Mutagenesis and crystallographic studies of the catalytic residues of the papain family protease bleomycin hydrolase: new insights into active-site structure

Paul A. O’FARRELL1 and Leemor JOSHUA-TOR2
W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, U.S.A.

Bleomycin hydrolase (BH) is a hexameric papain family cysteine protease which is involved in preparing peptides for antigen presentation and has been implicated in tumour cell resistance to bleomycin chemotherapy. Structures of active-site mutants of yeast BH yielded unexpected results. Replacement of the active-site asparagine with alanine, valine or leucine results in the destabilization of the histidine side chain, demonstrating unambiguously the role of the asparagine residue in correctly positioning the histidine for catalysis. Replacement of the histidine with alanine or leucine destabilizes the asparagine position, indicating a delicate arrangement of the active-site residues. In all of the mutants, the C-terminus of the protein, which lies in the active site, protrudes further into the active site. All mutants were compromised in their catalytic activity. The structures also revealed the importance of a tightly bound water molecule which stabilizes a loop near the active site and which is conserved throughout the papain family. It is displaced in a number of the mutants, causing destabilization of this loop and a nearby loop, resulting in a large movement of the active-site cysteine. The results imply that this water molecule plays a key structural role in this family of enzymes.

Key words: bleomycin hydrolase, conserved water, crystal structure, cysteine protease, mutagenesis, papain.

INTRODUCTION

Bleomycin hydrolase (BH) is an evolutionarily conserved aminopeptidase that is involved in antigen presentation and bleomycin chemotherapy resistance, and has been implicated as a risk factor in Alzheimer’s disease [1–4]. Recently, it has been shown to have a possible protective function against homocysteine toxicity [5]. The crystal structures of the yeast and human forms of BH have been determined, showing the protein to be a homohexamer with a central channel into which the six active sites open [6,7]. Each monomer consists of a protease core, augmented by two other domains that are involved in the oligomerization of the enzyme. The protease core itself has a structure typical for C1 proteases. The configuration of the active-site residues is identical with that of papain. The α-carbon atoms of the catalytic triad residues cysteine, histidine and asparagine, and of the glutamine which stabilizes the oxyanion intermediate, fall within 0.15 Å (1 Å = 0.1 nm) rmsd (root mean square deviation) of their papain counterparts (Figure 1). An unusual feature of the BH active site is the presence of the protein’s C-terminus, which intrudes into the active-site cleft and occupies the S2–S4 substrate-binding subsites. This architectural feature converts the core papain-type endopeptidase into an aminopeptidase by restricting substrate entry to one residue before the point of cleavage [8]. Subsequently, a similar role to that of the BH C-terminus has been shown for the mini-chain of cathepsin H [9,10] and for the exclusion domain of cathepsin C [11].

Previously, we have mutated the active-site cysteine to alanine, in the yBH (yeast BH) [8], and to serine, in the hBH (human BH) [7]. These mutations abolished the enzymatic activity as expected, but also demonstrated the flexibility of the C-terminus of the protein. In both of these mutants, the C-terminus rotates around Gly–450 (451 in hBH) and extends further into the active site, placing the terminal alanine residue more-or-less in the S1 subsite, which would thus prevent substrate binding and hydrolysis. It appears that the presence of the cysteine is essential to prevent this movement. It should be noted that some movement of the C-terminus is necessary to allow the autocleavage reaction that removes one gene-encoded residue that is not found in the mature protein [6,8]. Other than this movement of the C-terminus into an intrusive conformation, no significant structural changes were seen in these mutants.

Initially, in an effort to produce a stable enzyme–substrate complex, we mutated the active-site histidine, asparagine and glutamine residues of BH. Because these mutations were expected to severely abridge the catalytic activity, we also deleted the gene-encoded C-terminal residue, which would be removed autocatalytically in the intact enzyme. In order to confirm an intact active site, the mutant proteins were crystallized and their structures analyzed. Kinetic parameters were also determined for each of these mutants. To our surprise, these mutations resulted in dramatic alterations in the active-site structures. Probing these effects allowed a much clearer understanding of the role of the active-site residues as well as of an important water molecule in the active-site architecture of this important and ubiquitous family of cysteine proteases.

MATERIALS AND METHODS

Mutagenesis

Mutagenesis was carried out using the QuikChange® mutagenesis system from Stratagene. Mutagenic oligonucleotides were

Abbreviations used: ASU, asymmetric unit; BH, bleomycin hydrolase; hBH, human BH; yBH, yeast BH; DTT, dithiothreitol; E-64, trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane; rmsd, root mean square deviation.

1 Present address: Royal College of Surgeons in Ireland – Medical University of Bahrain, PO Box 15503, Adliya, Kingdom of Bahrain.
2 To whom correspondence should be addressed (email leemor@cshl.edu).

Atomic co-ordinates and structure factors have been deposited in the PDB (Protein Data Bank) (accession codes are given for the following mutants: N392A: 2DZY; N392V: 2DZZ; N392L: 2E00; H369A: 2E01; H369L: 2E02; and Q67E: 2E03).
mid-exponential phase and induced with 400
concentrated by ultrafiltration to 25–50 mg/ml and stored at 4
protein was purified by a combination of nickel-affinity, ion-
After thawing, the cells were disrupted by sonication and the
the cells were harvested by centrifugation and stored frozen at –70
Menten equation. Active enzyme concentration was determined
constructed [7], using L-arginine-7-amido-4-methylcoumarin (Sigma)
Protease assays were carried out essentially as previously de-
Protein expression
Mutant yBH was produced as previously described for the human
Protein expression
the procedure.
Protein expression
Mutant yBH was produced as previously described for the human protein [7]. Briefly, the proteins were expressed as His6-tagged constructs in Escherichia coli BL21. Cells were grown at 37 °C to mid-exponential phase and induced with 400 μM IPTG (isopropyl β-D-thiogalactoside) for 5 h at room temperature (22 °C). The cells were harvested by centrifugation and stored frozen at −70 °C. After thawing, the cells were disrupted by sonication and the protein was purified by a combination of nickel-affinity, ion-exchange and size-exclusion chromatographies. The protein was concentrated by ultrafiltration to 25–50 mg/ml and stored at 4 °C.
Protease assays
Protease assays were carried out essentially as previously described [7], using L-arginine-7-amido-4-methylcoumarin (Sigma) as the fluorogenic substrate. In the assays, BH (10–1000 pmol) was incubated in reaction buffer [50 mM KH₂PO₄, 50 mM Na₂HPO₄, 2 mM EDTA, and 10 mM DTT (dithiothreitol), pH 7.5] at 30 °C. Each sample was contained within a final volume of 200 μl in black-walled 96-well microtitre plates. In the standard assay, reactions were initiated through the addition of substrate to a final concentration of 0.125 mM and were monitored for a period of 3 h. Points from the linear portion of the reaction curve were used for analysis. For determination of kinetic constants a range of substrate concentrations from 0 to 0.125 mM was used. Initial rates were determined from the linear portion of the reaction curve and Vₘₐₓ and Kₘ were calculated by curve-fitting to the Michaelis–Menten equation. Active enzyme concentration was determined by stoichiometric titration with E-64 [trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane; proteinase inhibitor] [12]. Because of the low activity of the mutant proteins, pre-incubation with E-64 was carried out overnight to ensure that the reaction went to completion. Kₑₐₙ was determined from the enzyme concentration and Vₘₐₓ.
Crystallization and data collection
Crystallization was carried out at 17 °C by the hanging-drop vapour-diffusion method. Drops were prepared by mixing 1 μl of reservoir solution with 1 μl of protein solution [12 mg/ml in 25 mM Tris/HCl, pH 8.5, 1 mM DTT and 10% (w/v) glycerol]. BH mutants crystallized from 14–20% (w/v) PEG [poly(ethylene glycol)] 4000 and 100 mM Tris/HCl (pH 8.5). All of the mutant proteins crystallized in space group P6₃ 22 with one polypeptide in the ASU (asymmetric unit) generating the biological hexameric through crystal symmetry.
Data were collected on beamline X26C at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). Crystals were soaked in cryoprotectant solution [reservoir solution plus 30% (w/v) ethylene glycol], mounted on loops and frozen by plunging directly into liquid nitrogen. Data were collected from frozen crystals at 95 K. The reflection intensities were integrated and scaled using the HKL suite of programs [13]. Each data set was collected from a single crystal.
Refinement
Initial phases were generated using the wild-type protein as model. Refinement was carried out with the program CNS [14] with a maximum-likelihood target function [15] and using a combination of simulated annealing, minimization and individual B-factor refinement. Model building was performed using the program O [16]. The electron density maps are essentially complete except where noted in the text for the 60s loop (residues 61–71). For all mutants, the 380s loop (residues 380–384) was poorly ordered and atomic positions could not be accurately determined, as was the case for this loop in the wild-type protein. In addition, a number of surface lysine and arginine side chains were poorly ordered. Data collection and refinement statistics are given in Table 1.
Structural alignments
The wild-type and mutant yBH structures were aligned using the Cα atoms of residues 2–49, 101–135, 251–265, and 405–441. These were the residues that were least affected by the mutations. Alignments were carried out using the program LSQMAN [17].

Figures
Figures 1–4 were prepared with the programs RASTER3D and BOBSCRIPT [18,19].

RESULTS
The structures of six mutants of yBH (N392A, N392V, N392L, H369A, H369L and Q67E) were determined in the present study. The mutants crystallized in space group P6₃ 22 with one monomer in the ASU, and with the biological hexamer being generated by space group symmetry. All mutants formed the hexamer in solution, as demonstrated by size-exclusion chromatography. The overall structures of the mutant proteins are very similar to that of the wild-type, with an rmsd of all Cα atoms of 0.5–0.8 Å, as calculated for the monomer. There are, however, some major
structural changes at the active site, as discussed below. When the atoms of the most changed portions are omitted (see the Materials and methods section), the rmsd falls to 0.3–0.5 Å.

Asn-392

The active-site asparagine residue in C1 cysteine proteases is completely conserved [20], and has long been considered to be part of an active-site triad. However, mechanistic studies have shown that this class of enzyme functions with a catalytic dyad (cysteine and histidine), with the asparagine not being directly involved in the catalysis. The observation that the asparagine forms a hydrogen bond with the catalytic histidine led to the suggestion that its role is to correctly orient the histidine for placement residues were chosen to test the effect of removing mutations.

We have mutated the active-site Asn-392 of yBH to leucine, valine and alanine (N392L, N392V and N392A respectively) and determined the crystal structures of the mutant proteins. The replacement residues were chosen to test the effect of removing the hydrogen bond, and of progressively decreasing the length of the side chain. The enzyme activity of all of the mutants was drastically reduced (see Table 2). There was also a pronounced destabilization of the position of the catalytic His-369 in all cases, destabilization of the position of the catalytic His-369 in all cases.

Table 1 Data collection and refinement statistics

<table>
<thead>
<tr>
<th></th>
<th>N392A</th>
<th>N392V</th>
<th>N392L</th>
<th>H369A</th>
<th>H369L</th>
<th>Q67E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>50–2.57</td>
<td>50–2.15</td>
<td>50–2.0</td>
<td>50–1.73</td>
<td>50–2.2</td>
<td>50–2.13</td>
</tr>
<tr>
<td>(2.66–2.57)</td>
<td>(2.23–2.15)</td>
<td>(2.07–2.0)</td>
<td>(1.79–1.73)</td>
<td>(2.28–2.2)</td>
<td>(2.21–2.13)</td>
<td></td>
</tr>
<tr>
<td>Completeness %</td>
<td>99.9 (100)</td>
<td>88.2 (57.1)</td>
<td>96.7 (77.6)</td>
<td>89.0 (59.2)</td>
<td>86.8 (43.3)</td>
<td>99.0 (95.2)</td>
</tr>
<tr>
<td>Rcryst</td>
<td>14.1 (48.7)</td>
<td>10.1 (43.5)</td>
<td>10.7 (43.6)</td>
<td>5.8 (43.3)</td>
<td>18.3 (38.0)</td>
<td>9.6 (47.3)</td>
</tr>
<tr>
<td>Rfree</td>
<td>9.1 (9.1)</td>
<td>17.2 (4.5)</td>
<td>11.1 (6.8)</td>
<td>9.5 (2.6)</td>
<td>10.0 (1.5)</td>
<td>10.4 (5.0)</td>
</tr>
<tr>
<td>Redundancy</td>
<td>19700</td>
<td>29770</td>
<td>39821</td>
<td>56353</td>
<td>27215</td>
<td>34254</td>
</tr>
<tr>
<td>Unique reflection</td>
<td>178643</td>
<td>512777</td>
<td>442314</td>
<td>533382</td>
<td>271832</td>
<td>356973</td>
</tr>
<tr>
<td>Total reflection</td>
<td>41.5 (13.9)</td>
<td>40.5 (3.0)</td>
<td>46.6 (6.1)</td>
<td>45.8 (4.1)</td>
<td>18.9 (3.1)</td>
<td>45.3 (4.3)</td>
</tr>
<tr>
<td>Space group</td>
<td>P6_322</td>
<td>P6_322</td>
<td>P6_322</td>
<td>P6_322</td>
<td>P6_322</td>
<td>P6_322</td>
</tr>
<tr>
<td>Cell a, b, c</td>
<td>151.0, 89.7</td>
<td>152.5, 89.4</td>
<td>150.9, 89.8</td>
<td>151.8, 89.3</td>
<td>152.6, 89.0</td>
<td>152.3, 89.3</td>
</tr>
<tr>
<td>Protein atoms</td>
<td>18677</td>
<td>18677</td>
<td>18677</td>
<td>18677</td>
<td>18677</td>
<td>18677</td>
</tr>
<tr>
<td>Water</td>
<td>187</td>
<td>258</td>
<td>259</td>
<td>321</td>
<td>122</td>
<td>174</td>
</tr>
<tr>
<td>Average B</td>
<td>26.8</td>
<td>33.2</td>
<td>28.7</td>
<td>27.6</td>
<td>34.1</td>
<td>31.5</td>
</tr>
</tbody>
</table>

* Completeness is low due to detector limitations, not diffraction limit of crystal.

Table 2 Summary of structural and catalytic effects of mutations

<table>
<thead>
<tr>
<th></th>
<th>Histidine position</th>
<th>Cysteine position</th>
<th>Asparagine position</th>
<th>390s core water displaced</th>
<th>390s loop elevated B-factors</th>
<th>60s loop disordered</th>
<th>C-terminus intrusion</th>
<th>Relative kcat/Km (mut/wt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>yN392A</td>
<td>+</td>
<td>–</td>
<td>n.a.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.0183</td>
</tr>
<tr>
<td>yN392V</td>
<td>+</td>
<td>–</td>
<td>n.a.</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>0.0053</td>
</tr>
<tr>
<td>yN392L</td>
<td>+</td>
<td>–</td>
<td>n.a.</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>0.0052</td>
</tr>
<tr>
<td>yH369A</td>
<td>n.a.</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>n.a.*</td>
<td>0.0001</td>
</tr>
<tr>
<td>yH369L</td>
<td>n.a.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>n.a.*</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

* Preliminary results indicated a severe abridgement of catalytic activity.

Omit maps of the alanine and valine mutants clearly show density for two conformations of the imidazole side chain of His-369 (Figure 2A). Conformation 1 is similar to that observed in the wild-type protein, pointing more-or-less towards the mutated 392 position. However, conformation 2 involves a rotation about the Cα–Cβ bond of approx. 78°, placing the histidine side chain in what is its most commonly observed rotamer. In the case of the N392L mutant, there is a somewhat lower contribution of conformation 2. It should also be noted that for conformation 1 of N392L, there is a rotation of the imidazole side chain around the Cβ–Cγ bond of approx. 35° compared with the wild type. We have estimated the relative occupancies of conformations 1 and 2 for each mutant as 0.5/0.5, 0.45/0.55 and 0.6/0.4 for N392A, N392V and N392L respectively.

Unexpectedly, structural changes in the N392V mutant were not restricted to the histidine. In fact, an examination of the N392V mutant shows dramatic structural changes at and beyond the active site (Figure 2B). The catalytic cysteine rotates by approx. 137° with the sulfur moving by 4.3 Å and the Cα–Cβ bond of approx. 78°, placing the histidine side chain in what is its most commonly observed rotamer. In the case of the N392L mutant, there is a somewhat lower contribution of conformation 2. It should also be noted that for conformation 1 of N392L, there is a rotation of the imidazole side chain around the Cβ–Cγ bond of approx. 35° compared with the wild type. We have estimated the relative occupancies of conformations 1 and 2 for each mutant as 0.5/0.5, 0.45/0.55 and 0.6/0.4 for N392A, N392V and N392L respectively.
to backbone groups of the 390s loop, is conserved in all papain-type proteases examined and will be considered further in the Discussion section. Even more surprising is that the 60s loop (residues 61–71), which leads to the catalytic cysteine, becomes very disordered. Omit maps show only a few disconnected pockets of electron density along the chain’s expected route and the chain cannot be traced. The compromised position of the active-site cysteine, described above, is also probably due to the disorder of the 60s loop. Although Cys-73 does not interact directly with the loop, a stable 60s loop appears to be important for its proper positioning. For example, Arg-72, directly preceding Cys-73, interacts with Gln-67 and Ser-70, both of which are disordered in the N392V mutant. Removing these interactions is likely to affect the positioning of Cys-73 as well. The consequences of the alanine and leucine mutations are different from those of the valine mutation. Although the histidine
position is compromised, the large movement of Cys-73 and the destabilization of the 60s and 390s loops seen in the N392V mutant do not occur. The B-factors of the 390s loop are similar to those of the wild-type (see Figure 2C) and the 60s loop is clearly defined.

His-369

His-369 is an essential residue, which forms the catalytic thiolate-imidizolium pair with Cys-73, and which hydrogen-bonds with Asn-392. To examine the structural effects of removing these interactions, we replaced the histidine with alanine; to examine these effects while maintaining some steric bulk at this position, we also replaced it with leucine. The crystal structures of both mutants were determined. As expected, in both mutants the catalytic activity was severely curtailed (Table 2).

In both cases, we see similar overall structural changes to those observed with the N392V mutant. The 60s loop becomes completely disordered, and the position of the catalytic cysteine is altered as before, now pointing in the direction of the 390s loop (Figure 2D). In H369A, the loss of the hydrogen bond with the cysteine allows the side chain of Asn-392 to swing away from its wild-type position. It falls into the centre of the 390s loop, displacing the central water molecule of that loop, and changing the hydrogen-bonding network. Oδ1 of the asparagine forms hydrogen bonds with the amide nitrogen of Thr-394, and with the amide of Ser-393. In addition, the carbonyl oxygen of Gly-395, which interacts with the water in the wild-type protein, now receives a hydrogen bond from the amide nitrogen of Ser-398 (Figure 2D). Although the geometry of the 390s loop is distorted in H369A, the structure is fairly stable, with B-factors comparable to those of the wild-type (Figure 2C). In H369L, there are two conformations for Asn-392. One points towards Met-371 where it could hydrogen-bond to the δ-sulfur atom, while the other is in a similar position to that found in H369A. In this mutant, the 390s loop is not very well ordered, and has elevated B-factors (Figure 2C).

Gln-67

Gln-67 is a completely conserved catalytic site residue, although it is not considered to be part of the so-called active-site triad. Its side chain forms part of the so-called ‘oxyanion hole’, whose role is to stabilize the anionic intermediate that is transiently formed during catalysis. Gln-67 interacts with the backbone carbonyl of Ser-70 in the 60s loop, and with the side chain of Ser-393 in the 390s loop. In the yBH C73S and hBH C73A mutants described in our earlier studies, the observed intrusion of the C-terminus into the active site allows its carboxylate oxygens to interact with Gln-67 [8]. We have replaced Gln-67 with glutamate to assess whether the presence of a negative charge at this position, effectively abolishing the oxyanion hole, would prevent the intrusion of the C-terminus. However, the crystal structure of the mutant shows that this is not the case. The C-terminus does intrude, making similar contacts to those described below for N392V and the His-369 mutants. We also see many of the same changes that are apparent in those mutants. Cys-73 is displaced, the 60s loop is disordered and B-factors increase noticeably for the 390s loop (Figure 3C). Asn-392 is seen in two conformations, one similar to the wild-type conformation, and the other similar to that observed in yBH H369A. The catalytic histidine itself also appears in two conformations. It seems that the negatively charged glutamate cannot be accommodated in the same manner as a glutamine at this position, and that this causes considerable disruption to the local structure. It is likely that this general disruption of the structure is responsible for the large loss in enzymatic activity observed with this mutant (Table 2).

The C-terminus

In all of the structures examined in the present study the C-terminus intrudes into the active site, in a manner similar to that observed with mutants of the catalytic cysteine described in our earlier studies [7,8]. This intrusion brings the Cα of the terminal Ala-453 approx. 3.2 Å deeper into the active site than in the wild-type protein. However, the mutants in the present study differ somewhat from the cysteine mutants described earlier, and they fall into two classes with regard to the C-terminus: those mutants in which the catalytic cysteine changes position (N392V, H369A, H369L and Q67E), and those where it does not (N392A and N392L). N392V will be described as an example of the first class as all of these mutants behave similarly. In N392V, the carboxylate carbon of Ala-453 is shifted by 1.35 Å compared with C73A (Figure 3A). Its terminal oxygens interact with the amide nitrogens of Ala-370 and Cys-73 (Figure 3D). In C73A, on the other hand, the terminal oxygens interact with the side chain of Gln-67, the backbone amide of C73 and Nδ1 of His-369 [8] (Figure 3C). This shift probably occurs because of the movement of Cys-73, which places its amide nitrogen in a different position, and because of the high mobility of Gln-67, which would destabilize an interaction with the C-terminus such as that observed with the C73A mutant.

In the second class, N392A and N392L, the catalytic cysteine does not change position. In these mutants, no electron density can be seen for the terminal alanine residue. It is clear, however, that the C-terminus is in the intrusive conformation. Density for the side chain of the penultimate residue, Leu-452, definitively places it in the same position that it occupies in C73A and in N392V, and the side chain of Met-367, which moves to accommodate the repositioned Leu-452 in C73A and N392V (see Figure 3), also moves in N392A and N392L. We considered the possibility that an autodigestion reaction in these mutants had removed the alanine in a manner similar to the deletion of the genetically encoded Lys-454 in the wild-type enzyme. However, MS of trypsin digests of N392A and N392L clearly show a peptide terminating in Ala-453, with no evidence for a truncated peptide with Leu-452 as the terminus (results not shown). The lack of electron density for Ala-453 in these mutants must therefore be due to a high degree of mobility for this residue. A steric clash with the thiol of Cys-73 does not allow Ala-453 of N392A or N392L to form the stabilizing interactions with Gln-67 and Nδ1 of His-369 that occur in C73A, which may explain the mobility of the terminal alanine. Such a clash does not occur in those mutants described above in which there is a large movement of the cysteine.

DISCUSSION

In the present study, we have demonstrated unambiguously the important role of the hydrogen bond with the active-site asparagine in maintaining the catalytic histidine in the correct position for catalysis. Although previous mutagenesis work in papain has shown the asparagine to be important for enzyme activity [23,24], to our knowledge the crystal structures presented here clearly demonstrate the instability of the histidine position in the absence of the stabilizing hydrogen bond for the first time. The fact that the alternative conformation of the histidine side chain is the most commonly observed rotamer suggests that the hydrogen bond is necessary to prevent the histidine from adopting what would otherwise be a thermodynamically more favourable conformation.
The mutant proteins examined in the current study revealed the importance of a previously unnoted conserved water molecule in maintaining the integrity of the active-site structure (wat-512 in wild-type yBH, PDB entry 1GCB [6]). This water molecule is conserved in the papain fold (in papain, PDB entry 1PPN [25], it is wat-222). A survey of ten non-redundant papain-type proteases in the PDB with a resolution better than 2.0 Å shows this water to be present in all cases [PDB IDs: 1CS8, 1IWD, 1M6D, 1MEM, 1NQC, 1O0E, 1PPN, 1YAL and 2ACT]. In fact, it is ranked in the lowest 5% of water molecules with respect to \(B \)-factor in each of these structures, indicating that it is well-ordered and most likely quite tightly bound. Thus it has all the characteristics of a ‘structural’ water molecule [26]; it is buried, without access to the bulk solvent, its hydrogen bonds are to backbone groups, it is conserved in other proteins of the same fold, and it has a low \(B \)-factor. In yBH, wat-512 is bounded by the 390s loop which contains the active-site Asn-392. It makes extensive hydrogen-bonding interactions that stabilize this loop, thus forming a structural core for this part of the molecule (Figure 4). The 390s loop itself interacts with and appears to position the 60s loop (residues 61–71). This is an important loop, as it leads directly to the catalytic cysteine at position 73 and contains Gln-67, which stabilizes the oxyanion intermediate. There is also a direct hydrogen bond from the \(\gamma \)-oxygen of Ser-393, in the 390s loop, to O\(\delta \)1 of Gln-67. This stabilizing network of hydrogen bonding is conserved throughout the C1 family of peptidases.

The unexpected structural changes seen with some of the mutants can be explained when we consider the effect on this core water molecule. An intriguing observation is that minimal structural changes occurred when Asn-392 was mutated to alanine or leucine, while quite drastic changes were observed when this residue was changed to valine. When the structures are examined more closely, we note that in N392A and N392L, the core water molecule of the 390s loop is intact, while in N392V it is displaced. When the structures of N392V and the wild-type protein are overlaid, it can be seen that the C\(\gamma \) of the substituted valine falls less than 2.3 Å from the water position, and thus the water is ejected (Figure 2B). This ejection only occurs with the \(\beta \)-branched valine. The shorter alanine side chain does not reach the water position, while the leucine side chain does not branch at the \(\beta \) position and is able to assume a conformation that does not impinge on the water. This ability of \(\beta \)-branched amino acids to block the approach of water to the protein backbone has been observed before. For example, in a mutagenesis study of lysozyme [27], replacement of a valine residue with any other (with the exception of \(\beta \)-branched isoleucine) allowed the entry of a new water molecule to a polar cavity within that enzyme. Other studies have used mutagenesis in an attempt to eject bound water molecules.
molecules. For example, Vriend et al. [28] replaced an alanine with serine in order to eject a water molecule from the neutral protease of Bacillus stearothermophilus. In this case, the serine hydroxyl interacts with the former hydrogen-bonding partners of the ejected water molecule, maintaining the integrity of the structure.

It is evident that it is the loss of this water molecule that results in the large structural changes we observe with N392V. As described above, wat-512 forms the core of the 390s loop, which it stabilizes with three hydrogen bonds. The methyl group that replaces it cannot hydrogen-bond and the 390s loop becomes unstable—the electron density becomes weaker and in some places discontinuous, and the B-factors rise. As the 60s loop is anchored to a large degree by four hydrogen bonds from the 390s loop (see Figure 4), it becomes disordered.

The interpretation that the loss of the core water molecule of the 390s loop is the cause of the dramatic structural changes observed in N392V is reinforced by the structural changes observed in the H369A and H369L mutants. In both of these cases, a similar destabilization of the 60s loop occurs: no electron density is seen for the loop and the chain cannot be traced.

As described above, the movement of the asparagine side chain that results from the loss of its hydrogen bond with the catalytic histidine causes the ejection of the core water molecule, which in turn results in a new hydrogen-bonding pattern that distorts the geometry of the 390s loop (Figure 2D). On examination, it can be seen that this changes the 390s loop’s ability to interact with the 60s loop. The carbonyl oxygen of Ser-393 shifts by 1.9 Å, while the amide nitrogen of Gly-395 shifts by 1.4 Å, in both cases compromising the length and geometry of their hydrogen bonds to the 60s loop. The side chain of Glu-391, which interacts with Ser-61 in the wild-type protein, is in a very different position and now interacts with Thr-374. Presumably, it is the loss of these stabilizing interactions that causes the disorder of the 60s loop, and the resulting compromised position of the catalytic cysteine.

Thus we have uncovered the importance of a structurally conserved water molecule in the papain fold that maintains the architecture of the active site. Even though this water molecule lies 11.7 Å away, it is crucial for the positioning of the sulfur of the nucleophilic cysteine.

The preservation of this active-site structure throughout the papain family suggests that equivalent mutations to those described here for BH could result in similar dramatic structural changes in other C1 class proteases. That there is a complex network of structural interactions right at the active site is no surprise. However, here we have shown that this goes far beyond the immediate vicinity of the active site.

We thank Annie Heroux and Dieter K. Schneider (BNL) for assistance at X26C (NSLS), Francois St. Pierre for assistance with crystallization and data collection, Michael P. Myers and Danny Perkowski (Cold Spring Harbor Laboratory) for MS and members of the Joshua-Tor laboratory for comments on this paper. This work was supported by NIH (National Institutes of Health) grant SR01-CA711746 (to L. J.-T.). The NSLS is supported by the US Department of Energy, Division of Material Sciences and Division of Chemical Sciences.

REFERENCES

