CoTX1 (cobatoxin 1) is a 32-residue toxin with three disulphide bridges that has been isolated from the venom of the Mexican scorpion Centruroides noxius Hoffmann. Here we report the chemical synthesis, disulphide bridge organization, 3-D (three-dimensional) solution structure determination, pharmacology on K\(^+\) channel subtypes (voltage-gated and Ca\(^{2+}\)-activated) and docking-simulation experiments. An enzyme-based cleavage of the synthetic folded/oxidized CoTX1 indicated half-cystine pairs between Cys\(^3\)-Cys\(^{22}\), Cys\(^8\)-Cys\(^{27}\) and Cys\(^{12}\)-Cys\(^{29}\). The 3-D structure of CoTX1 (solved by \(^1\)H-NMR) showed that it folds according to the common α/β scaffold of scorpion toxins. In vivo, CoTX1 was lethal after intracerebroventricular injection to mice (LD\(_{50}\) value of 0.5 µg/mouse). In vitro, CoTX1 tested on cells expressing various voltage-gated or Ca\(^{2+}\)-activated (IKCa1) K\(^+\) channels showed potent inhibition of currents from rat Kv1.2 (dyad) residues of CoTX1 in its interaction with the rat K,1.2 channel. In addition, a [Pro\(^7\),Gln\(^9\)]-CoTX1 analogue (ACoTX1) was synthesized. The two residue replacements were selected aiming to restore the RPCQ motif in order to increase peptide affinity towards SKCa channels, and to alter the CoTX1 dipole moment such that it is expected to decrease peptide activity on K channels. Unexpectedly, ACoTX1 exhibited an activity similar to that of CoTX1 towards SKCa channels, while it was markedly more potent on IKCa1 and several voltage-gated K\(^+\) channels.

Key words: chemical synthesis, cobatoxin 1, docking simulation, K\(^+\) channel, scorpion toxin, three-dimensional structure.

INTRODUCTION

CoTX1 (cobatoxin 1) is a C-terminus-terminated 32-residue toxin with three disulphide bridges that has been isolated from the venom of the Mexican scorpion Centruroides noxius Hoffmann [1]. The toxin belongs to a novel family of scorpion toxins, referred to as α-KTx9 [1,2]. So far, only two members of this family have been defined, CoTX1 (α-KTx9.1) and CoTX2 (cobatoxin 2; α-KTx9.2). The primary structures of CoTX1 and CoTX2 present less than 45% sequence identity with other characterized α-KTx members. Since these toxins belong to a new family of scorpion toxins because of their low sequence identities with other K\(^+\) channel-acting peptides, combined with the increasing number of discovered K\(^+\) channels, a detailed analysis of CoTX1 may provide a valuable opportunity to further characterize the large array of these ion channel types. At a structural level, CoTX1 possesses the consensus motif of scorpion toxins...C\(_1\)...C\(_2\)XXXC\(_3\)...(G/A/S)XC\(_4\)...C\(_5\)XC\(_6\)...[3]. It is therefore expected to fold according to the standard α/β scaffold of scorpion toxins with a C\(_1\)-C\(_4\), C\(_2\)-C\(_5\) and C\(_3\)-C\(_6\) disulphide bridge arrangement [1]. At a pharmacological level, CoTX1 reportedly blocks K\(^+\) (mammalian voltage-gated)-type K\(^+\) channels [Shaker B (insect voltage-gated) and K,1.1 K\(^+\) channels] in the micromolar concentration range. The full characterization of CoTX1 has been hampered by its limited quantities in the venom. A more complete characterization of CoTX1, as well as a detailed examination of its structural properties, requires the successful chemical production of the toxin and its analogues.

In this article we report the solid-phase synthesis of CoTX1 and the determination of its properties: disulphide bridge organization, 3-D (three-dimensional) structure in solution (solved by \(^1\)H-NMR), pharmacology on diverse target channels and computed
simulation of toxin docking on K_1.2 channels. In addition, we
designed, chemically synthesized and characterized a CoTX1
anologue, [Pro^7,Gln^9]-CoTX1, denoted ACoTX1. These two
residue substitutions were first selected to restore the RPCQ
motif found in Pi1 and to potentially increase peptide binding
on apamin-sensitive SKCa channels (small-conductance Ca^{2+}-
activated K^+ channels) [4,5]. The RXQ motif is indeed present
in toxins that potently act on SKCa channels, such as Pi1 [6],
apamin [7], leiurotoxin 1 [8], PO5 [9] and Tsk [10]. Second,
these mutations were also chosen to affect the CoTX1 dipole
moment (electric charge anisotropy) in a way by which it is
expected to decrease peptide activity on K_1.2-type K^+ channels [11].
The experimental data show that, contrary to these expectations,
the activity of ACoTX1 is similar to that of CoTX1 for SKCa
channels whereas it is more potent on other K^+ channel subtypes
[IKCa1 channels (intermediate-conductance Ca^{2+}-activated K^+
channels) and several voltage-gated K^+ channels]. This indicates
that the RPCQ motif presents a somehow secondary role regarding
peptide binding to SKCa channel, and also suggests that charge
anisotropy of CoTX1 does not guide its bioactivity on K^+
channels.

MATERIALS AND METHODS

Materials

Fmoc [N^\text{carboxy}-9-fluorenyl]methoxy-carbonyl]-L-amino acids,
Fmoc-amide resin and reagents used for peptide synthesis were
obtained from Perkin-Elmer. Solvents were analytical-grade prod-
ucts and purchased from SDS. Enzymes (trypsin and chymo-
trypsin) were obtained from Roche Molecular Biochemicals.

Chemical synthesis and characterization of CoTX1 and ACoTX1

The CoTX1 and ACoTX1 peptides were obtained by the solid-
phase technique [12] using a peptide synthesizer (model 433A;
Applied Biosystems). Peptide chains were assembled stepwise on
0.25 mmol of Fmoc-amide resin (0.66 mmol of amino group/g)
using 1 mmol of Fmoc-amino acid derivatives. The side-chain
protecting groups used for trifunctional residues were: trityl
for Cys, Asn and Gln; t-buty1 for Ser, Tyr, Thr and Asp;
 pentamethylchromyl for Arg; and t-butyloxycarbonyl for Lys.
The Fmoc-amino acid derivatives were coupled (20 min) to
their hydroxybenzotriazole active esters in N-methylpyrolidone
(4-fold excess). The peptide resins (∼2 g) were each treated for
3 h at 25 °C with a mixture of TFA (trifluoroacetic acid)/water/th-
ionanisole/ethanedithiol (88:5:2:3, v/v) in the presence of
crystalline phenol (2.2 g). After filtration of the mixtures, the
 crude peptides were precipitated and washed by adding cold
diethyl ether. The crude peptides were pelleted by centrifugation
(3000 g; 10 min) and the supernatants were discarded. The
 reduced CoTX1 and ACoTX1 were then dissolved at 0.2 mM
peptide concentrations in 0.2 M Tris/HCl buffer, pH 8.3, and
stirred under air to allow oxidative folding (48 h, 25 °C). The
 crude folded/oxidized peptides were purified by reversed-phase
HPLC (Perkin-Elmer; C_{18} Aquapore ODS 20 μm, 250 mm ×
10 mm) by means of a 60 min linear gradient of 0–35 % buffer
B [0.08 % (v/v) TFA in acetonitrile; where buffer A is 0.1 %
(v/v) TFA in water] at a flow rate of 5 ml/min (λ = 230 nm).
The homogeneity and identity of synthetic CoTX1 (CoTX1)
or ACoTX1 were assessed by (i) analytical C_{18} reversed-phase
HPLC, (ii) amino acid analysis after acidolysis, (iii) Edman
sequencing and (iv) mass determination by MALDI-TOF (matrix-
assisted laser-desorption ionization–time-of-flight) MS.

**Assignment of CoTX1 half-cystine pairings by enzyme-based
cleavage of the peptide**

CoTX1 (500 μg) was incubated with a mixture of trypsin and
chymotrypsin at 10 % (w/w) in 0.2 M Tris/HCl, pH 7.4, for 12 h
at 37 °C. The resulting peptide fragments were then purified by
reversed-phase HPLC (Vydac C_{18}, 5 μm, 4 mm × 150 mm)
with a 60 min linear gradient of 0–60 % buffer B at a flow rate of
1 ml/min (λ = 230 nm), and freeze dried prior to their analyses.
The CoTX1 fragments were hydrolysed by acidolysis (6 M HCl/
phenol) and their amino acid contents were determined (Beckman;
system 6300 amino acid analyser). The peptide fragments were
additionally characterized by MS analysis (RP-DE Voyager;
Perseptive Biosystems), and Edman sequencing using a gas-phase
microsequencer (Applied Biosystems 470A). Under standard
HPLC conditions for analysing phenylthiohydantoin amino acid
derivatives, diphenylthiohydantoin-cystine elutes at a retention
time of 9.8 min.

CD analysis of the CoTX1 peptides

The CD spectra were recorded on a Jasco J-810 dichrograph. A
ratio of 2.20 was found between the positive CD band at 290.5 nm
and the negative band at 192.5 nm. CD spectra were reported as
the absorption coefficient (Δε) per amide. The far-UV CD spectra
were acquired at 20 °C in water between 190 and 260 nm using
0.1 cm-pathlength cell. Data were collected twice at 0.5 nm
intervals with a scan rate of 50 nm/min. As assessed by amino
acid analyses, the concentrations of CoTX1 or ACoTX1 in the
samples were 0.1 mg/ml.

3-D structure determination of CoTX1 in solution by 1H-NMR

NMR spectroscopy

A sample of 0.5 ml of CoTX1 at 5 mM concentration in
water/H_2O (9:1, v/v) at pH 3.0, uncorrected for isotope effects,
was used for recordings of the NMR spectra. Spectral acquisition
of all 1H-NMR data was achieved as described previously [13–
15]. NOESY spectra were acquired using mixing times of 80 and
120 ms. Clean TOCSY was performed with a spin-lock field
strength of 8 kHz and spin-lock time of 80 ms. The amide
proton exchange experiments were recorded immediately after
dissolution of CoTX1 in H_2O. A series of NOESY spectra with
mixing times of 80 ms were recorded at 300 K, the first one for 1 h,
followed by spectra of 10 h each. Furthermore, we obtained the
NOE (nuclear Overhauser effect) build-up curves by successively
recording NOESYs with 50, 150, 200 and 300 ms mixing times
in order to check for spin diffusion.

Data processing

Spectra were processed with Bruker’s UXNMR software, running
on Silicon Graphics Indy R4400 computer. The matrices were
transformed to a final size of 2048 points in the acquisition
dimension and to 1024 points in the other, except for coupling
constant determination for which a 8192 × 1024 matrix was used.
The signal was multiplied by a shifted sine bell window in both
dimensions prior to a Fourier transformation, then a fifth-order
polynomial baseline correction was applied.

Spectral analysis

The identification of amino acid spin systems and the sequential
assignment were achieved using the standard strategy described
by Wüthrich [16], applied with the graphics software XEASY
[17].
Experimental restraints

The integration of NOE data was achieved by measuring the peak volumes. On the basis of known distances in regular secondary structures \(d_{\alpha \beta} = 0.23 \text{ nm}\) and \(d_{\beta \gamma} = 0.33 \text{ nm}\) between two strands of an anti-parallel \(\beta\)-sheet; where \(\text{HN}\) is amide proton), these volumes were translated into upper limit distances by the CALIBA (calibration of NOE intensity versus distance bonds) routine [18] of DIANA (distance geometry algorithm for NMR) [19] software. All parameters used in the calculations were identical to those used in [20]. The value of the \(J_{\text{HN-co}}\) coupling constant was obtained from the first local minimum. The \(J_{\text{HN-co}}\) coupling constants were translated into angle restraints using HABAS from the DIANA [19].

Structure calculations

Distance geometry calculations were performed with the variable target function program DIANA 2.8. A preliminary set of 1000 structures was initiated including only intraresidual and sequential upper limit distances. From these, the 500 best were selected for a second round, including medium-range distances, and the resulting 250 best for a third one, with the whole set of upper limit restraints, and some additional distance restraints, used to define the disulphide bridges (i.e. \(d_{\alpha \beta} = 0.21 \text{ nm}\), \(d_{\beta \gamma}\) and \(d_{\gamma \delta} = 0.31 \text{ nm}\)). Starting from the 50 best structures, a REDAC (redundant dihedral angle constraints) strategy [19] was used in the last step to include the dihedral restraints together with the additional distance restraints coming out from hydrogen bonds. Final energy refinement was achieved by CNS (crystallography and NMR system; a software suite for macromolecular structure determination) [25]. The visual analysis was carried out with Turbo-Frodo software [21]. The geometric quality of the resulting CoTX1 structures was assessed using PROCHECK 3.3 and PROCHECK-NMR software [22].

Molecular modelling of ACoTX1 and the voltage-gated K\(^+\) channels (S5-H5-S6 pore domains)

The molecular modelling of K\(_\text{s}\) channel subtypes (S5-H5-S6 pore domains) has been achieved on the basis of the crystal structure of part of the KcsA channel solved at 2.0 Å resolution (PDB accession number 1K4C) [23]. The amino acid sequences of domains S5-H5-S6 of the rat voltage-gated K\(^+\) channel \(\alpha\)-subunits [24] were aligned with region 26–125 of KcsA. The sequence identities between the K\(_\text{s}\)-type ion channel regions and KcsA are \(\approx 31\%\). For the regions comprised between the two transmembrane segments S5 and S6, the sequence identities with KcsA were \(\approx 47\%\). Based on the high degree of similarity, models of the S5-H5-S6 regions of mouse K\(_1.1\) (NCBI accession number P16388), rat K\(_1.2\) (NCBI accession number P15386) and mouse K\(_1.3\) (NCBI accession number P16390) channels were generated by using the Turbo-Frodo software [21]. After Clustal alignments (http://www.ebi.ac.uk/clustalw), the amino acid residue mutations were introduced in the KcsA channel, and the structures of the corresponding K\(_\text{s}\) channels were minimized by using the CNS software [25]. The final molecular models of the S5-H5-S6 regions of the K\(_1.1\), K\(_1.2\) and K\(_1.3\) channels adopt 3-D structures that are similar to that of the KcsA channel. Of note, the ion channel pore region is formed by four S5-H5-S6 domains.

To create a molecular model of ACoTX1, amino acid residue mutations were performed within the amino acid sequence of CoTX1 (PDB accession number 1PV). The model of ACoTX1 was found to be closely related to the 3-D structure of CoTX1 in solution. The final minimized molecular model of ACoTX1 showed an \(\alpha/\beta\) scaffold, as found in most scorpion toxins [3].

Electrostatic calculations

The electrostatic calculations together with the dipole moments and related analysis were performed by using the GRASP software [26] running on Silicon Graphics Workstations. The potential maps were calculated with a simplified Poisson–Boltzmann solver [27] on the basis of an AMBER-derived parameter file.

Docking of CoTX1 peptides on to K\(_{1.2}\) channel

The molecular interaction simulations were performed using the BiGGER docking program [28]. The algorithm used by BiGGER performs a complete and systematic search for surface complementarity (both geometry complementarity and amino acid residue pairwise affinities are considered) between two potentially interacting molecules, and enables an implicit treatment of molecular flexibility. In each case, a population of 1000 candidate protein–protein-docked geometries were selected by BiGGER. In a subsequent step, the putative docked structures were ranked using an interaction scoring function, which combines several interaction terms that are thought to be relevant for the stabilization of protein complexes: geometric packing of the surfaces, electrostatic interactions, desolvation energy and pairwise propensities of the amino acid residue side chains to contact across the molecular interface. In the \(ab\) initio simulations, the entire molecular surface was searched without any additional information regarding the binding sites. Among the 1000 candidate protein–protein-docked geometries selected, the five best scoring CoTX1–K\(_{1.2}\) or ACoTX1–K\(_{1.2}\) channel complexes were further treated with the Turbo-Frodo software, also taking into account the deduced functional maps of voltage-gated K\(^+\) channel-acting scorpion toxins (for review see [29]). Finally, a rigid-body minimization was used to minimize the selected complexes. The best energy solutions, corresponding to the most favourable CoTX–K\(_{1.2}\) and ACoTX–K\(_{1.2}\) channel complexes were retained. The \(de\) visu analysis was done using Turbo-Frodo software, and the geometric quality of the structures was assessed by PROCHECK 3.3 [22].

Neurotoxicity of CoTX1 peptides \(in\) vivo

The peptides were tested \(in\) vivo for toxicity by determining the 50 % lethal dose (L\(_{50}\)) after intracerebroventricular injections into 20 g C57/BL6 mice (animal testing agreement number 006573, delivered by the Ministère de l’Agriculture et de la Pêche, France). Groups of six mice per dose were injected with 5 \(\mu\)l of CoTX1 or ACoTX1 peptide solution containing 0.1 % (w/v) BSA and 0.9 % (w/v) NaCl.

Inhibition of \(^{125}\)I-apamin binding to SKCa channels from rat brain synaptosomes by CoTX1 peptides

Rat brain synaptosomes were prepared as described previously [30]. Aliquots of 50 \(\mu\)l of 0.1 nM \(^{125}\)I-apamin were added to 400 \(\mu\)l of synaptosome suspension (0.4 mg of protein/ml). Samples were incubated for 1 h at 4 °C with 50 \(\mu\)l of one of a series of concentrations of CoTX1 or ACoTX1 \([5 \times 10^{-4}–10^{-14} \text{ M}]\) in 500 \(\mu\)l final volume. The incubation buffer was 25 mM Tris/HCl/10 mM KCl, pH 7.2. The samples were
centrifuged and the resulting pellets were washed three times in 1 ml of the same buffer. Bound radioactivity was determined by gamma counting (Packard Crystal II). The values expressed are the means ± S.D. from triplicate experiments. Non-specific binding, less than 10 % of the total binding, was determined in the presence of an excess (10 nM) of unlabelled apamin.

K⁺ current blockage efficacy of CoTX1 peptides (electrophysiology)

Cells

Stably transfected mammalian cell lines expressing either mouse K₁.1.1 (mK₁.1.1), rat K₁.1.2 (rK₁.1.2), mouse K₁.3.3 (mK₁.3.3), human K₂.5.1 (hK₂.5.1) or mouse K₃.1.1 (mK₃.1.1) channels were used [31]. The cell lines were maintained in Dulbecco’s modified Eagle’s medium containing 4 mM l-glutamine, 1 mM sodium pyruvate (Gibco, Paisley, Scotland, U.K.), 10 % (v/v) heat-inactivated fetal calf serum (PAA Laboratories, Linz, Austria) and 100 μg/ml G418 (Gibco; for cell lines expressing mK₁.1.1, rK₁.1.2, and mK₃.1.1, the tsA cell line expressing hIKCa1 (human IKCa1) channel was a kind gift from D. C. Devor (University of Pittsburgh, Pittsburgh, PA, U.S.A.). The Shaker B Δ44 channel expression construct [a construct expressing a Shaker B channel formed by α subunits truncated at their N-terminal extremity (region 1–44); a kind gift from Dr S. H. Heinemann, University of Jena, Jena, Germany] was linearized and transcribed in vitro. The cRNA, together with a fluorescent FITC dye, was injected into rat basophilic leukaemia cells. Fluorescent cells were visualized after 4–6 h of incubation, and Shaker B Δ44 K⁺ currents were measured.

Electrophysiological recordings

All the experiments were carried out at room temperature (22–25 °C) using the whole-cell recording mode of the patch–clamp technique [32,33]. Cells were bathed with mammalian Ringer’s solution containing 160 mM NaCl, 4.5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, and 10 mM Hepes, pH 7.4 (with NaOH), with an osmolarity of 290–320 mOsm. When CoTX1 peptides were applied, 0.1 % BSA was added to the Ringer’s solution. A simple syringe-driven perfusion system was used to exchange the bath solution in the recording chamber. Electrodes were pulled from glass capillaries (Science Products, Hofheim, Germany) in three stages, and fire-polished to resistances measured in the bath of 2.5–5 MΩ. The internal pipette solution used for measuring voltage-gated K⁺ currents contained 155 mM KF, 2 mM MgCl₂, 10 mM Hepes, and 10 mM EGTA, pH 7.2 (with KOH), with an osmolarity of 290–320 mOsm. For measuring K⁺ currents through IKCa1 channels, an internal pipette solution containing 135 mM potassium aspartate, 8.7 mM CaCl₂, 2 mM MgCl₂, 10 mM EGTA and 10 mM Hepes, pH 7.2 (with KOH), with an osmolarity of 290–320 mOsm (free [Ca²⁺] = 10⁻⁶ M), was used. Membrane currents were measured with an EPC-9 patch-clamp amplifier (HEKA Elektronik, Lambrecht, Germany) interfaced to a Macintosh computer running acquisition and analysis software (Pulse and PulseFit). Capacitive and leak currents were subtracted using the P/10 procedure of this software. Series resistance compensation (>80 %) was employed if the current exceeded 2 nA. The holding potential in all experiments was −80 mV. Data analysis was performed in IgorPro, and Kd values were deduced by fitting a modified Hill equation \(I_{\text{control}}/I_{\text{test}} = 1/[1 + ([\text{toxin}]/K_d)] \), with a Hill coefficient of 1, to normalized data points obtained at more than four different CoTX1 peptide concentrations. The value for each peptide concentration was the mean from at least three measurements.

RESULTS AND DISCUSSION

CoTX1, a member of a new family of scorpion toxins

CoTX1 belongs to a new family of α-βTx scorpion toxins (α-KTx9) [1,2]. As shown in Figure 1(A), CoTX1 shares at most 44 % amino acid sequence identity with representative toxins of each α-KTx family. Except toxins of the four-disulphide-bridged α-KTx6 family, CoTX1 is cross-linked by three disulphide bridges similarly to other α-KTx members. CoTX1 displays the consensus sequence ...C₁...C₂...XXXC₁... (G/A/S)X₁...C₂X₆... of scorpion toxins [3]. It is therefore expected to fold according to the common α/β scaffold with the disulphide bridge framework of the C₁-C₆, C₂-C₅ and C₃-C₄.
type. Such a scaffold consists of a helical structure connected to an anti-parallel β-sheet by two disulphide bridges. CoTX1 has a shorter N-terminal domain than toxin members of the α-KTx1–4 families indicating that it possesses a two- rather than a three-stranded β-sheet. The primary structures of both CoTX1 and its analogue ACoTX1 are presented in Figure 1(B). The two residue substitutions made in CoTX1 amino acid sequence are located in a domain that presumably forms a helical structure [1].

Chemical syntheses and characterizations of CoTX1 and its analogue ACoTX1

Solid-phase chemical syntheses of CoTX1 and ACoTX1 were achieved stepwise on 0.25 mmol of Fmoc-amide resin by means of an Fmoc/t-butyl strategy [12]. In both cases, the amount of target peptide linked to the resin was ≈ 0.2 mmol, indicating an 80 % yield of peptide assemblies. Accordingly, a relative homogeneity of each crude reduced peptide was obtained after TFA treatment, as assessed by analytical C18 reversed-phase HPLC (see Figure 2A, which illustrates the case of CoTX1). Finally, the crude peptides were folded/oxidized for 48 h under alkaline conditions, and the main oxidized species (CoTX1 and ACoTX1) were purified to > 99 % homogeneity by preparative C18 reversed-phase HPLC. Amino acid analyses of the purified products show amino acid ratios that are consistent with the values deduced from their primary structures (results not shown). The MS analyses performed on the purified products gave experimental molecular masses (M+H)+ of 3731.4 and 3752.4, which are similar to the deduced molecular masses (M+H)+ of 3731.8 and 3752.2 calculated for CoTX1 and ACoTX1, respectively. The yield of each chemical synthesis, which combines yields of peptide assembly, final TFA treatment, oxidative folding and purification, was ≈ 4 %.

Table 1 Chemical shifts of CoTX1 at 300 K

<table>
<thead>
<tr>
<th>Residue</th>
<th>HN</th>
<th>HCγ</th>
<th>HCδ</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>7.74</td>
<td>4.08</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td>8.37</td>
<td>4.25</td>
<td>1.95</td>
<td>HCD1, 0.86; HCD2, 0.86</td>
</tr>
<tr>
<td>C3</td>
<td>8.30</td>
<td>4.40</td>
<td>2.76, 2.47</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td>8.73</td>
<td>4.22</td>
<td>1.99</td>
<td>HCD1, 1.02; HCD2, 0.91</td>
</tr>
<tr>
<td>Y5</td>
<td>9.07</td>
<td>4.03</td>
<td>3.34, 2.92</td>
<td>HC2, 6.95; HC3, 7.09</td>
</tr>
<tr>
<td>R6</td>
<td>8.70</td>
<td>3.55</td>
<td>1.78, 1.66</td>
<td>HC4, 1.53, 1.53; HC5, 3.15, 3.15; HN2, 5.67</td>
</tr>
<tr>
<td>T7</td>
<td>6.72</td>
<td>3.92</td>
<td>3.97</td>
<td>HC5, 1.15</td>
</tr>
<tr>
<td>C8</td>
<td>8.31</td>
<td>4.46</td>
<td>3.19, 2.45</td>
<td></td>
</tr>
<tr>
<td>D9</td>
<td>8.61</td>
<td>3.88</td>
<td>2.49, 2.26</td>
<td></td>
</tr>
<tr>
<td>K10</td>
<td>7.48</td>
<td>3.71</td>
<td>1.79, 1.54</td>
<td>HCD2, 2.90; HN2, 7.53</td>
</tr>
<tr>
<td>D11</td>
<td>8.54</td>
<td>3.44</td>
<td>2.95, 2.76</td>
<td></td>
</tr>
<tr>
<td>C12</td>
<td>8.60</td>
<td>4.27</td>
<td>2.60, 2.48</td>
<td></td>
</tr>
<tr>
<td>K13</td>
<td>8.17</td>
<td>4.55</td>
<td>1.86, 1.74</td>
<td>HCD3, 3.01; HC4, 1.55, 1.33; HN3, 7.64</td>
</tr>
<tr>
<td>R14</td>
<td>8.28</td>
<td>4.10</td>
<td>2.02, 2.02</td>
<td>HC2, 3.24; HC3, 1.75; HN3, 7.18</td>
</tr>
<tr>
<td>R15</td>
<td>7.46</td>
<td>4.35</td>
<td>1.98, 1.89</td>
<td>HC3, 3.20, 2.40; HC4, 1.74; HN4, 6.67, 7.13</td>
</tr>
<tr>
<td>G16</td>
<td>7.71</td>
<td>3.76, 4.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y17</td>
<td>7.91</td>
<td>4.53</td>
<td>3.20, 2.34</td>
<td>HCD2, 6.67, 6.90</td>
</tr>
<tr>
<td>R18</td>
<td>8.33</td>
<td>3.60</td>
<td>1.27, 1.27</td>
<td>HCD1, 2.99; HC1, 0.57; HN1, 5.65</td>
</tr>
<tr>
<td>S19</td>
<td>7.67</td>
<td>4.27</td>
<td>1.95, 1.88</td>
<td></td>
</tr>
<tr>
<td>C20</td>
<td>8.73</td>
<td>4.13, 5.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K21</td>
<td>8.94</td>
<td>4.53</td>
<td>1.84, 1.84</td>
<td>HC1, 1.54, 1.47, 1.33; HCD1, 2.77; HN1, 7.32</td>
</tr>
<tr>
<td>C22</td>
<td>8.34</td>
<td>5.14</td>
<td>2.79, 2.80</td>
<td></td>
</tr>
<tr>
<td>F23</td>
<td>9.06</td>
<td>3.88</td>
<td>1.73</td>
<td>HCD1, 1.14, 1.32; HCD2, 0.82</td>
</tr>
<tr>
<td>N24</td>
<td>9.52</td>
<td>4.26</td>
<td>2.99, 2.71</td>
<td></td>
</tr>
<tr>
<td>N25</td>
<td>8.90</td>
<td>4.18</td>
<td>3.12, 2.74</td>
<td>HN2, 6.85, 7.55</td>
</tr>
<tr>
<td>A26</td>
<td>7.95</td>
<td>4.54</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>C27</td>
<td>8.65</td>
<td>4.65</td>
<td>2.96, 2.55</td>
<td></td>
</tr>
<tr>
<td>K28</td>
<td>9.22</td>
<td>4.40</td>
<td>1.70, 1.62</td>
<td>HCD1, 1.48, 1.00; HCD2, 2.76, 2.70; HN2, 7.40</td>
</tr>
<tr>
<td>C29</td>
<td>8.05</td>
<td>5.30</td>
<td>2.03, 1.16</td>
<td></td>
</tr>
<tr>
<td>Y30</td>
<td>8.49</td>
<td>4.46</td>
<td>2.85, 2.67</td>
<td>C”, 6.60, 7.19</td>
</tr>
<tr>
<td>R31</td>
<td>4.86</td>
<td>2.35, 2.28</td>
<td>HCD2, 2.17, 2.00; HCD3, 4.10, 4.06</td>
<td></td>
</tr>
<tr>
<td>Y32</td>
<td>8.46</td>
<td>4.19</td>
<td>3.09, 2.84</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Analyses of CoTX1 secondary structures

Surveys of the 1H-NMR sequential assignments of CoTX1. The intensities of sequential NOE, extracted from NOESY with mixing times of 80 ms, are represented by the thickness of bars. The secondary structures of CoTX1, α-helix (red) and β-sheet (blue), are summarized at the bottom.
Figure 3 3-D structure of CoTX1 in solution, as determined by 1H-NMR

(A) Distribution of NOE constraints per residue along the amino acid sequence of CoTX1. The NOE constraints are separated into intra-residue (white), sequential (light grey), medium-range (dark grey) and long-range (black). (B) Local values of averaged r.m.s.d. (Å) calculated from the 20 best CoTX1 solution structures. The CoTX1 backbone and residue side chains are shown in black and grey, respectively. (C) Stereo views of the 20 best molecular CoTX1 structures (only backbone atoms are displayed) superimposed for best fit. N-ter and C-ter correspond to N- and C-terminal extremities. (D) Molscript ribbon drawing of the averaged minimized CoTX1 structure. The α-helix, anti-parallel β-sheet, Cα backbone trace and disulphide bridges are shown in red, blue, yellow and green, respectively. The six half-cystine residues are numbered according to their positions in the CoTX1 amino acid sequence. Other residues noted are those that start or end a secondary structure.

Disulphide bridge pattern of CoTX1

To assign CoTX1 half-cystine pairings, the peptide was treated by a mixture of trypsin and chymotrypsin, and the resulting fragments were purified by HPLC and characterized by amino acid content determination, Edman sequencing and MS analysis (Figure 2B). The half-cystine pairings were thereby mapped as Cys1–Cys25, Cys4–Cys27 and Cys12–Cys29. The disulphide bridge organization of CoTX1 is therefore of the C1–C4, C2–C5 and C3–C6 type, a pattern commonly found in three-disulphide-bridged scorpion toxins [29].

CD analysis

The CD spectra of CoTX1 and ACoTX1 were recorded to assess their secondary structures (results not shown). Measurements were performed at a wavelength ranging from 185 to 260 nm. The data obtained correspond essentially to $\pi - \pi^*$ and $n - \pi^*$ transitions of the amide chromophores of the peptide backbones [34]. The CD spectra show large negative contributions between 207 and 230 nm, and large positive contributions between 190 and 200 nm, indicating the presence of both α-helical and β-sheet structures. These data are coherent with peptide backbone folding according to an α/β scaffold [3] for both CoTX1 and ACoTX1.

Determination of the 3-D solution structure of CoTX1

Figure 3 illustrates the determination of the 3-D solution structure of CoTX1. The qualitative analysis of sequential NOE intensities for secondary structure determination, together with the pattern of medium-range constraints, allowed us to predict a helical conformation between Tyr4 and Gly15 for CoTX1. There are some strong sequential HN(i) – HN(i + 1), weak or no Hα(i) – HN(i + 1), and a stretch of medium-range NOE in this region for CoTX1. On the basis of the qualitative analyses of CoTX1, we detected two extended fragments, one from Arg18 to Tyr20, and another from Ala26 to Pro31 [strong Hα(i) – HN(i + 1)] together with weak HN(i) – HN(i + 1) sequential NOE]. These two strands are connected by a tight turn centred on Asn24 and Asp25. The N-terminal fragment is an extended conformation from Ala1 to Val2. For structure calculations, sequential assignments of CoTX1 were achieved first by the standard method of Wüthrich [16], and second, most protons were identified and the resonance frequencies determined (Table 1). The structures of CoTX1 were determined by using 348 NOE-based distance restraints (135 intra-residue, 82 sequential, 52 medium-range and 79 long-range restraints). In addition, 28 hydrogen-bond...

Table 2 Structural statistics of the 20 best structures

<table>
<thead>
<tr>
<th></th>
<th>(DG)</th>
<th>1<–<DG ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone (C, Cα, N)</td>
<td>0.52 ± 0.13</td>
<td>31.10 ± 4.81</td>
</tr>
<tr>
<td>All heavy atoms r.m.s.d. (Å)</td>
<td>1.14 ± 0.15</td>
<td>49.4 ± 1.33</td>
</tr>
<tr>
<td>Energies (kcal/mol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>29.26 ± 5.96</td>
<td>31.10 ± 4.81</td>
</tr>
<tr>
<td>Bonds</td>
<td>1.21 ± 0.42</td>
<td>1.7 ± 0.26</td>
</tr>
<tr>
<td>Angles</td>
<td>17.46 ± 3.06</td>
<td>17.59 ± 1.64</td>
</tr>
<tr>
<td>Improper</td>
<td>0.73 ± 0.28</td>
<td>0.77 ± 0.18</td>
</tr>
<tr>
<td>Van der Waals (repel)</td>
<td>5.88 ± 3.52</td>
<td>6.53 ± 2.16</td>
</tr>
<tr>
<td>NOE</td>
<td>4.94 ± 0.51</td>
<td>4.94 ± 1.33</td>
</tr>
<tr>
<td>r.m.s.d. from ideal value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>1.57 × 10^-3 ± 2.0 × 10^-4</td>
<td>1.6 × 10^-3 ± 1.6 × 10^-4</td>
</tr>
<tr>
<td>Angles (°)</td>
<td>0.317 ± 0.02</td>
<td>0.35 ± 0.016</td>
</tr>
<tr>
<td>Improper (°)</td>
<td>0.12 ± 0.02</td>
<td>0.13 ± 0.015</td>
</tr>
<tr>
<td>Dihedral (°)</td>
<td>30.48 ± 2.3</td>
<td>30.63 ± 1.30</td>
</tr>
<tr>
<td>r.m.s.d. from restraints</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOE (Å)</td>
<td>0.014 ± 0.0025</td>
<td>0.014 ± 0.0019</td>
</tr>
</tbody>
</table>

Maximum violation (DG) and 1<–<DG >:

<table>
<thead>
<tr>
<th></th>
<th>(DG)</th>
<th>1<–<DG ></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds > 0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Angles > 5°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Improper > 5°</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Van der Waals < 1.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dihedral > 30°</td>
<td>29</td>
<td>24.73 ± 2</td>
</tr>
<tr>
<td>Violation from restraints</td>
<td>0.29</td>
<td>0.05</td>
</tr>
</tbody>
</table>

© 2004 Biochemical Society
restraints (derived from hydrogen-exchange data) have been included, as well as nine distance restraints derived from the three disulphide bridges. Altogether, the final experimental set corresponds to 12 constraints per residue on average (Figure 4A). The structures were calculated by using a hybrid distance geometry-simulated annealing protocol using distance geometry algorithm for NMR (DIANA [19]) and CNS [25]. The best-fit superimposition of backbone atoms for 20 models gives r.m.s.d. (root mean square deviation) values of 0.52 Å for backbone atoms and 1.14 Å if all known hydrogen atoms are included (Figure 4B; Table 2). The local r.m.s.d. values are represented on Figure 4(B) and show that the precision of the calculation is quite constant all along the CoTX1 amino acid sequence. A summary of the structural statistics is given in Table 2. All the 20 CoTX1 solution structures (Figure 4C) have good non-bonded contacts and covalent geometry, as evidenced by low values of CNS energy terms. The correlation with the experimental data shows no NOE-derived distance violation greater than 0.2 Å. Also, the analysis of the Ramachandran plot shows (according to PROCHECK standard nomenclature) 83% of the residues in the most favoured regions, 17% in the additional favoured regions and none in the generously allowed or disallowed regions. The 3-D structures (PDB accession code 1PJV) of CoTX1 consist of an homogeneous family, sharing the same fold: a two-stranded β-sheet and an α-helix (Figure 4D). The precise localization of these secondary structures has been defined by PROCHECK-NMR, which indicates the presence of a α-helix running from Tyr5 to Arg14 (two turns of helix), and a double-stranded antiparallel β-sheet made of the Arg18–Ile23 and Ala26–Tyr30 portions. This β-sheet is right-hand twisted and stabilized by six hydrogen bonds. The α-helix is connected to the β-sheet by a tight turn formed by the region Arg15–Tyr17. The two strands of the β-sheet are connected by a well-defined type I β-turn formed by the Asn24 and Asn25 residues (Figure 4D). Of note, the angle between the axis of the α-helix and that of the β-sheet is close to 0°. These secondary structures fully agree with the experimental data presented in Figure 3(B) and Figure 4(A). The current 3-D solution structure determination of CoTX1 concerns the synthetic molecule. It most probably also reflects the 3-D structure of the native CoTX1 that could not be determined due to its current unavailability. However, several points argue in favour of their full identity. First, the 3-D solution structure of synthetic CoTX1 is remarkably similar to the molecular model previously generated by Selisko and co-workers [1]. Second, the oxidative folding process in vitro of reduced synthetic CoTX1 resembles those of other K+ channel-acting toxins of known 3-D structures [6,9,10].
Figure 6 Comparison of CoTX1 interacting surface with those of other representative members of the α-KTx family

Functional maps depicting amino acid residues that are key for toxin interaction with Kv-type channels (top row, β-sheet side), hydrophobic surfaces (middle row, β-sheet side) and ribbon representations (bottom row) of CoTX1 and other Kv channel-acting toxins representative (9, 1–4, 6 and 7) of the α-KTx family. The dipole moments of representative toxins (red) are compared with that of CoTX1 (green). Colour codes used for the amino acid residues are as in Figure 5(A). Note that amino acid residues belonging to the basic ring of CoTX1 are omitted for the sake of comparison with other toxins. MTX, maurotoxin (a scorpion toxin from Scorpio maurus palmatus venom); AgTX2, agitoxin 2 (a scorpion toxin from Leiurus quinquestriatus hebraeus); other toxin names are defined in Figure 1.

Third, the half-cystine pairing pattern experimentally determined for folded/oxidized synthetic CoTX1 is identical to those of other three-disulphide-bridged scorpion toxins acting on K⁺ channels (i.e. C₁-C₄, C₃-C₅ and C₆-C₇), strongly suggesting the occurrence of a correct folding in vitro. Finally, we also evidenced an α/β-scaffold for synthetic CoTX1, consistent with all known 3-D solution structures of related toxins.

Surface analysis of CoTX1

The surface of CoTX1 is predominantly composed of polar and hydrophilic amino acid residues. Indeed, all four Lys, four Arg, two Asn and two Asp residues are exposed to the solvent (Figure 5A). All the polar residues are in contact with the solvent, although no well-defined salt bridges can be detected at the CoTX1 surface. In the complete bundle of NMR solutions, most of the exposed residue-side-chains are mobile (Figures 4B and 4C). A number of hydrophobic residues (Ala1, Val2, Val4 and Ile23) form a solvent-exposed hydrophobic cluster on one side of the molecule. Another hydrophobic cluster, located at the opposite side of CoTX1, is composed of Tyr17, Tyr30 and Tyr35, packed against Pro31.

The dipole moment of CoTX1 resulting from its charge-distribution anisotropy is shown by an arrow on Figure 5(B). It is directed from the centre of the molecule and oriented from the lowest to the highest positive charge density. The size of the arrow is proportional to the intensity of the anisotropy. It emerges from the molecule through a basic-rich surface (Arg⁵, Lys¹⁰, Lys¹³, Arg¹⁴ and Lys³¹; only one acidic Asp⁴ residue); the opposite face being poorly basic (Arg¹⁵ and Lys²⁸; and one acidic Asp⁹ residue).

Structural comparison between CoTX1 and toxins from other α-KTx families

The comparison of the 3-D structure of CoTX1 with those of other structurally well-characterized toxins from the diverse families highlights the conservation of five specific amino acid residues (Lys²¹, Ile²³, Asn²⁴, Lys²⁸ and Tyr³⁰) reportedly critical for voltage-gated K⁺ channel blockage (Figure 6, top row; for a review see [29]). This observation is in line with the ability of CoTX1 to block Shaker B and K₁.1 channels [1]. One striking difference carried by CoTX1 over other toxins is the presence of two hydrophobic residue clusters located at either side of its functional dyad (Lys²¹ and Tyr³⁰; Figure 6, middle row).
property, combined with a longer α-helix, makes CoTX1 less globular than other characterized toxins. It is noteworthy that some hydrophobic clusters can also be found in other toxins, although they are generally not distributed in such a diametrically opposite manner. An analysis of the dipole moment of CoTX1 reveals that it exhibits a charge anisotropy similar to those of toxins active on both Kᵥ and SKCa K⁺ channels (Figure 6, bottom row).

Apart from the toxin functional maps, it has also been proposed that the peptide dipole moments could be pivotal for K⁺ channel recognition and blockage [11]. To investigate this point, we designed and chemically synthesized a structural analogue of CoTX1, termed ACoTX1, with the aim of decreasing the intensity but not the orientation of the dipole moment. ACoTX1 presents two amino acid residue substitutions as compared with CoTX1, i.e. Pro² and Gln⁷ instead of Thr² and Asp⁷. The residue mutation from Asp⁷ to Gln⁷ affects the intensity of the dipole moment by altering an amino acid residue that is located at the centre of the face opposite to the β-sheet interacting surface. In addition, Thr² was replaced by Pro² to eliminate the potential contribution of the hydroxyl side-chain of Thr to the dipole moment. A Pro residue was selected because (i) of its neutral nature regarding the dipole moment and (ii) it restores the RPCQ motif found in Pi1, a toxin that potently acts on SKCa channels [6].

Modelling structure of ACoTX1

To generate a molecular model of ACoTX1, residue replacements were performed within the 3-D structure of CoTX1 using the Turbo-Frodo software [21]. The structure of ACoTX1 was refined by molecular annealing dynamics, followed by energy minimization using the CNS software. Figure 5(C) illustrates that the refined molecular model of ACoTX1 has a similar distribution of toxin key residues for Kᵥ channel blockage. Also, the distribution of the two clusters of hydrophobic residues are maintained within ACoTX1 (Figure 5D). However, the molecular dipole moment presents the same orientation as that of CoTX1, but is markedly decreased in intensity (Figure 5E). This situation appears to be convenient to address the relative importance of the dipole moment in toxin bioactivity.

Bioactivities of CoTX1 and ACoTX1

CoTX1 and ACoTX1 were tested in vivo for neurotoxicity by intracerebroventricular injections in C57/BL6 mice. Both peptides are lethal in mice, with LD₅₀ values of 500 ± 45 ng/mouse (CoTX1, n = 48 mice) and 300 ± 32 ng/mouse (ACoTX1, n = 48 mice). This lethal activity is 10–20-fold less potent than other known three-disulphide-bridged scorpion toxins [9,10]. Of note, ACoTX1 displays an increased lethal activity compared with its natural counterpart.

To investigate the pharmacological actions of CoTX1 and ACoTX1, we first tested their abilities to compete with [¹²⁵I]-apamin known three-disulphide-bridged scorpion toxins [9,10]. Of note, mice). This lethal activity is 10–20-fold less potent than other known three-disulphide-bridged scorpion toxins [9,10]. Modelled structure of ACoTX1

(A) Concentration-dependent inhibition of binding of [¹²⁵I]-apamin to rat brain synaptosomes by unlabelled apamin (○), CoTX1 (*) or ACoTX1 (□) in a competition assay. Bₒ is the binding of [¹²⁵I]-apamin without addition of any other ligand, and B is the binding in the presence of the indicated concentrations of competitor. Non-specific binding, less than 8 % total binding, was subtracted for the calculation of ratios. When absent, error bars are within symbol size. The data were fitted by the equation \(y = y_s + a[1 + \exp(-(x - B_{50})/b)] \). The B_{50} values were 7.2 ± 0.2 mM (CoTX1), 4.8 ± 0.2 mM (ACoTX1) and 15.6 ± 3 mM (unlabelled apamin). Binding experiments have been performed in triplicate. (B) Concentration-response curve for inhibition of IKCa1 currents by increasing concentrations of either CoTX1 (○) or ACoTX1 (□). Data points are means ± S.D. from at least three experiments. The data were fitted by a modified Hill equation \((I_{max}/I_{app}) = 1/(1 + ((peptide/K_d)) \) with a Hill coefficient of 1, revealing a K₅₀ of 484 ± 62 mM for CoTX1 and 73 ± 7 mM for ACoTX1.

We also tested the effects of both peptides on voltage-gated K⁺ channels expressed in mammalian cell lines (Figure 8). Dose–response curves were obtained for rat Kᵥ1.2, mouse Kᵥ1.3 and Kᵥ1.1, and Shaker B Δ44 K⁺ channels. The K₅₀ values obtained for CoTX1 were 27 ± 4 mM (Kᵥ1.2), 5.3 ± 1.3 μM (Kᵥ1.3), 24.4 ± 4 μM (Kᵥ1.1) and 1.0 ± 0.1 μM (Shaker B Δ44). The K₅₀ value obtained for synthetic CoTX1 effect on Shaker B Δ44 is close to the value reported for native CoTX1 effect on Shaker B (reported K₅₀ value of 0.7 μM [1]). In contrast, we report a lower affinity (≈49-fold) for mouse Kv1.1 channels than the one reported by Selisko and collaborators [1]. This difference may be attributed to the distinct cell expression system used (mammalian cell line versus Xenopus oocytes). In comparison, ACoTX1 is significantly more active than CoTX1 (up to 20-fold) on these channels, with K₅₀ values of 1.9 ± 0.2 mM (Kᵥ1.2), 260 ± 10 mM (Kᵥ1.3), 7.4 ± 0.9 μM (Kᵥ1.1) and 88 ± 23 mM (Shaker B Δ44).
Figure 8 Blocking efficacies of CoTX1 and ACoTX1 towards voltage-gated K+ channel subtypes

(A) Dose–response curves for rat Kv1.2 K+ current inhibition by CoTX1 (●) and ACoTX1 (○). Rat Kv1.2 K+ channels were expressed in mammalian cells and K+ currents recorded under the whole-cell mode of the patch clamp technique. K+ currents were obtained by 200 ms depolarization from a holding potential of −80 to 40 mV. The data were fitted by a modified Hill equation as shown in the legend to Figure 7, revealing Kd values of 27 ± 4 nM for CoTX1 (n = 20 cells) and 1.9 ± 0.2 nM for ACoTX1 (n = 29 cells). (B) As for (A) but mouse Kv1.3 channel. The fit by the modified Hill equation provides Kd values of 5.3 ± 1.3 µM for CoTX1 (n = 7 cells) and 260 ± 10 nM for ACoTX1 (n = 14 cells). (C) As in (A) but mouse Kv1.1 channel. Kd values were 24.4 ± 4 µM for CoTX1 (n = 8 cells) and 7.4 ± 0.9 µM for ACoTX1 (n = 10 cells). (D) As in (A) but Shaker BΔ44 K+ channels expressed in rat basophilic leukaemia cells. Kd values were 1.0 ± 0.1 µM for CoTX1 (n = 7 cells) and 88 ± 23 nM for ACoTX1 (n = 15 cells).

Both peptides were also evaluated on human K1.5 and mouse Kv3.1 channels and were found to be inactive at concentrations in the micromolar range. Two points should be noted from the pharmacological data. First, ACoTX1 was designed to introduce the RXCQ motif in CoTX1, which supposedly should improve its affinity for SKCa channels. This was not the case, suggesting that the motif is not sufficient per se to improve the affinity of the peptide for SKCa channels. Second, the two mutations introduced in ACoTX1 were chosen to affect the CoTX1 dipole moment in a way that should have decreased its activity on K+ channels [11]. The opposite result was obtained, suggesting that charge anisotropy of CoTX1 is unlikely to be key for its bioactivity on K+ channels.

Docking of CoTX1 on to rat Kv1.2 channel

To examine the interaction between CoTX1 and rKv1.2 at the molecular level, we generated a model of Kv1.2 to allow a docking simulation of CoTX1 on this channel. Kv1.2 was selected for docking simulations over other K+ channels because of its high-affinity interaction with CoTX1.

We first performed a Blastp (version 2.2.5; http://us.expasy.org/tools/blast/) search against the whole Protein Data Bank, to select the correct template to generate a model of the rKv1.2 channel (S5-H5-S6 region). The KcsA [23] and KvAP [37] primary structures (Swiss-Prot codes 1BL8 and 1ORS) showed the best E-Value scores for rKv1.2. Similar models of Kv1.2 were obtained using either KcsA or KvAP as a template. In the following description of the results, we exclusively report data generated with KcsA as template. The 3-D structure of CoTX1 in solution, described herein, and the molecular model of ACoTX1, were used in docking experiments with the rKv1.2 model (S5-H5-S6 region) generated according to the procedures described in the Materials and methods section. Figure 9 illustrates the result of the docking simulation between CoTX1 and rKv1.2. According to the docking model, the CoTX1–Kv1.2 complex is stabilized by four salt bridges between the side chains of three Asp355 and one Asp363 from distinct rKv1.2 α-subunits (Kv1.2 channel is composed of four α-subunits) and Arg6 or Lys10, Arg14, Lys28 and Arg18 of CoTX1, respectively. These four or five CoTX1 amino acid residues form a ring of basic residues. The Lys21 side chain of CoTX1 enters into the ion-channel pore and is surrounded by the four Asp379 carbonyl oxygen atoms of the P-domain selectivity filter. Residue Tyr30 of CoTX1 is in contact with a hydrophobic cluster of aromatic residues consisting of Trp366, Trp367 and Tyr377 (all located on the same K1.2 α-subunit).
Structural properties and pharmacology of cobatoxin 1

Figure 9 Docking of CoTX1 on to rat Kv1.2 channels (pore regions)

(A) Side view (Turbo-Frodo software) depicting the interaction of CoTX1 (3-D structure in solution) with rat Kv1.2 channels (molecular model of the pore regions) [24]. For clarity, only Cα peptide backbones of two out of the four S5-H5-S6 α-subunits of the Kv1.2 channels are shown (green). The Cα peptide backbone of CoTX1 is shown in pink. The side chains of amino acid residues being involved in the CoTX1-Kv1.2 channel interaction are detailed. Basic, acidic and aromatic residues are shown, in all panels, in light blue, red and purple, respectively. The residues are numbered according to their positions within the CoTX1 and Kv1.2 α-subunit amino acid sequences [1,24]. (B) Top view showing the docking [28] of CoTX1 on to rat Kv1.2 channels (pore regions). The Cα peptide backbone of CoTX1 was omitted for clarity. Only interacting residues are presented with their corresponding side-chains. The Cα peptide backbones of the four α-subunits of the Kv1.2 channels (S5-H5-S6 domains) are shown in green. (C) Magnified side view detailing the interaction of CoTX1 with the Kv1.2 α-subunits. For CoTX1, only the side chains of residues involved in this interaction are described. Also, only interacting residues from the Kv1.2 α-subunits are represented in their exact 3-D positions, according to the ion channel molecular model.

Comparison with other K+, acting toxins, the functional dyad of CoTX1 is probably composed of Lys31 and Tyr30. We suggest a two-step pictorial view of CoTX1 binding in which the toxin ring of basic residues (ring composed of Arg6 or Lys10, Arg14, Arg18 and Lys28) would first play a crucial role (via electrostatic forces) in the recognition, interaction and correct positioning of CoTX1 on the Kv1.2 channel. Second, a tighter interaction would take place through mainly hydrophobic forces between Tyr30 (dyad) and the aromatic cluster consisting of Trp366, Trp367 and Tyr377 residues. The Lys21 (dyad) side chain of CoTX1 would enter the ion channel pore to block K+ efflux.

Similar docking analyses based on models of Kv1.1 and Kv1.3 did not give good scores for CoTX1, in agreement with its poor bioactivity on these channels. In contrast, results from the docking simulation of the ACoTX1 model on Kv1.2 reveal an identical positioning of the peptide over the channel. It should be noted that in the ACoTX1 primary structure, the two residue substitutions (Pro7 and Gln9), as compared with its native counterpart, are located close to two out of the five potentially important residues of the basic ring (Arg6 and Lys10). The presence of a negative charge on the side chain of Asp9 in CoTX1 may weaken the interaction between Lys10 of CoTX1 and Asp355 of Kv1.2. The substitution of Asp9 by an uncharged Gln residue in ACoTX1 may, on the contrary, reinforce this interaction. Such an alteration in electrostatic properties could provide a reasonable explanation regarding the increased affinity of ACoTX1 for K+ type channels.

Concluding remarks

In the present work, we describe for the first time the chemical synthesis, disulphide bridge organization, 3-D solution structure and docking results of CoTX1, a member of a novel class of α-KTx toxins. CoTX1, which is folded according to a unique α/β-scaffold, is the first toxin cross-linked by three disulphide bridges that is shown to be active on both voltage-gated (Kv1.2) and calcium-activated (IKCa1) K+ channels. Our work extends a
previous study made by Selisko and co-workers in defining the pharmacological targets of CoTX1 [1]. It was shown by these authors that CoTX1 inhibits Shaker B and mouse Kv1.1 channels. It will be of interest to evaluate the effects of CoTX1 on a still wider range of potential pharmacological targets in future experiments, including channels with different ionic selectivity. With regard to the current targets, it is clear that docking experiments will be helpful to guide the design of more potent and/or selective CoTX1 structural analogues. In this respect, AcCoTX1 already appears to be a higher-affinity blocker for several K\(^+\) channels tested here (K1.2, K1.3, Shaker B Δ44 and IKCa1).

From the use of this analogue, we conclude that charge anisotropy does not appear to be a relevant factor in ion-channel recognition and blockage. Further experimental data will be required to evaluate whether the dipole moments of other scorpion toxins have a role in the properties of these toxins.

We thank P. Mansuelle for his help in this work. We acknowledge financial support from the CNRS and Cellpep S.A.

REFERENCES

42 Gomez-Lagunas, F., Olamendi-Portugal, T., Zamudio, F. Z. and Possani, L. D. (1996) Two novel toxins from the venom of the scorpion Pandinus imperator show that the N-terminal amino acid sequence is important for their affinities towards Shaker B K+ channels. J. Membr. Biol. 152, 49–56