Autoproteolytic activation of human aspartylglucosaminidase

Jani SAARELA*, Carita OINONEN†, Anu JALANKO*, Juha ROUVINEN† and Leena PELTONEN*‡

*Department of Medical Genetics and National Public Health Institute, Department of Molecular Medicine, University of Helsinki, Haartmaninkatu 8, FIN-00290 Helsinki, Finland, and †Department of Chemistry, University of Joensuu, P.O. Box 111, FIN-87101 Joensuu, Finland

Aspartylglucosaminidase (AGA) belongs to the N-terminal nucleophile (Ntn) hydrolase superfamily characterized by an N-terminal nucleophile as the catalytic residue. Three-dimensional structures of the Ntn hydrolases reveal a common folding pattern and equivalent stereochemistry at the active site. The activation of the precursor polypeptide occurs autocatalytically, and for some amidohydrolases of prokaryotes, the precursor structure is known and activation mechanisms are suggested. In humans, the deficient AGA activity results in a lysosomal storage disease, aspartylglucosaminuria (AGU) resulting in progressive neurodegeneration. Most of the disease-causing mutations lead to defective molecular maturation of AGA, and, to understand the structure–function relationship better, in the present study, we have analysed the effects of targeted amino acid substitutions on the activation process of human AGA. We have evaluated the effect of the previously published mutations and, in addition, nine novel mutations were generated. We could identify one novel amino acid, Gly238, with an important structural role on the autoproteolytic activation of human AGA, and present the molecular mechanism for the autoproteolytic activation of the eukaryotic enzyme. Based on the results of the present study, and by comparing the available information on the activation of the Ntn-hydrolases, the autoprotolytic processes of the prokaryotic and eukaryotic enzymes share common features. First, the critical nucleophile functions both as the catalytic and autocatalytic residue; secondly, the side chain of this nucleophile is oriented towards the scissile peptide bond; thirdly, conformational strain exists in the precursor at the cleavage site; finally, water molecules are utilized in the activation process.

Key words: activation mechanism, aspartylglucosaminidase, aspartylglucosaminuria, autoproteolytic activation, Ntn-hydrolase, site-directed mutagenesis.

INTRODUCTION

Human aspartylglucosaminidase [AGA, N\(^{\beta\cdot-N\cdot-acetyl-D-glucosaminyl-L-asparagine}, \text{glycosylasparaginase}; \text{EC} 3.5.1.26]\) is a lysosomal enzyme that belongs to the N-terminal nucleophile (Ntn)-hydrolase protein superfamily [1]. Other members of the Ntn-hydrolase superfamily with known structure are the proteasome β-subunit [2], glutamine 5-phosphoribosyl-1-pyrophosphate amidotransferase [3], penicillin G acylase [4], penicillin V acylase [5], cephalosporin acylase [6], and glutaryl 7-aminoccephalosporanic acid acylase [7]. Most Ntn-hydrolase studies have been conducted with prokaryotic enzymes. Ntn-hydrolases are characterized by an N-terminal nucleophile that functions as the catalytic residue, which cleaves amide bonds in substrates. Despite the similarities in the catalytic process, the substrate specificities are very different for Ntn-hydrolases.

Enzymes belonging to the Ntn-hydrolase superfamily are synthesized as inactive polypeptides and undergo intramolecular autocatalytic activation. A range of autocatalytic events proceed via protein splicing [8], where the initial steps are thought to involve an N → O acyl rearrangement to generate a branched intermediate [9]. In Ntn-hydrolases, the hydrolysis of the peptide bond preceding the N-terminal active site residue by an autocatalytic rearrangement is similar to the initial step in the protein-splicing pathway. The same cleavage step generates the catalytically critical α-amino group. In Ntn-hydrolases, it is generally believed that the catalytic nucleophile in the Ntn-hydrolase superfamily [10–15]. Whether the nucleophile is threonine, serine or cysteine, Ntn-hydrolases share a common tertiary structure for the catalytic domain and equivalent stereochemistry at the active site [16,17]. The core three-dimensional folding pattern shared by Ntn-hydrolases consists of a four-layer \(αββα\)-structure with two antiparallel \(β\)-sheets between \(α\)-helical layers.

The structure of the precursor is known for five Ntn-hydrolases: AGA, proteasome, penicillin G acylase, cephalosporin acylase and glutaryl 7-aminoccephalosporanic acid acylase [12,14,18–21]. This information has been collected by analysing mutagenized native polypeptides with a prevented or delayed activation step. In addition, several other publications of Ntn-hydrolases have provided insights into the molecular details of precursor processing of AGA, glutaryl 7-aminoccephalosporanic acid acylase, glutamine 5-phosphoribosyl-1-pyrophosphate amidotransferase, proteasome, and penicillin G acylase [10,11,13,15,22,23].

The three-dimensional structure of human AGA has been solved and the residues of the active site identified [1]. The critical catalytic residue is the nucleophile, Thr\(^{206}\), which is stabilized by hydrogen bonds from Ser\(^{2}\) and Thr\(^{238}\). The reaction intermediate is stabilized by hydrogen bonds from the side chain of Thr\(^{238}\) and main-chain nitrogen of Gly\(^{238}\), while the substrate is bound by Arg\(^{234}\) and Asp\(^{237}\) [24], and possibly by Trp\(^{34}\) [25].

Dimerization and correct folding of the AGA precursor is a prerequisite for the activation of the precursor molecule. The residues critical for dimerization are located at the dimer interface [10,26,27]. The activation cleavage of the dimerized AGA precursors into the N-terminal α- and the C-terminal \(β\)-subunits takes place in the endoplasmic reticulum (ER) resulting in the tetrameric, enzymically active \((αβ)_2\) molecule. The activated AGA is transported to the lysosomes via the mannose 6-phosphate transport system.
pathway and the C-terminus of both subunits is trimmed by lysosomal hydrolases. This cascade of events in the biosynthesis of AGA has facilitated monitoring of the intracellular transport of the wild-type (WT) and mutated AGA molecules [28]. In general, the molecular and cellular biology of human AGA has been extensively studied since various mutations of AGA result in the lysosomal storage disorder aspartylglucosaminuria (AGU) [29].

The activation of AGA has been suggested to proceed via a cis-autoproteolysis of the precursor polypeptide and the event is influenced by the active site [24,30]. The integrity of the residues Asp205-Thr206 at the subunit-processing site has been found to be crucial for efficient autoproteolysis of AGA [10,30]. Furthermore, some structural elements of the precursor of bacterial AGA indicate the existence of a strained trans-peptide bond between these residues [18]. Since strained peptide bonds at the activation site have also been observed for proteasome [20] and glutaryl 7-aminoccephalosporanic acid acylase [19], a conformational strain at the activation site might contribute to the precursor activation.

The present study was designed to identify and verify experimentally the amino acids that are critical for the autocatalytic processing of human AGA. Amino acids in the immediate vicinity of the three-dimensional active site, as well as critical residues selected following structural comparisons with other members of the Ntn-hydrolase family, were selected for targeted mutagenesis and the folding, transport and catalytic kinetics of the synthesized AGA molecules were monitored.

MATERIALS AND METHODS

In vitro mutagenesis

Oligonucleotide-directed site-specific mutagenesis of the WT AGA cDNA in SVpoly expression vector [31] was performed using the QuikChange mutagenesis kit (Stratagene). The clones were sequenced with an ABI-Prism 377 DNA sequencer (PerkinElmer).

Transfection, metabolic labelling and immunoprecipitation

The methods used are as described by Saarela et al. [32]. In short, COS-1 cells (American Type Culture Collection (A.T.C.C.) strain CRL-1650) were transfected and, after 48 h, the cells were labelled for 1 h with [35S]cysteine. A 1 h chase was followed by immunoprecipitation using AGA-specific polyclonal antibody against either the native enzyme (for most constructs) or the denatured subunits (for the Gly226 → Ala construct) [33]. The labelled polypeptides were separated by SDS/PAGE (14% gels) under reducing conditions [34] and visualized by autoradiography.

Gel filtration

To resolve the tetrameric and dimeric AGA molecules, gel filtration of labelled polypeptides was performed as previously reported [10] on a Superdex 200 (10/30) column (Amersham Biosciences) after a 3 h chase. AGA polypeptides were immunoprecipitated from the collected fractions and analysed by SDS/PAGE and autoradiography.

Assay for AGA activity

The modified AGA activity assay [35] was performed after metabolic labelling. Cell lysate (10–30 µl) and 2 µl of 50 mM 2-acetamido-1-β-(L-aspartamido)-1,2-dideoxy-D-glucose (Sigma) were added to a final volume of 50 µl of 67 mM potassium phosphate buffer, pH 7.0, and incubated overnight at 37 °C. To stop the reaction, 107 µl of 5% borate, pH 8.8, was added, and the sample was boiled for 5 min. Then, 1 ml of Ehrlich solution [0.1 g of 4-(dimethylamino)-benzaldehyde (Merck), 1 ml of hydrochloric acid and 10 ml of ethanoic acid] was added and the samples were incubated for 30 min at 37 °C. The amount of liberated N-acetylglucosamine was measured at 585 nm [36]. The K_m and V_{max} values were determined with substrate concentrations of 1, 2, 5, 10, 20, 30, 40 and 50 mM in three independent experiments for each concentration. The activities were correlated to the transfection efficiency as determined by co-expression of $β$-galactosidase using the $β$-galactosidase assay [37]. The protein amount was measured using the Bradford method [38], and clone-specific correlation was performed with quantification of immunoprecipitated radioactivity using an OptiPhase HiSafe3 liquid scintillation cocktail (PerkinElmer) with a Winspectral 1414 counter (Wallac, Eyy, France). As a control for kinetic measurements, we used purified overexpressed WT human AGA enzyme.

Immunofluorescence analysis and confocal microscopy

The intracellular localization of AGA polypeptides was studied by staining the AGA transfected BHK-21 cells (A.T.C.C. strain CCL-10) with AGA-specific antibodies and fluorescent secondary antibodies (Jackson ImmunoResearch Laboratories) as described in [32]. Specimens were viewed with a 63× objective on a DMR confocal immunofluorescence microscope (Leica) with Leica NT software.

RESULTS AND DISCUSSION

Mutations of the AGA gene lead to a lysosomal storage disease, AGU. The cell-biological consequences of the disease mutations are often related to defective molecular maturation of AGA. To enhance our structure–function understanding of AGA, we have made an effort in the present study to evaluate if the previously published human AGA mutations could potentially affect the autocatalytic activation. In addition, nine novel mutations were generated based on their location in the active site. The effect of the mutations was monitored by immunoprecipitation and immunofluorescence-based analysis of the expressed polypeptides, and the enzymic activity and kinetic parameters of AGA were measured. The results are summarized in Table 1. The data are presented and discussed using three categories of the amino acids: (i) the autocatalytic nucleophile, (ii) residues participating in autocatalysis, and (iii) residues with a structural role. The numbering of amino acids is according to the human AGA precursor and, where needed, corresponding bacterial amino acids are shown in parentheses. The previous results on human and bacterial AGA autocatalysis indicate that the mechanism is less efficient than in catalysis [10,30]. Thus the analysis of the autocatalytic mechanism using mutagenesis is more difficult and the results obtained are more indefinite.

The autocatalytic nucleophile Thr206

The side chain of Thr206 functions as the catalytic group in AGA-catalysed substrate hydrolysis [1,25]. Its role in the autocatalysis has been defined thoroughly previously [10,18,25,39]. In autocatalysis, the hydroxyl oxygen of the Thr206 side chain forms a covalent bond to the carbonyl carbon of Asp205 probably resulting in a tetrahedral intermediate, which may be stabilized by an oxygen hole (Scheme 1) [10,18]. The attack of the side chain of
Table 1 The processing, intracellular transport and activities of the WT and mutant AGA polypeptides in COS-1 cells

The intra- and extra-cellular AGA polypeptides seen on SDS/PAGE are listed in the immunoprecipitation column. The intracellular localization of AGA polypeptides are listed in the immunofluorescence column. The enzyme activity was determined from measurements using 2–5 mM substrate. The kinetic values K_m and V_{max} were determined using a range of different substrate concentrations and the standard deviation figures are each based on three measurements. The novel mutations are indicated in boldface type. Prec., precursor polypeptide; P, present; ND, not determined; BG, background.

<table>
<thead>
<tr>
<th>Construct</th>
<th>Immunoprecipitation</th>
<th>Immunofluorescence</th>
<th>Activity (μmol/min per mg)</th>
<th>K_m (± S.D.) (μM)</th>
<th>V_{max} (± S.D.) (μmol/min per mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT AGA</td>
<td>P P P P P P P</td>
<td>P P</td>
<td>100</td>
<td>444 ± 63</td>
<td>1.89 ± 0.33</td>
</tr>
<tr>
<td>Thr206 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>48</td>
<td>752 ± 139</td>
<td>1.63 ± 0.31</td>
</tr>
<tr>
<td>Ser77 → Pro†</td>
<td>P P P P P</td>
<td>P P</td>
<td>34</td>
<td>343 ± 79</td>
<td>1.23 ± 0.29</td>
</tr>
<tr>
<td>Asp70 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>87</td>
<td>480 ± 137</td>
<td>1.80 ± 0.27</td>
</tr>
<tr>
<td>His204 → Gly/Ser†</td>
<td>P P P P</td>
<td>P P</td>
<td>45</td>
<td>915 ± 208</td>
<td>1.18 ± 0.12</td>
</tr>
<tr>
<td>Gly226 → Ala</td>
<td>P P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>1234 ± 272</td>
<td>1.18 ± 0.23</td>
</tr>
<tr>
<td>Asp200 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Ser225 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>87</td>
<td>480 ± 137</td>
<td>1.80 ± 0.27</td>
</tr>
<tr>
<td>Thr224 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Arg234 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Gly258 → Ala</td>
<td>P P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Lys270 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Arg244 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Gly262 → Ala</td>
<td>P P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Lys220 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Ser228 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Thr257 → Ala</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Thr257 → Ile∥</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Thr257 → Ser‡</td>
<td>P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Gly226 → Ala</td>
<td>P P P P P P P</td>
<td>P P</td>
<td>40</td>
<td>915 ± 178</td>
<td>1.86 ± 0.42</td>
</tr>
<tr>
<td>Purified WT</td>
<td>P P P P P P P</td>
<td>P P</td>
<td>100</td>
<td>444 ± 63</td>
<td>1.89 ± 0.33</td>
</tr>
</tbody>
</table>

* [25]. † [35]. ‡ [24]. § [10]. ∥ [32].

Scheme 1 Activation mechanism of human AGA

The activation is initiated by a general base (a), which receives the hydrogen atom from the side chain of Thr206, thus enabling a nucleophilic attack on the carbonyl carbon of Asp205 and resulting in a tetrahedral intermediate (b). (c) An N → O acyl shift occurs and a general acid donates a proton to a newly formed amino group of Thr206. (d) A water molecule hydrolyses the resulting ester bond and a second tetrahedral intermediate is formed (e). (f) The intermediate is resolved and Thr 206 with free amino and side-chain groups is ready for enzymic catalysis. The identity of the general acid and base are discussed in the text.
an oxyanion hole is required in both the acylation and deacylation steps. In bacterial precursor AGA, Thr224 (Thr170) may stabilize the reaction transition state by forming the oxyanion hole during activation (Scheme 1b and 1e) [18]. Previous studies of human AGA suggest that a hydroxyl group at Thr224 is important for autoproteolysis [24] and thus Thr224 may stabilize the reaction transition state by forming the oxyanion hole. However, as the precursor structures of bacterial AGA differ at the scissile Asp205–Thr206 peptide bond, it is unclear whether Thr224 truly stabilizes the reaction intermediate or if it has a structural role.

Residues with a structural role

Structural comparison of Ntn-hydrolases has revealed eight fully conserved secondary-structure elements [17], all located in the β-subunit of the active AGA molecule. Two conserved or similar residues were identified within these secondary-structure elements: Gly258 and Gly226. In addition to the AGAs of various species (human AGA; PDB code 1apy), Gly258 is conserved also in some other Ntn-hydrolases (proteasome from Saccharomyces cerevisiae (PDB code 1ryp, chain pre2), and Escherichia coli glutamine amidotransferase (PDB code 1ecf)), whereas penicillin acylase from E. coli (PDB code 1pnt) has alanine at this position in the conserved β-strand. At the position corresponding to Gly226, only hydrophobic residues are found in other Ntn-hydrolases [17], whereas Gly258 is fully conserved in the AGAs of several species [32]. Gly258 and Gly226 are shown underlined in Figure 2. The backbone torsion angles of both Gly258 and Gly226 are abnormal in the human WT structure (Gly258: Φ = 139, ψ = −141; Gly226: Φ = 84, ψ = −157).

The main-chain nitrogen of Gly258 and the side chain of Thr257 form the human AGA oxyanion hole that is utilized in the stabilization of the negatively charged carbonyl oxygen on the transition state during enzyme catalysis [1]. We produced the Gly258→Ala substitution and observed the marked precursor accumulation after metabolic labelling, immunoprecipitation, and SDS/PAGE (Figures 3 and 4), as well as strong immunofluorescence staining of the ER of the transfected COS-1 cells (data summarized in Table 1). However, some lysosomes were immunostained, implying a delayed transport of the mutated polypeptides to the lysosomes. The precursor polypeptide was examined further by gel filtration and subsequent immunoprecipitation. The results indicate the existence of both dimeric and monomeric precursor molecules (Figure 5). The amount of precursor polypeptide in the Gly258→Ala cell and medium fractions compared with the WT was quantified further after gel filtration. The fractions containing the dimeric AGA molecule (> 57 kDa), contained 5-fold amounts of precursor in the mutant when compared with the WT. Similarly, the fractions representing the monomeric AGA molecules (< 44 kDa) contained 12-fold amounts of precursor in the mutant. The enzyme activity was retained in the ER. The results indicate that Gly258 has a crucial structural role for the proteolytic cleavage and the activation of the human AGA precursor. The existence of a hydrogen bond between the main chain of Gly258 (Gly204) and Asp205 (Asp151) in three bacterial precursor structures (PDB codes 9gaa, 9gac and 9gaf) would indicate that a potential role of Gly258 might be stabilization of the intermediate in autocatalysis. However, the Asp205 mutants of the bacterial precursor have a very different conformation at Asp205, and thus it would be speculative to conclude that, during human precursor activation, the main-chain nitrogen of Gly258 might stabilize the intermediate.
Autoproteolytic activation of human aspartylglucosaminidase

Figure 2 The backbone structure of a WT human AGA αβ-dimer

Only one heterodimer from the active (αβ)2 tetramer is shown. The α-subunit is coloured yellow and the β-subunit is coloured green. An asterisk marks the catalytically and autocatalytically active N-terminal Thr206, which is revealed by the autocatalytic cleavage. Disulphide bridges are shown in light pink. The residues involved in enzymic catalysis or substrate binding are shown in orange. Mutagenized residues based on vicinity to the active site or conservation in Ntn-hydrolases are shown in purple or underlined respectively. The residues in the linker peptide between the α- and β-subunits, including the mutagenized residues Asp200 and Asp201, are not shown.

Figure 3 SDS/PAGE analysis of the processing of the WT AGA and mutated polypeptides

COS-1 cells transfected with different AGA cDNA constructs were labelled with [35S]cysteine for 1 h and chased 1 h. The labelled cells were lysed, and the polypeptides were immunoprecipitated. The samples were analysed by SDS/PAGE (14%) under reducing conditions. Mutants are indicated using one-letter amino acid codes, e.g. T33A is Thr33 → Ala. Prec, precursor polypeptide.

The AGU-disease-causing Gly226 → Asp mutation results in abnormal processing of the AGA precursor and produces an inactive molecule, which is, however, correctly folded and transported to the lysosomes [32]. Gly226 resides in a loop in the active site and the substituting aspartate disturbs local folding by eliminating a tight turn of the loop and presenting a larger side chain in the aqueous environment of the substrate-binding funnel. We observed in the present study that the Gly226 → Ala mutation shows a more severe defect, since no normal subunit structure could be observed on SDS/PAGE (Figure 3). In immunofluorescence analysis, only the ER was stained with antibodies against the denatured subunits of AGA, which is evidence for the accumulation of the polypeptides in the ER (Table 1). The main-chain nitrogen of Gly226 (Gly172) is hydrogen-bonded with the side chain of Thr224 (Thr170) in the human and bacterial AGA structures. The side chain of Asp226 or Ala226 would point towards the residues Thr224, Lys230 and Asp88 and create clashes. It is possible that the aspartate side chain could stabilize the structure by creating electrostatic interactions with Lys230. A lack of such stabilization would create a major folding defect like that observed in the Gly226 → Ala mutant. The abnormal-size major band and the faint bands would suggest that the proteolytic activity in COS-1 cells has cleaved the precursor.

Ser238 → Ala and other novel mutations generated here, as justified by their position close to the active site, are shown in purple in Figure 2. The Ser238 → Ala substitution resulted in

Figure 4 The amount of precursor polypeptide compared with the WT after 1, 3 and 6 h chase

The AGA polypeptides of scanned autoradiographs were quantified using the Scion Image software (Scion Corporation). The relative amount of the precursor polypeptide of the whole AGA polypeptide pattern of each mutant was compared with the WT analysed from the same autoradiograph. Each polypeptide species (except Asp237 → Ala and Thr257 → Ala) was analysed three times and the error bars are shown. Mutants are indicated using one-letter amino acid codes, e.g. T33A is Thr33 → Ala.

© 2004 Biochemical Society
delayed processing of the precursor (Figures 3 and 4). The activity measurements showed an increased \(K_m \) value and a decreased \(V_{\text{max}} \) value. Using immunofluorescence, the precursor polypeptides were seen both in the ER and lysosomes (Table 1). Due to the substrate-binding role of the neighbouring Asp\(^{237} \), this particular substitution most probably has local structural consequences that affect enzymic catalysis. The general delay in folding thus resembles that observed for Asp\(^{237} \) → Ala.

Other novel mutations close to the active site seem to have a minor effect on activation. Replacement of Asp\(^{200} \) and Lys\(^{230} \) with alanine resulted in a small delay on precursor cleavage, yet after a 6 h chase, the precursor amount was at the level of that of the WT (Figures 3 and 4). A slight difference in size was systematically observed for the Asp\(^{200} \) → Ala precursor and \(\alpha \)-polypeptides. This increased mobility of the mutated polypeptides probably results from increased SDS-binding. The folding of these mutants should be nearly normal, since the \(K_m \) values are close to that of the WT and no dramatic accumulation of the precursor was observed (Table 1). The reason for the delayed activation of the precursor may be that the folding rate of the mutant polypeptides is slightly lower, which results in problems during autocatalysis. Combined quantum chemical calculations and molecular dynamics simulations have suggested that Asp\(^{200} \), Lys\(^{230} \) and Arg\(^{244} \) are key transition-state-stabilizing residues in AGA-catalysed hydrolysis of the amide bond of a substrate [40]. Asp\(^{200} \) and Lys\(^{230} \) have no direct contact with the transition state atoms, but being charged residues, they could have a stabilizing electrostatic interaction. A similar role in autocatalysis can be proposed for these two residues.

Asn\(^{225} \) is a neighbouring residue of Thr\(^{206} \) stabilizers, Ser\(^{72} \) and Thr\(^{224} \). We show here that the Asn\(^{225} \) → Ala mutation delays the processing of the precursor polypeptide (Figures 3 and 4). Although the \(K_m \) value was higher than for WT AGA, the \(V_{\text{max}} \) value remained normal (Table 1). In the case of Asn\(^{225} \) → Ala and Lys\(^{230} \) → Ala, decreased affinity for the substrate would indicate slight changes in the substrate-binding residues of the active site, whereas the catalytic machinery remained normal as indicated by the WT-level \(V_{\text{max}} \) value. The side-chain nitrogen of Asn\(^{225} \) (Ser\(^{72} \)) creates a hydrogen bond to the carbonyl oxygens of Gly\(^{71} \) (Arg\(^{84} \)) and Gly\(^{74} \) (Gly\(^{74} \)). In bacterial AGA, only the Ser\(^{71} \)–Arg\(^{84} \) hydrogen bond exists. The role of Asn\(^{225} \) is probably structural — it keeps the local structure stable and precise. Apparently, precursor accumulation and decrease of substrate binding capacity of the Asn\(^{225} \) → Ala mutant is the result of a local structural change.

The consequences at the polypeptide level were similar concerning the novel Asp\(^{200} \) → Ala and Asp\(^{201} \) → Ala substitutions (Figure 3). There was only a slight decrease in autocatalysis and polypeptides had normal kinetic values as well as normal intracellular targeting (Table 1). In immunofluorescence, the intracellular localization of all these novel mutants remained seemingly normal. Changes in \(K_m \) values would imply minor differences in substrate-binding capacity and thus perhaps in the structure of the active site of the mutant polypeptides (Table 1). Among the mutations studied in the present study, only Thr\(^{33} \) → Ala had no effect on AGA activation, whereas the kinetic values were affected, indicating a possible structural role for this residue in substrate hydrolysis.

Previous data exist for additional mutants, some resulting in human AGU. The residues are part of the autocatalytic machinery and are shown in orange in Figure 2. Ser\(^{72} \) is hydrogen-bonded to the free amino group of Thr\(^{206} \) in the native AGA structure [24], Ser\(^{72} \) → Ala mutation decreases the \(V_{\text{max}} \) value, but the \(K_m \) value and autoproteolysis are unaffected, implying that the active site gets correctly folded. Thus the hydrogen bond to Thr\(^{206} \) is required for efficient enzymic catalysis. In contrast, the Ser\(^{72} \) → Pro mutant precursor polypeptides, found in AGU patients, are not activated intracellularly [35]. The reason for accumulation of the precursor may be that the loop structure, which contains Ser\(^{72} \), is unable to accommodate the rigid proline residue without disturbing packing [32]. Ser\(^{72} \) is hydrogen-bonded to the side chain of Thr\(^{224} \) (Thr\(^{170} \)) and the main-chain nitrogen of the next amino acid in the bacterial Thr\(^{206} \) → Ala (Thr\(^{232} \) → Ala) structure (PDB code 9gaa), thus stabilizing local structure at the active site.
His204 → Gly and His204 → Ser mutant polypeptides get only partially activated due to defective autocatalytic machinery. Compared with the WT enzyme, 30% of activity exists, which is accounted for by the normally processed portion of AGA polypeptides [10,28,35]. His204 has an important role in the autoproteolysis. The imidazole ring of His204 could be packed against the ring of Trp34 and perhaps Phe36, thus maintaining the proper geometry for the scissile peptide bond between Asp205 and Thr206 (Figure 1). Consequently, the role of Trp34 would also be structural, since the mutant polypeptides of Trp34 are not activated [25].

The mutants of Arg234, a residue that binds the aspartate moiety of the substrate to the active AGA molecule, do not get activated. The role of Arg234 (Arg186) in activation is structural, since it either stabilizes the autocatalytic reaction participants like that described for the bacterial precursor AGA structures [18] or it may have other interactions with the activation machinery.

Some accumulation of the precursor has been observed for the alanine mutant of the substrate binding Asp237 [24]. A slow folding process due to a structural role of Asp237 may account for the accumulation of the precursor polypeptide in the ER.

In enzyme catalysis, Thr257 forms the oxanion hole with Gly258 [1]. Thr257 → Ala and the AGU-causing Thr257 → Ile mutant both result in abnormal processing of the precursor polypeptide equally as Gly258 → Asp [24,32]. In some bacterial precursor AGA structures (PDB codes 9gac and 9gaa), Thr257 (Thr203) is hydrogen-bonded to the side chain of Asp205 (Asp151), while in others (PDB codes 9gaf, 1p4k and 1p4v) the side-chain orientation of Asp205 is different. Furthermore, the conformation of the spacer peptide between the α- and β-subunits varies significantly between different precursor structures, although the structures are very similar in other parts of the molecules. The Cα-position (approx. 1 Å, where 1 Å = 0.1 nm) and rotamer conformation of Thr257 also vary. Thus it would be quite speculative to conclude that the role of human AGA Thr257 is to properly orient the side-chain Asp205 with a hydrogen bond.

Current view of the autocatalytic mechanism of human AGA

The autocatalytic activation of Ntn-hydrolases represents an interesting phenomenon. The residues that are important for activation have been identified from precursor structures of proteasome [20], AGA [18], penicillin G acylase [14], cephalosporin acylase [12,21] and glutaryl 7-aminocephalosporanic acid acylase [19], although the actual ones are not clearly defined for proteasome and penicillin G acylase. The activation of AGA precursor and enzyme catalysis seem to be accomplished by the same amino acids, which makes the interpretation of experimental data complicated. However, information of the bacterial precursor crystal structures can be used to draw some conclusions. The overall sequence identity between human and bacterial AGA is 35%, and even higher concerning active site residues. Thus their structures are similar, and especially their catalytic and autocatalytic activation mechanisms can be assumed to be very similar. Determined from the WT human (PDB code 1apy) and bacterial (PDB code 2gaw) structures, the rmsd for the backbone of 509 residues is 1.12 Å. Furthermore, the secondary and tertiary structures of the bacterial mature AGA (PDB code 2gaw) [41] and precursor AGA (PDB code 9gaf) [18] are essentially identical (rmsd = 0.58 Å for the backbone of 547 residues). Thus it is conceivable that the precursor structures of the human and bacterial AGA are closely related. Consequently, the activation mechanisms are likely to be similar.

Five bacterial AGA precursor structures have been solved by crystallography (PDB codes 9gaa, 9gac, 9gaf, 1p4k and 1p4v). The structures are very similar, except at the linker peptide between the subunits and some neighbouring residues. The nucleophile location and rotamer conformation vary only slightly, but the position and conformation of the preceding residues, including Asp205, are quite dissimilar. The new Asp205 (Asp151) mutant structures (PDB codes 1p4k and 1p4v [42]), make it even more evident that, from only a few structures, it is speculative to make detailed conclusions about the residues that participate at each activation step. Thus more Ntn-hydrolase precursor structures are needed to generate a model for the general activation mechanism.

The bacterial AGA activation mechanism [18] is concluded from the data obtained from three different structures (PDB codes 9gaa, 9gac and 9gaf). The structure of the linker peptide between the subunits of AGA varies quite significantly between different bacterial precursor mutant constructs, some of which have only recently been obtained. This complicates the interpretation of the data concerning individual residues. Therefore conclusion of the exact role of individual residues at each activation step would be somewhat speculative. From our experimental data, we conclude that the activation mechanism we proposed for human AGA [10] remains a valid reaction mechanism for human AGA autoproteolysis. The mechanism resembles the N → O acyl shift for the splicing of inteins [9]. In the present paper, the presented mechanism (Scheme 1) is based on the mutation data from a number of active-site residues of human AGA. In the mechanism, the nucleophile forms a covalent bond with the carbonyl carbon of the preceding residue, Asp205. The nucleophile is activated by a general base, which is either the side chain of Asp205 or a water molecule, as discussed below. Most of the residues analysed in the present study do not have a distinct role in the autoproteolytic activation reaction, although they are important for the reaction. They surround the active site and form the necessary hydrogen-bond network to position and interact correctly with the residues that participate in the reaction. Our Gly258 → Ala mutant revealed the crucial structural role of Gly258 for activation. Several other structural residues were identified which had a milder effect on activation by altering the local structure in such a way that the residues participating in activation were displaced or existed in an inactive conformation.

With Thr3 as the nucleophile in proteasomal enzyme catalysis, a proton acceptor in the active site is required for activation of the hydroxyl group. A catalytic water molecule, seen in the high-resolution structures of all three active subunits of the yeast proteasome [43], is ideally positioned to act as the general base and promote the abstraction of the proton from the Thr3 hydroxyl group. In addition, a bound water molecule seems to initiate the autoproteolytic activation of cephalosporin acylase [21]. In AGA, the water molecule bound to Asp237 and Thr206 possibly also performs this role. In this case, Asp205 would have a role in the formation of main-chain distortion, which may trigger the cleavage of the scissile peptide bond. The conformational strain at the scissile peptide bond possibly results from oligomerization of precursor molecules in the ER. The strain is lessened by the substitution of structurally important residues. These mutants thus have defective autocatalytic machineries that delay the cleavage of the precursor (Figure 4). Figure 6 summarizes the roles of the analysed human AGA residues. Compared with the enzymic catalysis, the autocatalytic cleavage of the peptide bond seems to be less efficient [10,30]. It is worth emphasizing that, in eukaryotic cells, the activation of AGA occurs in the ER, whereas the enzymic catalysis takes place in the lysosomes, which could contribute to the lower efficiency of the autocatalytic cleavage when compared with the enzymic catalysis.

Although the human AGA shares sequence similarity with other Ntn-hydrolases only in certain secondary elements, the autoproteolytic activation process shares several features with
Figure 6 Residues that affect activation

The autocatalytic nucleophile is shown in orange. The residues which participate in autocatalysis are shown in blue, and the structural amino acids are shown in purple.

We thank Paula Hakala for excellent technical assistance. The study was supported by grants from The Sigrid Juselius Foundation, Center of Excellence in Disease Genetics of The Academy of Finland Grant 44870, The Rinneki Research Foundation, Espoo, Finland, and The Finnish Cultural Foundation.

REFERENCES

28 Ikonen, E., Juukinen, I., Toltersdor, U. K., Kalkkinen, N. and Peltonen, L. (1993) Lysosomal aspartylglucosaminidase is processed to the active subunit complex in the endoplasmic reticulum. EMBO J. 12, 295–302

© 2004 Biochemical Society
Autoproteolytic activation of human aspartylglucosaminidase

Received 30 September 2003/13 November 2003; accepted 17 November 2003
Published as BJ Immediate Publication 17 November 2003, DOI 10.1042/BJ20031496

© 2004 Biochemical Society