Mechanism of feedback regulation of insulin receptor substrate-1 phosphorylation in primary adipocytes

Ingeborg HERS and Jeremy M. TAVARÉ
Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, U.K.

INTRODUCTION

Insulin secretion and insulin action play an essential role in glucose homeostasis and impairment will result in the development of diabetes. The primary action of insulin is to decrease the glucose concentration in blood by stimulating glucose uptake into muscle and adipose tissues and by suppressing glucose production by the liver. Insulin binds to its receptor, leading to an increase in its intrinsic tyrosine kinase activity and subsequent phosphorylation of several cellular substrates such as Shc, APS [adapter with PH and SH3 (Src homology 3) domains], Cbl and IRS (insulin receptor substrate) proteins. Tyrosine phosphorylation of the IRS proteins results in the generation of binding sites for SH2 domain-containing proteins such as the p85-regulatory subunit of PI3K (phosphoinositide 3-kinase), Grb2 and SHP-2 (SH2 domain-containing phosphatase-2). The IRS proteins are crucial to the insulin-stimulated activation of PI3K, an essential component of the insulin signalling system leading to the stimulation of glucose uptake [1,2].

In addition to tyrosine phosphorylation sites, IRS-1 and IRS-2 contain many potential serine phosphorylation sites that may play regulatory roles during the insulin response. Various metabolites and proinflammatory cytokines that are produced in states of obesity, and associated with insulin resistance, stimulate serine phosphorylation of IRS-1, including non-esterified fatty acids and TNFα (tumour necrosis factor α) [3,4]. In addition, signalling pathways stimulated by insulin itself have been proposed to play a role in both the negative-feedback regulation of the insulin signal and cellular insulin resistance after hyperinsulinaemia [5–8].

Protein kinases that have been shown to phosphorylate IRS-1 include JNK (c-Jun N-terminal kinase) [9], mTOR (mammalian target of rapamycin) [10–12], PKCζ (protein kinase Cζ) [13], PKCζ1 [14], IkB (inhibitory κB) kinase [3], ERK (extracellular-signal-regulated kinase) [15], PKB [16] and AMPK (5′-AMP-activated kinase) [17]. So far, a number of specific serine phosphorylation sites on IRS-1 have been identified as targets involved in insulin resistance, including Ser312 [5,9,18–20] and Ser616 [18,21], and the recently identified sites Ser307 [13,22] and Ser323 [13,23]. (The sequence numbers shown correspond to the human sequence of IRS-1.) Of these, Ser312 has been studied most intensively and several studies have shown that its phosphorylation attenuates tyrosine phosphorylation of IRS-1. Furthermore, TNFα and non-esterified fatty acids stimulate the phosphorylation of Ser312 on IRS-1 and mutation of this site prevents the inhibitory effect of TNFα on insulin-stimulated IRS-1 tyrosine phosphorylation [19]. It has been shown that JNK phosphorylates Ser312, resulting in the inhibition of the interaction between the PTB (phosphotyrosine-binding domain) domain of IRS-1 and the insulin receptor [5]. Moreover, insulin itself is capable of stimulating the phosphorylation of Ser312 through a PI3K-dependent feedback loop probably involving JNK [24].

One of the first serine phosphorylation sites to be identified on IRS-1 was Ser616, which becomes phosphorylated on activation of the MAPK (mitogen-activated protein kinase) family member ERK, and it negatively regulates IRS-1 tyrosine phosphorylation [15]. This site can also become phosphorylated after insulin stimulation [11,18] and may therefore participate in insulin-stimulated negative-feedback regulation of IRS-1.

Key words: insulin, insulin receptor substrate-1 (IRS-1), phosphoinositide 3-kinase (PI3K), serine phosphorylation, signalling, tyrosine phosphorylation.
We previously reported that, in primary adipocytes, insulin-stimulated IRS-1 tyrosine phosphorylation was enhanced in the presence of the PI3K inhibitor wortmannin [25]. Since both Ser312 and Ser616 phosphorylations have been reported to have a role in the negative regulation of IRS-1 in transformed cells in culture, we wished to investigate the role of these sites in more physiologically relevant cells, specifically primary rat adipocytes. In particular, we explored the role and regulation of Ser312 and Ser616 phosphorylation in insulin-stimulated negative-feedback regulation of IRS-1 tyrosine phosphorylation.

EXPERIMENTAL

Materials

Male Wistar rats (160–210 g) were fed *ad libitum* with a stock diet (CRM; Bioshore, Manea, Cambridgeshire, U.K.). Wortmannin, rapamycin, SP600125 (JNK inhibitor II) and SB203580 were obtained from Calbiochem (Bad Soden, Germany) and the MEK (MAPK kinase) inhibitor UO126 was from Promega Biosciences (San Luis Obispo, CA, U.S.A.). The anti-IRS-1 (C-20), anti-P-c-Jun (KM-1) and anti-c-Jun (H-79) antibodies were obtained from Santa Cruz Biotechnology (Santa Cruz, CA, U.S.A.). The anti-phosphotyrosine 4G10 was obtained from Upstate Biotechnology (Lake Placid, NY, U.S.A.), whereas the phosphospecific antibodies against IRS-1 Ser312 and Ser616 were obtained from Biosource International (Camarillo, CA, U.S.A.). The anti-P-ERK (Thr102/Tyr204) and the anti-ERK antibodies were from Cell Signaling Technology (Beverly, MA, U.S.A.).

Preparation and incubation of epididymal fat cells

Adipocytes were isolated from the epididymal fat pads of Wistar rats as described previously [26]. Cells were subsequently washed with Kreb’s–bicarbonate–Hepes buffer, pH 7.4 (130 mM NaCl, 4.7 mM KCl, 1.5 mM MgSO₄, 1.2 mM CaCl₂, 2.5 mM NaH₂PO₄, 15.5 mM NaHCO₃, 10 mM Hepes and 11 mM glucose) without BSA. Cells were incubated with 100 nM wortmannin, 50 nM rapamycin, 10 μM UO126, 60 μM SP600125 (JNK inhibitor II), 10 μM SB203580 or DMSO (vehicle) for 30 min at 37°C before stimulation with 87 nM insulin for the indicated time. Alternatively, cells were incubated with different concentrations of SP600125 for 30 min at 37°C before stimulation with 87 nM insulin for 10 min. The reaction was terminated by extracting the cells (1:1 packed cells, v/v) in ice-cold NP40 (Nonidet P40) extraction buffer (50 mM Tris/HCl, pH 7.5, containing 1 mM EDTA, 120 mM NaCl, 50 mM NaF, 1 mM benzamidine, 1% NP40, 1 μg/ml microcystin, 7.2 mM 2-mercaptoethanol, 5 mM orthovanadate and 1 μg/ml each of pepstatin, leupeptin and antipain). Cell extracts were centrifuged at 10,000 ×g for 10 min at 4°C and the infranatant was taken for subsequent analysis.

Immunoprecipitation

Proteins were immunoprecipitated by rotating 250 μl of total cell extract with the anti–IRS-1 antibody and 20 μl of Protein A–Sepharose (50%, w/v) at 4°C. The Protein A–Sepharose beads were isolated by centrifugation and washed three times with NP40 extraction buffer. Subsequently, Laemmli sample buffer was added and proteins were separated by SDS/PAGE for immunoblotting.

Immunoblotting

Laemmli sample buffer was added to the cell extracts and proteins were separated by SDS/PAGE (7.5% gel) and transferred on to PVDF membranes. The membranes were blocked in 10% (w/v) BSA dissolved in TBS-T (Tris-buffered saline with 0.1% Tween 20; 20 mM Tris/HCl, 137 mM NaCl and 0.1% Tween 20) and subsequently incubated with primary and secondary antibodies, which were diluted in TBS-T containing 5% BSA. Blots were washed for at least 2 h in TBS-T for the anti-phosphotyrosine antibody 4G10 and washed at least five times for 5 min, after each antibody incubation, for all other antibodies. Membranes were developed using an ECL® (enhanced chemiluminescence) detection system (AP Biotech, Amershams Biosciences, Little Chalfont, Bucks., U.K.). Primary antibodies were used at a concentration of 1 μg/ml. Horseradish peroxidase-conjugated secondary antibody (Amersham Biosciences) was diluted 1:10000.

Quantification and statistics

Quantitative assessment of phosphorylated protein bands detected by Western blotting was performed by densitometry of films and subsequent analysis using the program ImageQuant (Molecular Dynamics, Little Chalfont, Bucks., U.K.). Results are expressed as a percentage of the insulin response in the absence of inhibitors. Statistical significance was determined using two-tailed Student’s *t* test for paired data and *P* < 0.05 was considered to be statistically significant.

RESULTS

Time course of insulin-stimulated phosphorylation of IRS-1 on Ser312 and Ser616 and activation of ERK, p70S6 kinase and JNK in primary adipocytes

IRS-1 contains many potential serine and threonine phosphorylation sites that may be involved in the regulation of the insulin response. In particular, phosphorylation of IRS-1 on Ser312 and Ser616 has been shown to regulate negatively insulin signalling [5,9,21]. To investigate whether insulin stimulates serine phosphorylation of these sites in primary adipocytes, we used phosphospecific antibodies that recognize IRS-1 when phosphorylated on Ser312 and Ser616. Figures 1(A) and 1(B) demonstrate that insulin stimulates the phosphorylation of both Ser312 and Ser616 in these physiologically relevant cells. Phosphorylation of Ser312 on IRS-1 was relatively slow, with maximal phosphorylation achieved 20–30 min after stimulation, whereas insulin-stimulated phosphorylation of Ser616 was slightly faster and maximal at 5–10 min.

mTOR and members of the MAPK family such as JNK and ERK have been implicated in the serine phosphorylation of IRS-1 in other cell types [11,12,15,24]. To delineate the potential role of these kinases in the phosphorylation of Ser312 and Ser616, their temporal activation by insulin was compared with the phosphorylation of Ser312 and Ser616. The phosphorylation states of p70S6 kinase (Thr389), c-Jun (Ser63) and ERK (Thr202/Tyr204) are widely considered to be corollaries of the activity of mTOR, JNK and ERK respectively and so were determined by immunoblotting using phosphospecific antibodies. Insulin stimulated a relatively slow phosphorylation of p70S6 kinase in primary adipocytes, which was maximal after 10 min (Figure 1C). The effect of insulin on phosphorylation of the JNK substrate c-Jun was also relatively slow and continued to increase up to 60 min after stimulation (Figure 1D). In contrast, insulin-stimulated ERK phosphorylation was rapid but transient, becoming maximal as early as 2 min after stimulation and returning to basal level within 30 min (Figure 1E). Wortmannin inhibited the insulin-stimulated phosphorylation of all three of these phosphoproteins, demonstrating a key role for PI3K in the regulation of these kinases in primary adipocytes.

Together, these results show that insulin-stimulated phosphorylation of IRS-1 on Ser312 correlates most closely with the
Regulation of IRS-1 tyrosine phosphorylation

Figure 1 Time course of insulin-stimulated phosphorylation of Ser312 and Ser616 on IRS-1, p70S6 kinase, c-Jun and ERK

Primary adipocytes were stimulated with insulin (87 nM) for the indicated time and extracted. IRS-1 immunoprecipitates (A, B) and total lysate (C–E) were subjected to SDS/PAGE followed by immunoblotting with anti-IRS-1 PSer312 (phospho-Ser312)(A), anti-IRS-1 PSer616 (B), anti-p70S6 kinase PThr389 (C), anti-c-Jun PSer63 (D) and anti-ERK PThr202/PTyr204 (E) antibodies. The bar graphs represent quantification of the phosphorylation of IRS-1 (ratio of phosphorylated/total) expressed as a percentage of the signal obtained with insulin alone at 60 min (means ± S.E.M., n = 3).

activation of p70S6 kinase, whereas phosphorylation of IRS-1 on Ser616 correlates most closely with ERK activation.

Insulin-stimulated IRS-1 Ser312 and Ser616 phosphorylation requires the activation of PI3K and ERK, but is independent of mTOR

To delineate more carefully the signalling mechanism by which insulin stimulates Ser312 and Ser616 phosphorylation in rat adipocytes, we used the inhibitors wortmannin, rapamycin and UO126 to block the activation of PI3K, mTOR/p70S6 kinase and ERK respectively. Interestingly, the insulin-stimulated increase in both Ser312 and Ser616 phosphorylations was blocked in the presence of wortmannin (Figures 2A and 2B), which also prevented insulin-stimulated p70S6 kinase and ERK phosphorylation (Figures 2C and 2D). mTOR has recently been found to be responsible for most of the PI3K-dependent Ser312 phosphorylation in 3T3-L1 adipocytes and H4IIE rat hepatoma cells [11,12,18]. In contrast with these reports, however, we found no significant inhibitory effect of the mTOR inhibitor rapamycin on Ser312 (or Ser616) phosphorylation in primary adipocytes (Figures 2A and 2B; 84 ± 17 and 107 ± 12% of control respectively) under conditions where the inhibitor completely blocked insulin-stimulated p70S6 kinase phosphorylation (Figure 2C). On the other hand, the MEK inhibitor UO126 partially decreased Ser312 phosphorylation
is independent of the MAPK family member JNK

We have previously reported that preincubation of freshly isolated adipocytes with wortmannin enhances the ability of insulin to
Regulation of IRS-1 tyrosine phosphorylation

Figure 5 Rapamycin, UO126, SP600125 and SB203580 have no effect on the insulin-stimulated tyrosine phosphorylation of IRS-1

Primary adipocytes were pretreated with vehicle (DMSO), wortmannin (100 nM), rapamycin (50 nM), UO126 (10 µM), SP600125 (60 µM) or SB203580 (10 µM) for 30 min at 37°C and subsequently stimulated with or without insulin (87 nM) for 10 min. Cells were extracted and total lysates were subjected to SDS/PAGE followed by immunoblotting for tyrosine-phosphorylated proteins with the anti-PTyr antibody 4G10. The membranes were stripped and reprobed with the anti-IRS-1 antibody to confirm loading.

stimulate tyrosine phosphorylation of IRS-1, while it simultaneously inhibits insulin-stimulated IRS-3 tyrosine phosphorylation (see Figures 5, 6A and 6B). The mechanism underlying this complex reciprocal feedback regulation is not known. To explore whether ERK might mediate the effect of PI3K, we investigated whether U0126 mimicked the effect of wortmannin on insulin-stimulated IRS-1 and IRS-3 tyrosine phosphorylation.

U0126 treatment of adipocytes not only inhibited insulin-stimulated ERK phosphorylation, but decreased it significantly below basal levels (Figure 2D). Despite this, insulin-stimulated IRS-1 tyrosine phosphorylation was not significantly affected by UO126 (Figure 5A) at any time point examined (Figures 6C and 6D). In addition, U0126 had no effect on insulin-stimulated IRS-3 tyrosine phosphorylation (Figures 5A and 6C).

Since p70S6 kinase and c-Jun phosphorylation were inhibited by wortmannin (Figures 1C and 1D), we further explored whether rapamycin and SP600125 could mimic the effects of wortmannin on IRS-1 and IRS-3 tyrosine phosphorylation. As shown in Figures 5(A) and 5(B), this was not the case. Furthermore, the p38MAPK inhibitor SB203580 was also ineffective (Figure 5B). This excludes mTOR/p70S6 kinase, ERK, JNK and p38MAPK as candidates for the wortmannin-sensitive pathway that modulates IRS-1 and IRS-3 tyrosine phosphorylation.

Figure 6 Effects of wortmannin and UO126 on the time course of insulin-stimulated tyrosine phosphorylation

Primary adipocytes were pretreated with vehicle (DMSO), 100 nM wortmannin or 10 µM UO126 for 30 min at 37°C and subsequently stimulated with insulin (87 nM) for the indicated times. Cells were extracted and total lysates were subjected to SDS/PAGE followed by immunoblotting for tyrosine-phosphorylated proteins with the anti-PTyr antibody 4G10. The membranes were stripped and reprobed with appropriate antibodies to confirm loading. Results are representative of three experiments. The bar graphs (B, D) represent quantification of the tyrosine phosphorylation of IRS-1 (ratio of phosphorylated/total) expressed as a percentage of the signal obtained with insulin alone at 2 min (means ± S.E.M., n = 3).

DISCUSSION

PI3K plays a central role in the negative regulation of IRS-1 tyrosine phosphorylation and subsequent insulin signalling in primary adipocytes [25].

© 2005 Biochemical Society
Numerous studies have demonstrated that hyperphosphorylation of IRS-1 on serine and threonine residues inhibits insulin-stimulated IRS-1 tyrosine phosphorylation and subsequent downstream signalling cascades [5,7,8,28]. Insulin itself can stimulate Ser/Thr phosphorylation of IRS-1, which has been proposed to modulate insulin signalling negatively [5–8,28]. Specific phosphorylation sites in IRS-1 that have been identified in the negative regulation of insulin signalling include Ser312 and Ser616.

In the present study, we investigated the role and regulation of insulin-stimulated Ser312 and Ser616 phosphorylation of IRS-1 in primary rat adipocytes. We demonstrate that both of these sites are phosphorylated on insulin stimulation and that their phosphorylation is relatively slow, with maximal Ser312 and Ser616 phosphorylation reached after 20 and 5 min respectively. A similar time course of phosphorylation has been reported in 3T3-L1 adipocytes, with Ser312 being more rapidly phosphorylated compared with Ser312 [11].

The effect of insulin on these phosphorylation events was inhibited by wortmannin (Figure 2), demonstrating the requirement for PI3K activation. In further investigating the identity of the insulin-stimulated protein kinases that may be responsible for phosphorylation of Ser312 and Ser616, we found that ERK activation in response to insulin occurred rapidly and preceded the phosphorylation of Ser616. Furthermore, the inhibition of ERK phosphorylation and activation using the MEK inhibitor, U0126, completely prevented insulin-stimulated phosphorylation of Ser616 (Figure 2B). This is consistent with the fact that IRS-1 Ser616 has been previously identified as an ERK-regulated phosphorylation site [15,21]. This suggests, therefore, that ERK is responsible for insulin-stimulated Ser616 phosphorylation in these cells, although it remains to be unequivocally established whether ERK directly phosphorylates this site.

The signalling pathway responsible for insulin-stimulated Ser312 phosphorylation is less clear. Although the MEK inhibitor significantly inhibited this phosphorylation event, the inhibition was incomplete, suggesting that ERK-dependent as well as non-ERK-dependent pathways are involved (Figure 2A). The amino acid sequence surrounding Ser312 does not conform strictly to the consensus required for phosphorylation by ERK, so the ERK-dependent pathway may involve another kinase downstream of ERK. JNK has been reported to mediate feedback inhibition of IRS-1 tyrosine phosphorylation by promoting the dephosphorylation of Ser312 [24]. We found that insulin-stimulated c-Jun phosphorylation in primary adipocytes was largely dependent on PI3K activity and the MEK/ERK pathway, since wortmannin and U0126 strongly decreased its phosphorylation (Figure 1D). This is in agreement with a recent study in 32Dc3 cells where the PI3K/MEK/ERK pathway seems to be involved in insulin-stimulated JNK activation [24]. However, JNK is unlikely to be responsible for Ser312 phosphorylation in primary adipocytes, since the recently described JNK inhibitor SP600125 had no significant effect on the phosphorylation of this site despite preventing insulin-stimulated c-Jun phosphorylation. Furthermore, the insulin-dependent phosphorylation of c-Jun, and hence activation of JNK, was considerably slower than the phosphorylation of IRS-1 on Ser312 (and Ser616, note that SP600125 also had no effect on IRS-1 Ser616 phosphorylation).

It has recently been reported that mTOR is responsible for most of the PI3K-dependent insulin-stimulated Ser312 phosphorylation in 3T3-L1 adipocytes [11,29] and H4IE rat hepatoma cells [18]. The phosphorylation of p70S6 kinase exhibited a temporal profile similar to that of insulin-stimulated IRS-1 Ser312 phosphorylation. At first sight, therefore, the results suggest that mTOR/p70S6 kinase could represent a candidate signalling pathway that may, at least in part, be responsible for mediating the insulin-stimulated ERK-independent IRS-1 Ser312 phosphorylation. However, this possibility was ruled out because we found no significant inhibitory effect of the mTOR inhibitor rapamycin on IRS-1 Ser312 phosphorylation in primary adipocytes under conditions where phosphorylation of p70S6 kinase was completely blocked (Figure 2).

The kinases responsible for insulin-stimulated Ser312 phosphorylation of IRS-1 in primary adipocytes remain to be identified. An alternative candidate kinase to phosphorylate Ser312 is PKCζ, which is phosphorylated and activated in a PI3K-dependent manner on insulin stimulation of adipocytes [30,31]. However, a recent study showed that Ser312 is not phosphorylated by PKCζ in vitro [23].

Since Ser312 can potentially become phosphorylated by a number of different protein kinases, we cannot rule out the possibility that multiple kinases can simultaneously phosphorylate this site in response to insulin. Thus no inhibitor would be effective in decreasing Ser312 phosphorylation because of this functional redundancy. This would be consistent with the fact that insulin-stimulated phosphorylation of Ser312 in 3T3-L1 adipocytes requires the activation of both mTOR and JNK [11,24,29], whereas TNFα-stimulated phosphorylation of Ser312 requires dual phosphorylation by JNK and lKB kinase [32].

Our previous studies have demonstrated that wortmannin enhances the ability of insulin to stimulate IRS-1 tyrosine phosphorylation and inhibits insulin-stimulated IRS-3 phosphorylation (see also Figure 6A). The mechanism underlying this complex regulation is not known; however, it indicates an important role for PI3K in inhibiting tyrosine phosphorylation of IRS-1 and enhancing IRS-3 phosphorylation. One possibility is that wortmannin blocks an insulin-stimulated PI3K-dependent feedback pathway that inhibits IRS-1 tyrosine phosphorylation and enhances IRS-3 tyrosine phosphorylation. The insulin-stimulated negative-feedback regulation of IRS-1, however, will have to be very rapid, since the effect of wortmannin on IRS-1 tyrosine phosphorylation is already apparent at the earliest time point (2 min) after insulin stimulation. Insulin-stimulated phosphorylation of IRS-1 Ser312 and Ser616 is relatively slow and phosphorylation of these sites is therefore unlikely to be involved in the effect of wortmannin on IRS-1 tyrosine phosphorylation in primary adipocytes. This is further supported by the finding that U0126 has no effect on insulin-stimulated tyrosine phosphorylation of IRS-1, whereas it mimics the inhibitory effect of wortmannin on insulin-stimulated IRS-1 Ser312 and Ser616 phosphorylation. Phosphorylation of these sites may, however, be involved in feedback regulation during more prolonged insulin stimulation, which would be consistent with findings in Fao and CHO-T cells, where wortmannin prevented the decrease in insulin-stimulated tyrosine phosphorylation of IRS-1 after 60 min [16]. Whether a similar negative-feedback regulation is present in primary adipocytes is not clear, although we found no significant difference in tyrosine phosphorylation of IRS-1 after 60 min insulin stimulation in the presence of wortmannin or U0126 (Figure 6).

A more probable explanation for the effect of wortmannin is that a tonic, or increased, basal level of PI3K activity exists in these cells which represses IRS-1 tyrosine phosphorylation and enhances IRS-3 phosphorylation in response to a subsequent insulin challenge. This regulation may be mediated by serine/threonine phosphorylation of the IRS proteins and would be relieved by wortmannin treatment of the cells. A tonic, wortmannin-inhibitable, level of PI3K activity may itself lead to an increased basal level of ERK phosphorylation and activity that regulates IRS phosphorylation. Indeed, treatment of adipocytes with the MEK inhibitor U0126 not only inhibited insulin-stimulated ERK
phosphorylation, but decreased it significantly below basal levels (Figure 2D). Despite this, insulin-stimulated IRS-1 tyrosine phosphorylation was not significantly affected by U0126 (Figure 5A) at any time point examined (Figures 6C and 6D). In addition, U0126 was without effect on insulin-stimulated IRS-3 tyrosine phosphorylation. This indicates that the ability of wortmannin to modulate IRS-1 and IRS-3 tyrosine phosphorylation does not involve PI3K-mediated regulation of ERK. We further found that none among mTOR/p70S6 kinase, JNK and p38MAP kinase was responsible for mediating the effects of wortmannin, since rapamycin, SP600125 and SB203580 were all without effect.

The kinase downstream of PI3K and the potential serine/threonine phosphorylation sites that are responsible for the negative regulation of IRS-1 tyrosine phosphorylation in primary adipocytes therefore remain to be identified. One potential candidate is PKCζ, which negatively regulates insulin-stimulated tyrosine phosphorylation of IRS-1 by phosphorylation of Ser635 [23] and is activated in a PI3K-dependent manner on insulin stimulation of adipocytes [30,31]. Another potential candidate is the intrinsic serine kinase activity of PISK itself, whose ability to phosphorylate IRS-1 may be blocked by wortmannin [33]. Furthermore, as the balance of enzyme activity between kinases and phosphatases determines the effect of insulin, wortmannin may exert its effect by inhibiting the activity or activation of phosphatases that negatively regulate insulin signalling, such as protein tyrosine phosphatase 1B and protein phosphatase 2A [34,35]. Alternatively, wortmannin may alter basal serine phosphorylation levels of IRS-1 by modulating the levels of plasma membrane-derived phosphoinositide lipids in the cell and thereby the localization of IRS-1, since its PH (pleckstrin homology) domain is known to be important in recruiting this substrate to the plasma membrane. These possibilities require further investigation in primary adipocytes.

In summary, we have shown that insulin induces a slow stimulation of Ser312 and Ser616 phosphorylation on IRS-1 in a PI3K-dependent manner. In contrast with previous observations using transformed cell lines such as 3T3-L1 adipocytes and H4IE rat hepatoma cells, mTOR and JNK are not involved in IRS12 phosphorylation, at least in response to insulin. Moreover, neither phosphorylation of Ser312 and Ser616 nor the activation of mTOR, ERK or JNK is responsible for the enhanced insulin-stimulated tyrosine phosphorylation of IRS-1 brought about by wortmannin in primary adipocytes. Nor are these kinases responsible for the regulatory effects of PI3K on IRS-3 phosphorylation. These results differ fundamentally from observations in cultured transformed cell types and exemplify the need to focus on the use of more physiologically relevant cell types if we are to begin to understand how IRS-1 signalling is regulated in diabetes.

This work was funded by grants from the Medical Research Council and Diabetes UK. We thank S. O’Neill for excellent technical assistance and G. Welsh (Department of Biochemistry, School of Medical Sciences, University of Bristol) for helpful discussions.

REFERENCES

© 2005 Biochemical Society
Recent advances in our understanding of insulin action and insulin resistance. Diabetes Care 24, 588–597

Insulin activates protein kinases C-ζ and C-λ by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J. Biol. Chem. 274, 25308–25316

Atypical protein kinase C (PKCζ/λ) is a convergent downstream target of the insulin-stimulated phosphatidylinositol 3-kinase and TC10 signaling pathways. J. Cell. Biol. 164, 279–290

Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J. Biol. Chem. 278, 24944–24950

The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by wortmannin. J. Biol. Chem. 269, 20649–20652

Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J. Biol. Chem. 275, 4283–4289

Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol. Cell. Biol. 24, 8778–8789