Biosciences) for 3 h at 4°C (under constant rotation), followed by successive washes with BC-100 [20 mM Tris/HCl, pH 7.9 at 4°C, 20% (v/v) glycerol, 100 mM KCl, 0.2 mM EDTA, 10 mM 2-mercaptoethanol and 0.2 mM PMSF], BC-350 (containing 350 mM KCl) and BC-500. Max proteins were eluted with BC-100, dialysed to BC-100, and stored at −80°C. FLAG–p300 HAT domain was expressed in BL21-CodonPlus(DE3)-RP bacteria (Stratagene) and purified from the soluble fraction by batch binding to FLAG M2 affinity resin (Sigma) for 9–12 h at 4°C. The resin was then extensively washed with, successively, bacteria lysis buffer (20 mM Hepes, pH 7.9 at 4°C, 500 mM NaCl, 10% glycerol, 0.1 % Igepal CA-630, 2 mM 2-mercaptoethanol and 1 mM PMSF), BC-500 and BC-100 (as above but with 2 mM 2-mercaptoethanol). FLAG–p300 was eluted with 0.4 mg/ml FLAG peptide in BC-100 for 30 min at 22°C.

In vitro acetylation assays

Acetylation reactions were performed by incubating 100–400 ng of Max proteins (or 2 µg of a mixture of calf thymus histones H1, H2A, H2B, H3 and H4; Roche) with 10–40 ng of recombinant p300-HAT and 3–5 µM [3H]acetyl-CoA (27.5 Ci/mmol, 1.0 µCi/ml, Sigma) in 50 mM Tris/HCl (pH 8.0), 14% glycerol, 70 mM KCl, 0.1 mg/ml BSA, 0.09% Igepal CA-630, 8 mM 2-mercaptoethanol, 10 mM sodium butyrate and 0.3 mM PMSF for 1 h at 30°C. Reactions were stopped by adding SDS-sample buffer, and proteins were resolved by SDS/PAGE and stained with

Antibodies and Western blot

For Western blot analyses, proteins were resolved by SDS/PAGE and transferred on to nitrocellulose membranes and detected with specific antibodies: acetylated-lysine (Cell Signaling Technology), FLAG M2 (Sigma), Max C-17 and Myc N262 (Santa Cruz Biotechnology), by using the ECL® (enhanced chemiluminescence) kit (Amersham Biosciences) according to the manufacturer’s instructions. When indicated, membranes were stripped for 60 min at 55°C in stripping solution [62.5 mM Tris/HCl, pH 6.7, 2% (v/v) SDS and 100 mM 2-mercaptoethanol], and then washed and blocked with 6% (w/v) non-fat dry milk in TBST (10 mM Tris/HCl, pH 8.0, 150 mM NaCl and 0.05% Tween 20), and re-probed with a different primary antibody.

Recombinant protein expression and purification

Human His$_x$-tagged Max (wild-type and mutants) were expressed in bacteria BL21(DE3)pLysS (Stratagene) and purified from the soluble fraction as previously described [55]. For the experiment of Figure 4(A), His$_x$-tagged Max wild-type and the triple mutant Max K57R/K144R/K145R (Stratagene) and purified from the soluble fraction by batch binding to heparin–Sepharose (Amersham Biosciences) for 3 h at 4°C (under constant rotation), followed by successive washes with BC-100 [20 mM Tris/HCl, pH 7.9 at 4°C, 20% (v/v) glycerol, 100 mM KCl, 0.2 mM EDTA, 10 mM 2-mercaptoethanol and 0.2 mM PMSF], BC-350 (containing 350 mM KCl) and BC-500. Max proteins were eluted with BC-100, dialysed to BC-100, and stored at −80°C. FLAG–p300 HAT domain was expressed in BL21-CodonPlus(DE3)-RP bacteria (Stratagene) and purified from the soluble fraction by batch binding to FLAG M2 affinity resin (Sigma) for 9–12 h at 4°C. The resin was then extensively washed with, successively, bacteria lysis buffer (20 mM Hepes, pH 7.9 at 4°C, 500 mM NaCl, 10% glycerol, 0.1% Igepal CA-630, 2 mM 2-mercaptoethanol and 1 mM PMSF), BC-500 and BC-100 (as above but with 2 mM 2-mercaptoethanol). FLAG–p300 was eluted with 0.4 mg/ml FLAG peptide in BC-100 for 30 min at 22°C.

© The Authors Journal compilation © 2007 Biochemical Society
MS analyses

In vitro acetylation of recombinant Max (wild-type, 8 μg) was performed essentially as described above but with unlabelled acetyl-CoA (100 μM) and FLAG–p300 HAT domain (2 μg) immobilized on the anti-FLAG M2 resin (alternatively 2 μg of Max and 0.5 μg of full-length p300 [46] were used with similar results, except that the use of p300 full-length further led to identification of acetylated Lys-31). Approximately 1 μg of acetylated Max was digested with 10 ng of trypsin in 25 mM NH₄HCO₃, 9 h at 37°C, and the peptides were purified using a ZipTip (Millipore) and subjected to MS. Alternatively, after the acetylation reaction, proteins were resolved by SDS/PAGE and stained with Colloidal Blue staining kit (Invitrogen). Max protein bands were cut, destained and digested with trypsin. Tryptic peptides were first analysed by MALDI–TOF (matrix-assisted laser-desorption ionization–time-of-flight) MS. Monoisotopic masses of all peptides were measured by MALDI using a Voyager DE-STR Biospectrometry Workstation (Applied Biosystems) with delayed extraction operated in the reflectron mode. LC (liquid chromatography)–MS/MS (tandem MS) analyses were performed with an electrospray Q-TOF (quadrupole–time-of-flight) mass spectrometer (QTOF Ultima-Global; Micromass) coupled online with a capillary HPLC (Agilent 1100; Hewlett-Packard). An Agilent 0.5 mm × 150 mm ZORBAX SB-C18 column (5 μm particle diameter, 80 Å pore size; 1 Å = 0.1 nm) with mobile phase of A (0.1% formic acid in water) and B (0.1% formic acid in acetonitrile) was used with a linear gradient of 2–65% of mobile phase B over 65 min at a flow rate of 6 μl/min. The flow was directly introduced into the electrospray source of the mass spectrometer. Q-TOF experiments were run at a capillary voltage of 3.0 V and a cone voltage of 77 V. The source block and desolvation gas (N₂) temperatures were 90 and 120°C respectively. CAD (collision-activated dissociation) experiments were performed in a hexapole collision cell with Ar (69 kPa) as the collision gas and collision energy was optimized at 1.9 eV. The collision gas and collision energy was optimized at 1.9 eV. The collision energy was ramped over the range from 20 to 40 V using a pre-optimised collision-energy file. The quadrupole mass filter before the TOF analyser was set with LM (low mass) and HM (high mass) resolution of 10 (arbitrary units), which is approximately equivalent to a 2.0-Da mass window for transmission of precursor ions.

For MS analyses of endogenous Max in HeLa cells, 11 confluent 10-cm plates of cells were incubated at 37°C under 5% CO₂ with HDAC inhibitors [10 mM sodium butyrate, 10 mM nicotinamide and 2 μM TSA (trichostatin A)] for 4 h and with the proteasome inhibitor MG-132 (the proteasome inhibitor carboxy-L-leucyl-L-leucyl-leucinal; 20 μM) for 1.5 h just before lysing the cells with Lysis Buffer (50 mM Hepes, pH 7.9 at 4°C, 500 mM NaCl, 0.1% Igepal CA-630, 0.2 mM EDTA and 0.2 mM PMSF) supplemented with 10 mM sodium butyrate, 10 mM nicotinamide, 2 μM TSA and 20 μM MG-132. Endogenous Max was immunoprecipitated from the pre-cleared cell lysates by incubation with the anti-Max C-17 antibody (105 μg of IgG) for 9 h at 4°C. Protein A–Sepharose CL-4B (GE/Pharmacia) resin (220 μl) was then added and the lysates were rotated for 14 h at 4°C. Immunoprecipitates were washed three times with Lysis Buffer and once with 1% sodium deoxycholate in Lysis Buffer, and eluted in SDS/PAGE loading buffer. Max proteins were resolved by SDS/PAGE and stained with Colloidal Blue. Max protein bands were cut, destained and digested with trypsin or V8 protease (staphylococcal V8 protease; Roche Diagnostics) overnight in the NH₄HCO₃ buffer. The final proteolytic peptide samples were prepared and analysed by nano-LC/ESI (electrospray ionization)/MS/MS essentially as previously described [46], with the exception that the Q-TOF Premier MS/MS system and the nanoAcuity ultra-performance LC (nanoUPLC; Waters Corp.) were used in the present study. For the experiment in Figure 2(C), HEK-293 cells (human embryonic kidney cells) were transfected three times with pChS-FLAG-Myc (3 μg), pChS-HA-Max p22 (0.5 μg) and pCMVβ-p300-C/HA (4.5 μg) at 4-h intervals and cells were cultured for an additional 40 h. The cells were incubated with HDAC inhibitors (as above) for 12 h before cell lysis (see above). Cell lysates from four confluent 10-cm plates were immunoprecipitated with FLAG M2–agarose and analysed by MS as above.

Cell culture, transfection, co-immunoprecipitation, luciferase assays and EMSA (electrophoretic mobility-shift assay)

HeLa, COS-7, HEK-293 and U2OS cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% (v/v) fetal bovine serum at 37°C with 5% CO₂.

For transfection and co-immunoprecipitation experiments, the cells were seeded on to 10-cm plates to reach 40–80% confluency the next day at the time of transfection. Transfections were performed with Lipofectamine™ 2000 (Invitrogen) and the indicated mammalian expression vectors and/or corresponding empty vectors to maintain total DNA constant. For COS-7 cells (Figure 2A), 12 h after transfection the medium was replaced with complete medium containing or lacking HDAC inhibitors (10 mM sodium butyrate, 10 mM nicotinamide and 2 μM TSA) and the cells were lysed 12 h later with ice-cold Hypotonic Lysis Buffer (50 mM Hepes, pH 7.9 at 4°C, 20 mM NaCl, 0.1% Igepal CA-630, 0.2 mM EDTA, 0.2 mM PMSF and 2 mM 2-mercaptoethanol). Cell extracts were adjusted to 250 mM NaCl and 20% glycerol (IP-250 buffer) and lysates equivalent to one 10-cm plate were immunoprecipitated with 10 μl of FLAG M2–agarose resin (Sigma) for 8 h at 4°C, under constant rotation. The resin was washed 3 times with 1 ml of IP-250 buffer, and resin-bound proteins were analysed by Western blot. For HEK-293 cells (Figure 2B), the medium was replaced 24 h after transfection with complete medium containing HDAC inhibitors (as above) and the cells were lysed 8 h later with Lysis Buffer containing 10 mM sodium butyrate and 1.4 mM 2-mercaptoethanol. Anti-FLAG immunoprecipitations were performed as above. For U2OS cells (Figure 6) the cells were lysed 48 h after transfection with Lysis Buffer containing 2 mM 2-mercaptoethanol. Lysates were adjusted to 179 mM NaCl and 6% glycerol, and immunoprecipitated with the anti-FLAG M2–agarose resin as above.

For luciferase assays, U2OS cells were transfected in 6-well plates with Lipofectamine™ reagent (Invitrogen) and with 100 ng of p2XB, 100 ng of pCMVβ-galactosidase, 25 ng of pChS-FLAG-Myc and the indicated amounts of pChS-FLAG-Max expression vectors or the empty pCbS vector to keep total DNA constant. Expression of the pCMVβ-galactosidase was not affected by co-transfection of the expression vectors for Myc or Max (results not shown). The relative luciferase activities were normalized to β-galactosidase activities and were plotted as percentage of the activity in extracts of cells transfected with the empty pCbS vector. The means and standard deviation obtained

Coomassie Brilliant Blue. For fluorography, stained SDS-polyacrylamide gels were further soaked in ‘Amplify’ solution (Amersham Biosciences) for 30 min, quickly rinsed with water, dried under vacuum, and exposed to X-ray films with an intensifying screen for at least 15 h at −80°C. Unlabelled acetylation reactions were performed similarly (but with unlabelled acetyl-CoA) and acetylated proteins were detected by Western blot with the acetyl-K (acetyl-lysine) antibody, as described above.
Figure 1 Endogenous Max in human HeLa cells is acetylated at Lys-144 and Lys-145

Whole cell extracts were prepared from HeLa cells treated for 4 h with HDAC inhibitors and endogenous Max proteins were immunoprecipitated with the anti-Max C-17 antibody, resolved by SDS/PAGE, in-gel digested with V8 protease, and subjected to MS/MS (LC-MS/MS) analysis. Shown is the MS/MS spectrum of fragmentation ions (y and y++) derived from a triple-charged precursor ion of the indicated m/z value and corresponding to the Max peptide sequence shown containing a single acetylated lysine residue at position Lys-145 or alternatively at Lys-144, as indicated by the two y5 ions, K145-ac and K144-ac respectively (see also text). The errors for the precursor and fragmentation ions are indicated in the box.

from at least three independent experiments each performed in duplicate are shown in Figure 5(A).

For EMSA, U2OS cells were transfected in 6-cm plates with Lipofectamine™ 2000 and 3 µg of pChs-FLAG-Max (wild-type or mutant) or the empty pChs vector. After 24 h expression cell extracts were prepared in 200 µl of Lysis Buffer (see above) and diluted 1:4 in buffer BC-133/BSA (20 mM Tris/HCl, pH 7.9, 133 mM KCl, 20% glycerol, 0.2 mM EDTA, 0.2 mM PMSF, 10 mM 2-mercaptoethanol and 0.5 mg/ml BSA). DNA binding was performed in 10 µl final volume with 1 µl of diluted extract, 3 ng of 32P-labelled E-box DNA oligonucleotide (5’-GCTCAGGGGACCCAGTGGCTGGGGATC-3’), 500 ng of poly(dA-dT)·(dA-dT) and 7.5 µl of BC-133/BSA for 30 min at 22°C. Where indicated the extract in 7.5 µl of BC-133/BSA was preincubated for 15 min at 22°C with 1 µl of anti-FLAG M2 antibody (Sigma) diluted 1:10 with 0.2 mg/ml BSA in BC-100. Protein–DNA complexes were resolved by native 6%-(w/v)-PAGE and visualized by autoradiography of the dried gels [55].

Indirect immunofluorescence

U2OS cells in 6-well plates containing three microscope coverslips were transfected with 1.5 µg of pChs-FLAG-Max p21. After 30 h the cells were washed with PBS and fixed with 0.2% methanol and permeabilized with 0.2% Triton X-100 in PBS. The cells were incubated with 5% (v/v) goat serum and 0.1% Triton X-100 in PBS for 30 min at room temperature (22°C) and then incubated with anti-FLAG M2 antibody (Sigma) diluted 1:400 in PBS containing 1% goat serum and 0.1% Triton X-100 at 4°C overnight. The cells were washed three times briefly with 0.1% Triton X-100 in PBS and then incubated for 1 h at room temperature with Alexa Fluor® 488-conjugated goat anti-mouse IgG antibodies (Molecular Probes) diluted 1:400 in PBS containing 1% goat serum and 0.1% Triton X-100. After three washes with 0.1% Triton X-100 in PBS, the cells were stained with DAPI (4′,6-diamidino-2-phenylindole), and the coverslips were mounted on to microscope slips and analysed by fluorescence microscopy and digital imaging.
p300 acetylates Max nuclear localization residues

RESULTS

Acetylation of Max in mammalian cells

We have shown recently that Max is acetylated in vitro specifically by p300 [46], suggesting that Max might be acetylated in vivo.

To determine whether Max is acetylated in human cells and to identify the potential acetylated residues, endogenous Max in HeLa cells was immunoprecipitated with a specific Max antibody, resolved by SDS/PAGE and analysed by MS/MS (LC-MS/MS). Figure 1 shows the MS/MS spectrum of two acetylated
forms of a Max peptide containing one single acetylated lysine residue at positions 144 (Lys-144) and 145 (Lys-145) respectively. This was confirmed by database searching using 'all entries' against the entire NCBI nr (National Center for Biotechnology Information non-redundant) protein database and by comparing the experimental spectrum with spectra derived from a synthetic peptide containing an acetyl group at either Lys-144 or Lys-145 (results not shown).

To determine whether Max is also acetylated in other mammalian cell lines and to test whether acetylated Max can interact with Myc, endogenous Myc-associated proteins in extracts of COS-7 cells transfected with a FLAG-tagged Max expression vector were immunoprecipitated with the anti-FLAG M2 resin and, after extensive washes, bound proteins were analysed by Western blot with an acetyl-K antibody that specifically recognizes Max acetylated in vitro by p300, but not unacetylated Max (see Supplementary Figure S1 at http://www.BiochemJ.org/bj/403/bj4030397add.htm). As shown in Figure 2(A), a FLAG–Myc-associated protein of approx. 20 kDa that co-migrated with endogenous Max was recognized by the acetyl-K antibody most strongly after treatment of the cells with a cocktail of HDAC inhibitors (lane 1 versus lane 2), suggesting that endogenous Max is acetylated in COS-7 cells and stably interacts with Myc. Acetylation of Max in association with Myc in COS-7 cells was verified by MS analyses of HA-tagged Max co-immunoprecipitated with FLAG–Myc, which identified a Max peptide with a mass indicative of acetylation at either Lys-144 or Lys-145 (see Supplementary Figure S2 at http://www.BiochemJ.org/bj/403/bj4030397add.htm). As shown in Figure 2(C), a tryptic Max peptide was found acetylated at residue Lys-57.

We further analysed p300-dependent acetylation of Max in HEK-293 cells transfected with expression vectors for FLAG–Myc and p300. FLAG–Myc and stably associated endogenous HDACs were immunoprecipitated with the FLAG antibody and analysed by Western blot as above. A Myc-associated protein that co-migrated with endogenous human Max was found preferentially acetylated in cells that were transfected with p300 (Max-Ac, lane 3 versus lane 4, Figure 2B). To verify that Max is indeed acetylated by p300, FLAG–Myc in extracts of HEK-293 cells co-transfected with HA–Max and p300 was immunoprecipitated with the FLAG antibody and Max proteins were resolved by SDS/PAGE and analysed by LC-MS/MS. As shown in Figure 2(C), a tryptic Max peptide was found acetylated at residue Lys-57.

Taken together, these results demonstrate that in mammalian cells (i) Max is acetylated at three lysine residues (i.e. Lys-57, Lys-144 and Lys-145), (ii) HDAC inhibitors and p300 induce acetylation of Max, and (iii) acetylated Max stably interacts with Myc.

Max lysine residues Lys-31, Lys-57, Lys-144 and Lys-145 are direct substrates for p300 in vitro

To identify Max lysine residues that are direct substrates for acetylation by p300, purified recombinant Max and p300 were used in acetylation reactions in vitro (Supplementary Figure S1 and [46]) and acetylated Max was analysed by MS (MALDI- and ESI-MS and LC-MS/MS). A total of 29 Max peptides were identified by MALDI–TOF (M) and ESI-Q-TOF (E), which covered 88% of Max residues (Figure 3, top). ESI-Q-TOF identified several acetylated peptides with masses indicative of acetylation at residues Lys-144 and Lys-145 (peptides 1–3), including a peptide (peptide 4) that was acetylated at Lys-31 and verified by LC-MS/MS. MALDI–TOF analyses identified 25 different peptides, of which only two had masses suggestive of an internal acetylated residue (peptides 9 and 24). Consistent with this, LC-MS/MS identified acetylation of Lys-144 (peptide 9) and Lys-57 (peptide 24). Thus p300 directly acetylates Max at Lys-31 and Lys-57 within, respectively, the H1 and H2 α-helices of the HLH domain and the doublet Lys-144/Lys-145 near the C-terminus (Figure 3, bottom, arrowheads). Except for Lys-31, the other three p300-targeted residues correspond to sites also found acetylated in mammalian cells (see above).

To determine whether the Max lysine residues Lys-57, Lys-144 and Lys-145 correspond to the major direct target sites for p300, all three residues were changed to arginine residues by site-directed mutagenesis, and the resulting Max triple mutant K57R/K144R/K145R protein was then tested in acetylation
p300 acetylates Max nuclear localization residues

Figure 4 Analysis of p300-acetylated Max residues by site-directed mutagenesis in vitro

(A) Recombinant Max wild-type (WT) and triple K→R mutant K57R/K144R/K145R ('Max K[57,144,145]R') were acetylated in vitro with p300 HAT (40 ng) in the presence of [3H]acetyl-CoA and analysed by SDS/PAGE and fluorography of the Coomassie-stained gel. Max protein amounts used: −: no protein; +: 100 ng; ++: 200 ng; +++: 400 ng. The upper panel is a fluorogram of the SDS/PAGE showing the acetylated products (p300-Ac and Max-Ac) and the lower panel shows total Max proteins stained with Coomassie on the same SDS/PAGE. (B) Acetylation assays (as above) in the presence (+) or absence (−) of p300 (10 ng). Reaction in lane 1 contained no Max protein. Equivalent amounts (400 ng) of Max WT, Max single mutants K57R ('[57]'), K144R ('[144]') and K145R ('[145]') and Max double mutants K57R/K144R ('[57,144]') and K57R/K145R ('[57,145]') were used, as indicated. The bottom panel shows the Coomassie-stained Max proteins in the dried gel used for fluorography.

assays in vitro in the presence of p300, as above. While the wild-type Max protein was efficiently acetylated (Figure 4A, lanes 2–4), the triple mutant Max K57R/K144R/K145R was not detectably acetylated by p300 (lane 5). Note that overexposure of the gel did not reveal any acetylation signal (results not shown), indicating that these three lysine residues are the major sites acetylated by p300 and thus that Lys-31 is only very weakly acetylated. To address further which of these three lysine residues is the preferred substrate for p300, acetylation assays were performed with Max mutants having only one or two lysine residues changed to arginine. Max single mutants K57R and K145R and the double mutant K144R and K57R/K145R was all acetylated by p300 (Figure 4B, lanes 4, 6 and 8). In contrast, acetylation of the Max mutants K144R and K57R/K144R was very weak (lanes 10 and 12). Therefore we conclude that p300 directly and preferentially acetylates Max at three lysine residues, Lys-57, Lys-144 and Lys-145, which are also acetylated in human cells (Figure 3, bottom, filled arrowheads), and that Lys-144 appears to be the preferred acetylation site for p300, while acetylation of Lys-31 is very inefficient in vitro. This is consistent with the fact that we did not detect acetylation of Lys-31 in mammalian cells.

Figure 5 Analysis of Max wild-type and K→Q mutants in suppression of Myc transactivation

(A) U2OS cells were transfected with the hTERT promoter-luciferase (p2xE8) reporter, the internal control pCMV-β-galactosidase, an expression vector for FLG–Myc (F-Myc, 25 ng) and increasing amounts (20–80 ng) of expression vectors for FLG–Max (F-Max) wild-type (WT) and mutants, as indicated. Relative luciferase (Luc) activities (normalized to β-galactosidase) are presented in percentage (%) of the activity of the hTERT-Luc reporter in the absence of co-transfected Myc and Max (lane 1, 100%). (B) The expression levels of FLAG–Myc and FLAG–Max wild-type (wt) and mutant proteins in whole cell extracts of transfected U2OS cells were analysed by Western blot with a Myc antibody (upper panel, FLAG–Myc) and the FLAG antibody (lower panel, FLAG–Max). K[57,144,145]Q, K57Q/K144Q/K145Q.

Function of lysine residues Lys-57, Lys-144 and Lys-145 in Max nuclear localization

To address the function of the three major acetylated Max residues in human cells, Max expression vectors encoding single (Lys-57), double (Lys-144 and Lys-145) and triple (Lys-57, Lys-144 and Lys-145) amino acid substitutions were generated by site-directed mutagenesis. These lysine residues were changed to either arginine (K→R triple mutant) to keep the positive charge or glutamine (K→Q mutants) to mimic an acetylated lysine side chain. We first analysed the ability of Max K→Q mutants to suppress Myc-dependent activation of an hTERT promoter-luciferase reporter gene in transiently transfected human U2OS cells. The hTERT promoter contains two E-box elements and is...
Figure 6 Dimerization of Max wild-type and K\r\n→ Q mutant proteins in human cells

(A) U2OS cells were transfected with expression vectors for FLAG-tagged (FLAG–Max) wild-type (WT) or the indicated mutants and untagged Max (Max, +) or its empty vector (−). FLAG–Max WT and mutants were immunoprecipitated with the FLAG antibody and analysed by Western blot (WB) with the Max C-17 antibody. Lanes 1–8 are the whole cell extracts (input) and lanes 9–10 are the corresponding immunoprecipitates (IP: FLAG). (B) Same as in (A), except that FLAG–Max WT and mutants were co-transfected with the HA–Myc expression vector. HA–Myc protein in whole cell extracts (lanes 1–6) or after co-immunoprecipitation with FLAG–Max (lanes 7–12) was detected by Western blot with a Myc (N262) antibody (top panel). K[57], K57Q; K[144,145], K144Q/K145Q; K[57,144,145], K57Q/K144Q/K145Q; K[57,144,145]R, K57R/K144R/K145R.

Figure 7 DNA binding analysis of Max wild-type and mutant proteins

(A) Extracts of U2OS cells transfected with expression vectors for FLAG–Max wild-type (WT) and the indicated mutants or the corresponding empty vector (−, lanes 1 and 7) were used in DNA binding reactions with a consensus E-box DNA probe and analysed by EMSA (lanes 1–6). Extracts were pre-incubated with the FLAG M2 antibody in lanes 7–12. An arrow indicates the position of DNA-bound Max homodimers, and an arrowhead labelled with an asterisk (*) points to the super-shifted antibody–FLAG–Max–DNA complexes. F is the ‘free’ E-box DNA probe. (B) The extracts used in (A) were analysed by Western blot (WB) with the FLAG M2 antibody. K[57], K57Q; K[144,145], K144Q/K145Q; K[57,144,145], K57Q/K144Q/K145Q; K[57,144,145]R, K57R/K144R/K145R.

The defect of Max K57Q/K144Q/K145Q was not merely the result of a complete inactivation of the Max protein, since co-immunoprecipitation experiments indicated that all Max mutants dimerized with Max wild-type (Figure 6A) and with Myc (Figure 6B) in U2OS cells. The latter is also consistent with the fact that acetylated Max was found stably associated with Myc in co-immunoprecipitation experiments (see above). To address possible effects at the level of DNA binding, we analysed the E-box-binding activities of the different Max homodimers (Figure 7A). FLAG-tagged Max wild-type and mutant proteins were overexpressed in U2OS cells by transient transfection, and whole cell extracts containing comparable amounts of Max wild-type and mutant proteins, as determined by Western blot (Figure 5B). Furthermore, Max triple K\r\n→ R mutant (i.e. Max K57R/K144R/K145R) repressed transcription as efficiently as Max wild-type (results not shown). Thus neutralization of the positively charged side chains at these three positions affects the ability of overexpressed Max to inhibit Myc transactivation in human cells.
Figure 8 Replacement of Max lysine residues Lys-57, Lys-144 and Lys-145 with glutamine but not arginine relocalizes Max to the cytoplasm of human cells

FLAG-tagged Max wild-type (wt) and the indicated FLAG–Max K→Q and K→R mutant proteins were expressed in U2OS cells by transient transfection and visualized with the FLAG antibody by indirect immunofluorescence (top row, α-FLAG, green). The middle row shows the DAPI-stained nuclei (blue) and the bottom row (Merge) shows the merged images of α-FLAG (green) and DAPI (blue) staining. The α-FLAG cell staining in each of the fields is representative of more than 80% of the cell population. K[57]Q, K57Q; K[144,145]Q, K144Q/K145Q; K[57,144,145]Q, K57Q/K144Q/K145Q; K[57,144,145]R, K57R/K144R/K145R.

DISCUSSION

We have shown recently that Max is acetylated in vitro by p300 but not by GCN5 or TIP60 HATs, while both p300 and GCN5 acetylate Myc [46]. In the present study, we provide direct evidence that Max is acetylated in mammalian cells and by overexpressed p300, and that Max acetylation is stimulated upon inhibition of cellular HDACs. This suggests that Max acetylation in vivo might be reversible and dynamic and that cellular HDACs could directly deacetylate Max. However, indirect effects of cellular HDAC inhibition on Max acetylation are possible and are not excluded by our experiments. We have identified three Max lysine residues (Lys-57, Lys-144 and Lys-145) that are acetylated in mammalian cells and are also direct substrates for p300 in vitro. Interestingly, replacement of Lys-57 within H2 and of Lys-144 and/or Lys-145 within the C-terminal basic sequence PQSRKKLR are essential for the nuclear localization of Max. The predominantly cytoplasmic localization of selectively Max K57Q/K144Q/K145Q is consistent with the reduced repressive function of only this mutant in the Myc transactivation/reporter gene assay.
[6,33,37] and suggests an essential co-operative role of these three lysine residues in the control of Max subcellular distribution. Accordingly, Max’s ability to suppress Myc transactivation (presumably as a Max homodimer) is only affected by the substitution of all three residues. The fact that replacement of these three lysine residues with arginine does not affect Max nuclear localization (or inhibition of Myc transactivation) further underscores the importance of a positively charged side chain at these positions. While these three lysine residues are clearly important for Max nuclear localization, our results do not exclude the possible essential contribution of additional residues, as suggested by previous studies [37]. This would also be consistent with the fact that deletion of the basic DNA-binding region of Max moderately affects Max nuclear localization [56]. Similarly, since Lys-31 was found weakly acetylated by p300 in vitro, we cannot formally exclude the possible acetylation of additional Max lysine residues in vivo (that might not have been detected by our methods) and their potential involvement in Max nuclear localization.

The mechanism by which Lys-57 and the Lys-144/Lys-145 doublet co-operate to influence the subcellular localization of Max is unknown. As mentioned above, Lys-144 and Lys-145 are within an established, but weakly dispensable, C-terminal nuclear localization signal in Max, while Lys-57 is part of the H2 α-helix within the HLH dimerization domain. However, the Lys-57 side chain is not part of the dimerizing interface of the HLH domain, but is exposed to the solvent in Max–Myc and Myc–Max complexes [57–59]. Consistent with this, the replacement of Lys-57 with glutamine did not detectably influence Max dimerization or its interaction with Myc, and there were no differences in the in vitro DNA binding activities of the Max mutants that would explain the defect of selectively Max K57Q/K144Q/K145Q in nuclear localization and in repression of Myc transactivation. Thus the Lys-57 residue (and the Lys-144/145 doublet) might mediate interactions of Max with other factors that control its subcellular localization.

The above observations suggest the possibility that reversible acetylation might regulate the nuclear–cytoplasmic shuffling of specific Max complexes. However, the role of Max acetylation in the specific Max complexes affected and the physiological conditions that induce acetylation (or prevent deacetylation) of specific Max complexes remain to be established. For instance, Max is essential for Mad4 to localize to the nucleus [56], and Myc is acetylated by p300 (and GCN5) at residues located within a nuclear localization signal [44–46]. In addition, Max could be differentially acetylated in different complexes, due for instance to the selective association of HDACs with Mad and Mnt proteins [10,25–29] or to the recruitment of p300/CPB [CREB (cAMP-response-element-binding protein)-binding protein] HATs by Myc [43,46]. These possibilities and the potential interplay between Max acetylation and phosphorylation warrant further investigation. Given the different post-translational modifications already identified, Max is likely to represent an additional regulatory switch for signalling pathways that control the output of the Myc/Max/Mad network.

We thank J. Carl Barrett, Dr Michael D. Cole (Department of Pharmacology and Toxicology, Dartmouth Medical School, Lebanon, NH, U.S.A.), Dr Robert N. Eisenman (Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A.), Dr Richard Goodman, Dr Yoshi Nakatani (Dana-Farber Cancer Institute, Boston, MA, U.S.A.), Dr Robert G. Roeder (Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, U.S.A.) and Dr H. Th. Marc Timmers (Department of Physiological Chemistry, University Medical Centre Utrecht, Utrecht, The Netherlands) for the gifts of reagents. This work was supported by a NHR (National Institutes of Health) grant CA100464 and by a UCR (University of California Riverside) Genomics Institute Core Instrumentation Facility grant to E.M.

