Folate synthesis in plants: purification, kinetic properties, and inhibition of aminodeoxychorismate synthase

Tobias SAHR*, Stéphane RAVANEL*, Gilles BASSET†, Brian P. NICHOLS‡, Andrew D. HANSON† and Fabrice RÉBEILLÉ*2

Abstract

pABA (p-aminobenzoate) is a precursor of folates and, besides esterification to glucose, has no other known metabolic fate in plants. It is synthesized in two steps from chorismate and glutamine, the first step being their conversion into glutamate and ADC (4-aminodeoxychorismate). In Escherichia coli, two proteins forming a heterodimeric complex are required for this reaction, but, in plants and lower eukaryotes, a single protein is involved. The Arabidopsis enzyme was expressed in E. coli and was purified to homogeneity. The monomeric enzyme (95 kDa) catalyses two reactions: release of NH3 from glutamine (glutaminase activity) and substitution of NH3 for the hydroxy group at position 4 of chorismate (ADC synthase activity). The kinetic parameters of the plant enzyme are broadly similar to those of the bacterial complex, with Km values for glutamine and chorismate of 600 and 1.5 µM respectively. As with the bacterial enzyme, externally added NH3 was a very poor substrate for the plant enzyme, suggesting that NH3 released from glutamine is preferentially channelled to chorismate. The glutaminase activity could operate alone, but the presence of chorismate increased the efficiency of the reaction 10-fold, showing the interdependency of the two domains. The plant enzyme was inhibited by dihydrofolate and its analogue methotrexate, a feature never reported for the prokaryotic system. These molecules were inhibitors of the glutaminase reaction, competitive with respect to glutamine (Ki values of 10 and 1 µM for dihydrofolate and methotrexate respectively). These findings support the view that the monomeric ADC synthase is a potential target for antifolate drugs.

Key words: p-aminobenzoate, aminodeoxychorismate synthase, C1 metabolism, folate, methotrexate, plastid.

INTRODUCTION

Folates are a family of cofactors that are essential for all cellular one-carbon transfer reactions: they are required for the synthesis of purines, thymidylate, methionine and the interconversion of serine and glycine [1]. Deciphering folate metabolism in plants and understanding the biochemical properties of the corresponding enzymes is important for at least two major reasons. First, folate deficiency in humans is a worldwide health problem and, because plant foods are a major source of folate, it is important to understand how folate is synthesized in plants, and how the folate content in plants could be improved [1]. Secondly, several enzymes that are involved in folate biosynthesis are not present in animals and are therefore potential targets for new herbicides. Folate cofactors are made of three distinct parts: a pterin ring, a pABA (p-aminobenzoate) moiety and a glutamate residue, to which is usually attached a γ-linked polyglutamyl tail of up to approx. six residues [2]. In plants, folate synthesis presents a complex spatial organization, in which three subcellular compartments participate: the pterin part of the molecule is synthesized from GTP in the cytosol, pABA is synthesized from chorismate in plastids and the combination of pterin, pABA and glutamate is made within mitochondria [2–4]. Recently, two attempts to engineer the pterin branch of folate synthesis by overexpressing GTP cyclohydrolase I, the first enzyme of the pterin pathway, resulted in a massive accumulation of pterins, but in a modest 2–4-fold increase of the folate concentration because the amount of pABA was limiting [5,6].

pABA is synthesized from chorismate, a compound also needed to synthesize important aromatic products, including phenylalanine, tyrosine and tryptophan, and their derivatives [7–9]. The first step in the synthesis of pABA is the amination of chorismate to form ADC (4-amino-4-deoxychorismate). In this reaction (reaction 1), glutamine is the source of NH3 [10,11]. In the second step (reaction 2), ADC is aromatized with loss of pyruvate to form pABA [12,13].

Chorismate + glutamine → ADC + glutamate (reaction 1)
ADC → pABA + pyruvate (reaction 2)

In bacteria such as Escherichia coli, this biosynthesis requires three separate proteins: PabA, the amidotransferase, PabB, the ADC synthase, and PabC, the ADC lyase. Thus the synthesis of ADC (reaction 1) in bacteria requires the co-operation of two proteins, PabA and PabB, which form a heterodimeric complex [14]. This complex catalyses a reaction with an ordered Bi Bi mechanism in which chorismate binds first [10]. Whereas PabA alone has no glutaminase activity [14], PabB alone can convert chorismate into ADC in the presence of NH3 [10,12]. Until now, there has been no evidence of feedback inhibition of ADC synthesis by pABA, pABA analogues or end products of folate

Abbreviations used: pABA, p-aminobenzoate; ADC, 4-amino-4-deoxychorismate; ATADCS, Arabidopsis thaliana ADC synthase; H2PteGluₙ, dihydrofolate with n glutamate residues; H₄PteGluₙ, tetrahydrofolate with n glutamate residues; MTX, methotrexate; Ni-NTA, Ni²⁺-nitrilotriacetaate.

1 Present address: Physiologie et Biotechnologie Végétale, INRA, Domaine de la grande Ferrade, 71 Avenue E. Bouriaux, BP 81, 38883 Villenave-D’Ornon Cedex, France.
2 To whom correspondence should be addressed (email frebeille@cea.fr).
metabolism [10]. The crystal structure of PabB [15] indicates strong similarities with the TrpE subunit of anthranilate synthase, another chorismate-utilizing enzyme that is allosterically regulated by tryptophan [16]. Although PabB activity is not regulated by tryptophan, a tryptophan molecule was found deeply embedded in the structure, strengthening the idea that PabB and TrpE are evolutionarily related [15]. Recently, PabB was identified as an interesting target for antimicrobial action: indeed, (6S)-6-fluoroshikimate is a potent antimicrobial agent owing to its conversion into 2-fluorochorismate, a compound that strongly inhibits PabB [17].

In plants and lower eukaryotes, such as fungi and Plasmodium falciparum, fewer data are available, but the situation appears different. Indeed, genomic data show that these organisms have a bipartite protein with domains similar to PabA and PabB and respectively positioned at the N- and C-terminal part of the enzyme [18–21]. In addition, the plant protein is targeted to plastids [18]. The ADC lyase activity in plants is supported by a second enzyme, similar to PabC, also targeted to plastids [22]. Thus plastids are the unique site of pABA synthesis in plants.

In the present study, we overexpressed AtADCS (Arabidopsis thaliana ADC synthase) and we purified the enzyme to homogeneity. The main kinetic parameters of the recombinant protein were determined and were compared with those reported for the bacterial enzyme. Surprisingly, we observed that the plant enzyme was inhibited by H₂PteGlu, (dihydrofolate with n glutamate residues) and MTX (methotrexate), a feature that has never been reported for other ADC synthases. Thus the monomeric ADC synthase appeared as a potential target for antifolate drugs.

Experimental

Chemicals

Folic acid (pteroylmonol-glutamic acid) and MTX were obtained from Sigma. Pteroylpenta-L-glutamic acid was obtained from Schircks Laboratories. H₂PteGlu and H₂PteGlu were synthesized by reduction of pteroylmono- and penta-L-glutamic acid and were purified as described by Scrimgeour [23]. Stock solutions of H₂PteGlu, were quantified by their typical absorption spectra [24], flushed with argon, and stored at −80°C in the presence of 100 mM 2-mercaptoethanol. In experiments requiring 2-fluorochorismate, a compound that strongly inhibits PabB [17], the mixture was eluted with 15 mM imidazole, then the enzyme was eluted with 15 mM imidazole in buffer A. Fractions containing the highest activity were combined and concentrated by centrifugation (50 kDa cut-off; Microsep, Pall Filtron) to a final concentration of 2–3 mg of protein/ml. Proteins were quantified following the method of Bradford [25] using BSA as standard.

Samples collected from the Ni-NTA purification step were desalted on PD-10 columns (Amershams Biosciences) equilibrated with buffer B (buffer A without L-glutamine) and loaded on a MTX–agarose (Sigma) column equilibrated with the same buffer. After washing with 2 column vol. of buffer B, the enzyme was eluted with 2 column vol. of the same buffer containing 10 mM L-glutamine. Fractions containing the purified AtADCS were dialysed against buffer A (the presence of 1 mM glutamine increases the stability of the enzyme), concentrated and stored at −80°C.

The quality of the purification was determined after SDS/PAGE (11 % gels) analysis and staining with Coomassie Brilliant Blue R-250. Samples were analysed under non-denaturing conditions using Blue native PAGE (11 % gels) analysis [26]. Size-exclusion chromatography was performed using a FPLC system (Åkta purifier; Amershams Biosciences) and a TSK-Gel Super SW3000 column (Tosoh Biosciences) equilibrated with buffer A without glycerol. Proteins were eluted with the same buffer, at a flow rate of 0.3 ml/min. The column was calibrated using a gel-filtration calibration kit from Amershams Biosciences.

Determination of ADC synthase activity

Standard assays (final volume 100 µl) contained 100 mM Tris/HCl (pH 8.0), 5 mM MgCl₂, 0.01–5 mM L-glutamine, 0–50 µM chorismate as free acid or barium salt (Sigma) and 1.5–2 µg (150–200 nM) of the recombinant enzyme. In experiments where pABA and pyruvate were used, a desalted extract from a pabA·pabB·E. coli strain (BN1163; pabA, pabB::Kan, rpsL704, ilvG, rfb-50, rph-1) containing PabC activity was added to the mixture [18]. In NH₄-depended assays, the above reaction medium was replaced by 40 mM triethanolamine (pH 8.0), 5 mM MgCl₂, 50 µM chorismate and various concentrations of (NH₄)₂SO₄. Assays were run for 20–30 min at 37°C.

Measurements of pABA were as described previously [18], using a reverse-phase HPLC system. The reaction was stopped with 20 µl of 75 % (v/v) ethanolic (acetic) acid. After incubation for 1 h on ice, the samples were centrifuged at 15000 g for 30 min at 4°C. Samples were injected on the C₈ reverse-phase column, and the peak corresponding to pABA was detected by its fluorescence (290 nm excitation/340 nm emission) and was quantified relative to standards.

Pyruvate and glutamate concentrations were estimated using lactate and glutamate dehydrogenase-coupled assays respectively as described in [27,28]. In both cases, the samples were first
incubated for 10–15 min at 37 °C, and the reaction was stopped by boiling for 1 min. After incubation on ice for 20 min, the amount of L-glutamate or pyruvate produced during the reaction was estimated from the change in absorbance at 340 nm due to NADH [27,28]. Analyses of the kinetic data were made using EasyPlot software (Spiral Software).

RESULTS AND DISCUSSION

Purification of AtADCS

In a previous study, we have shown that the recombinant plant enzyme expressed in E. coli cells was able to rescue E. coli and yeast mutants deficient in the synthesis of pABA [18]. However, the recombinant AtADCS was weakly expressed and could not be purified. To purify the enzyme, we made a new construct adding two His$_6$-tags at the C- and N-terminal parts of the protein. In separate control experiments, we used soluble extracts from induced cells and verified that the tagged and untagged recombinant proteins had similar K_m values for glutamine and chorismate, suggesting that these additional sequences did not affect the catalytic properties of the enzyme. As shown in Figure 1(A), the recombinant AtADC was purified from E. coli in two steps, with a final yield of approx. 0.3 mg/l of culture. First, the His$_6$-tagged recombinant enzyme was retained on an Ni-NTA column to remove most of the bacterial proteins. Then the enzyme was bound to an MTX-affinity column to eliminate residual contaminants. This purification step exploits the specific interaction between MTX and AtADCS (see below). The apparent molecular mass estimated from SDS/PAGE was approx. 91 kDa, which is close to the 94 kDa predicted from the deduced amino acid sequence. Native gel electrophoresis (Figure 1B) indicated a major band with a molecular mass of approx. 98 kDa, confirming the previous suggestion that, under given conditions, the predominant form of plant ADC synthase is a monomer [18]. However, we consistently observed on native gels and by gel filtration (Figure 1C) minor forms at approx. 180 kDa and even higher molecular masses, suggesting that the recombinant protein aggregates to form dimers or more complex structures. Separation of the different forms by gel-filtration and measurement of activity indicated that dimers and monomers had similar specific activities, but aggregates with higher molecular masses were inactive (Figure 1C).

AtADCS activity

Preliminary experiments verified that the activity of the recombinant enzyme is linear with time (for at least 20 min) and proportional to the amount of protein. The synthesis of ADC requires an amidotransferase activity, producing glutamate from glutamine, and an amination activity, producing ADC from chorismate and NH$_3$. When ADC synthase is coupled with an excess of ADC lyase, ADC produced by the former enzyme is converted into pyruvate and pABA by the latter. Thus ADC synthase activity can be estimated by detecting the formation of glutamate or, when coupled with ADC lyase, by detecting the pyruvate or pABA that accumulates in the medium. The amounts of pABA, pyruvate and glutamate produced (82 ± 7, 75 ± 5 and 95 ± 5 nmol/mg of protein respectively; means ± S.E.M.; n = 4) measured in the presence of saturating levels of glutamine (5 mM) and chorismate (50 µM), either in association with an excess of ADC lyase activity (pABA and pyruvate) or alone (glutamate), were rather similar, as expected. The slightly higher glutamate production suggests, however, that some glutaminase activity could operate independently of the ADC synthase activity. Indeed, as shown in Figure 2(A) and Table 1, some glutamate production was detected even in the absence of chorismate. Similar results were

Figure 1 PAGE analysis and gel-filtration of recombinant AtADCS

(A) SDS/PAGE analysis of the recombinant enzyme during the course of its purification. CE, crude extract; Ni, proteins eluted from the Ni-NTA-affinity column; MTX, proteins eluted from the MTX-affinity column; M, molecular-mass markers (sizes indicated in kDa). (B) Blue native PAGE analysis of the recombinant enzyme eluted from the MTX-affinity column. Numbers above the peaks indicate the estimated molecular mass (kDa) corresponding to the peak fractions, and numbers into brackets are the specific activities (nmol · min$^{-1}$· mg$^{-1}$ of protein) present in these fractions. mAU, milli-absorbance units.

Figure 2 Effect of varying the substrate concentrations on recombinant AtADCS activity

(A) Effects of varying glutamine at different chorismate (chor) concentrations. (B) Effects of varying chorismate at different glutamine (gln) concentrations. Each point is the mean ± S.E.M. for two to four determinations. The curves were fitted according to Michaelis–Menten equation using non-linear regression and EasyPlot software.
obtained with the *E. coli* PabA–PabB complex [14]. Increasing the chorismate concentration resulted in a higher *V*_{max} and a lower apparent *K*_m for glutamine, leading at saturating chorismate concentration to a 12-fold increase of the catalytic efficiency (Table 1) and suggesting that this substrate modified the catalytic properties of the glutaminase domain. Also, the apparent *K*_m for chorismate decreased with increasing glutamine concentration (Figure 2B and Table 1). As shown in Table 1, minimal apparent *K*_m values for glutamine and chorismate were 600 and 1.3 µM respectively, values similar to those reported for the *E. coli* PabA–PabB complex [14,29]. The family of curves presented in Figure 2 is typical of a Bi Bi sequential mechanism. However, the kinetics of inhibition by products is required to determine the type of mechanism, ordered or random. Unfortunately, glutamate had no inhibitory effect at concentrations up to 10 mM and ADC is not commercially available. It was proposed that the *E. coli* heterodimeric complex catalyses an ordered Bi Bi mechanism in which chorismate binds first, but more experiments are required with the plant enzyme to substantiate this conclusion.

In the absence of chorismate, NH$_3$ released from glutamine must accumulate. In such a situation, we observed that NH$_3$ was a weak inhibitor of the glutaminase reaction, with a *K*_i value of approx. 20 mM. In the presence of chorismate and in the absence of glutamine, the *E. coli* PabB or PabA–PabB complex can use NH$_3$ added to the external medium for chorismate amination [10]. This is also true for the plant enzyme, with a *K*_i value that was nearly twice as high as that reported for the bacterial system (Table 1). Thus, in the presence of a saturating concentration of chorismate, the *K*_i for NH$_3$ of the plant enzyme was 1000-fold higher than the *K*_i for glutamine. This strongly suggests that NH$_3$ released from glutamine during the amidotransferase reaction does not equilibrate with the bulk medium but rather is channelled between the binding sites of glutamine and chorismate. Structural analysis of *E. coli* PabB supports this hypothesis [15].

Inhibition of AtADCS

Chorismate stands at an important metabolic crossroads, leading also in plants to the synthesis of tryptophan (via anthranilate) and phenylalanine, tyrosine, tocopherols and quinones (via prephenate). All of these pathways are situated in plastids, so that the various chorismate-utilizing enzymes compete for the same substrate pool and it is likely that they are regulated. This is the case for the anthranilate synthase that catalyses the first committed step in tryptophan synthesis and that is feedback-inhibited by the end product of the pathway [30]. This is also true for the chorismate mutase that initiates the pathway leading to phenylalanine and tyrosine and that is inhibited by both amino acids [31]. However, no physiological inhibitors have been found for the *E. coli* ADC synthase. We tested several compounds for their inhibitory effects on the purified plant enzyme (Table 2).

Table 1 Steady-state kinetic parameters for AtADCS

The rates of the reaction are expressed as nmol of glutamate produced, except for NH$_3$ where the rates are expressed as nmol of pABA produced. Results are means ± S.E.M. for triplicate determinations.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>V<sub>max</sub> (nmol·min<sup>−1</sup>·mg<sup>−1</sup> of protein)</th>
<th>K<sub>m</sub> (µM)</th>
<th>k<sub>cat</sub> (s<sup>−1</sup>)</th>
<th>k<sub>cat</sub>/K<sub>m</sub> (M<sup>−1</sup>·s<sup>−1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutamine (no chorismate)</td>
<td>30 ± 10</td>
<td>2200 ± 500</td>
<td>0.045</td>
<td>20</td>
</tr>
<tr>
<td>Glutamine (+50 µM chorismate)</td>
<td>90 ± 10</td>
<td>600 ± 100</td>
<td>0.15</td>
<td>250</td>
</tr>
<tr>
<td>Chorismate (+0.25 mM glutamine)</td>
<td>32 ± 10</td>
<td>2.8 ± 0.3</td>
<td>0.045</td>
<td>16 × 10<sup>3</sup></td>
</tr>
<tr>
<td>Chorismate (+5 mM glutamine)</td>
<td>90 ± 10</td>
<td>1.3 ± 0.2</td>
<td>0.15</td>
<td>1 × 10<sup>3</sup></td>
</tr>
<tr>
<td>NH$_3$ (no glutamine; +50 µM chorismate)</td>
<td>65 ± 7</td>
<td>(600 ± 100) × 10<sup>3</sup></td>
<td>0.11</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Table 2 Effect of various metabolites on AtADCS activity

The *K*_i values were calculated from the equations developed by Vogel [32] for a partial competitive inhibition. Results are means ± S.E.M. for triplicate determinations.

<table>
<thead>
<tr>
<th>Metabolite</th>
<th>K<sub>i</sub> (µM)</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aromatic amino acids</td>
<td>No significant effect</td>
<td></td>
</tr>
<tr>
<td>(phenylalanine, tyrosine, tryptophan)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pABA</td>
<td>No significant effect</td>
<td></td>
</tr>
<tr>
<td>Tetrahydrofolate derivatives</td>
<td>No significant effect</td>
<td></td>
</tr>
<tr>
<td>(H<sub>4</sub>PteGlu<sub>1,5</sub>, 5-CH$_3$-H$_2$PteGlu<sub>1,5</sub>-5-CHO-H<sub>4</sub>PteGlu<sub>1</sub>)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folic acid (monoglutamate)</td>
<td>3000 ± 500</td>
<td>No significant effect</td>
</tr>
<tr>
<td>Dihydropterin</td>
<td>30 ± 10</td>
<td></td>
</tr>
<tr>
<td>Dihydropteroate</td>
<td>15 ± 5</td>
<td></td>
</tr>
<tr>
<td>H$_2$PteGlu<sub>1</sub></td>
<td>10 ± 3</td>
<td></td>
</tr>
<tr>
<td>H$_2$PteGlu<sub>5</sub></td>
<td>8 ± 3</td>
<td></td>
</tr>
<tr>
<td>MTX</td>
<td>1 ± 0.3</td>
<td></td>
</tr>
</tbody>
</table>

Neither aromatic amino acids (up to 2 mM) nor pABA and H$_2$PteGlu₁ (tetrahydrofolate) derivatives (up to 500 µM) had any effect. However, folic acid was a weak inhibitor of the enzyme and dihydro-compounds such as dihydropterin, dihydropteroate and H$_2$PteGlu₁ were quite effective (Table 2). H$_2$PteGlu₁ showed the strongest effect (K_i = 8 µM) and varying the number of glutamates did not markedly change the *K*_i value (K_i = 10 µM for the monoglumurate form). MTX, a structural analogue of H$_2$PteGlu₁, is also a potent inhibitor of AtADCS (K_i = 1 µM) (Table 2), explaining why AtADCS was retained by an MTX-affinity column. MTX had similar, but more pronounced, effects than H$_2$PteGlu₁ when varied against glutamine (Figure 3). Interestingly, even in the presence of saturating concentrations of MTX, the enzyme retained some activity, reaching a minimal plateau value (Figure 3B). This type of kinetics suggests a partial inhibition mechanism [32] where inhibitors (MTX or H$_2$PteGlu₁) and substrate (glutamine) bind at different sites, forming a ternary enzyme–substrate–inhibitor (ESI) complex that can yield product. The reciprocal plots shown in Figure 4 suggest that this partial inhibition is competitive with respect to glutamine [32]. When inhibitors were varied against chorismate, much higher concentrations were required to obtain significant inhibition, and the apparent *K*_m values for chorismate were not significantly changed (results not shown). Taken as a whole, these data suggest a rather complex inhibition mechanism where H$_2$PteGlu₁ and MTX affect preferentially the glutaminase domain. This was not observed with the *E. coli* enzyme (results not shown), suggesting structural differences between the two systems. Alignment of the plant glutaminase domain with PabA from *E. coli* indicates 33% identity between the two proteins [18]. The most obvious differences are the presence in the plant enzyme of an insertion of approx. 45 residues, basic in character, near the end of the.

© 2006 Biochemical Society
Effects of H$_2$PteGlu$_n$ (A) and MTX (B) on recombinant ADC synthase activity at different glutamine (gln) concentrations in the presence of 50 μM chorismate. Results are means ± S.E.M. for at least three different determinations. Data were fitted using a decreasing hyperbolic function and non-linear regression with EasyPlot software.

Figure 3 Inhibition of AtADCS activity by H$_2$PteGlu$_n$ or MTX at various glutamine concentrations

The curves are replots of values shown in Figure 3. (A) Competitive inhibition of H$_2$PteGlu$_n$ against glutamine. The concentrations of H$_2$PteGlu$_n$ were: ○, 0 μM; □, 10 μM; ▼, 25 μM; ●, 50 μM; △, 100 μM. (B) Competitive inhibition of MTX against glutamine. The concentrations of MTX were: ○, 0 μM; □, 1 μM; ▼, 2 μM; ●, 5 μM; ■, 10 μM; △, 100 μM. Data were fitted using linear regression and EasyPlot software. For all of the curves, the least-square fitting values were > 0.98. The V$_{max}$ values determined from these data ranged from 96 to 106 nmol·min$^{-1}$·mg$^{-1}$ when varying H$_2$PteGlu$_n$ concentration and from 90 to 111 nmol·min$^{-1}$·mg$^{-1}$ when varying MTX concentration.

Figure 4 Reciprocal plots for AtADCS activity at various glutamine concentrations

We thank Bernadette Gambonnet for technical assistance, Professor Roland Douce and Dr Gilles Curien for critical reading of the manuscript, and Dr Renaud Dumas and Dr Michel Matringe for helpful discussions. This work and the salary of one of us (T.S.) were supported by a grant from the European Community: European network on vitamins and cofactors synthesis, number HPRN-CT-2002-00244.

REFERENCES

Received 17 November 2005/30 January 2006, accepted 8 February 2006
Published as BJ Immediate Publication 8 February 2006, doi:10.1042/BJ20051851