Identification and characterization of differentially active pools of type IIα phosphatidylinositol 4-kinase activity in unstimulated A431 cells

Mark G. WAUGH, Shane MINOGUE, Deena BLUMENKRANTZ, J. Simon ANDERSON and J. Justin HSUAN

Centre for Molecular Cell Biology, Department of Medicine, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, U.K.

The seven known polyphosphoinositides have been implicated in a wide range of regulated and constitutive cell functions, including cell-surface signalling, vesicle trafficking and cytoskeletal reorganization. In order to understand the spatial and temporal control of these diverse cell functions it is necessary to characterize the subcellular distribution of a wide variety of polyphosphoinositide synthesis and signalling events. The predominant phosphatidylinositol kinase activity in many mammalian cell types involves the synthesis of the signalling precursor, phosphatidylinositol 4-phosphate, in a reaction catalysed by the recently cloned PI4KIIα (type IIα phosphatidylinositol 4-kinase). However, the regulation of this enzyme and the cellular distribution of its product in different organelles are very poorly understood. This report identifies the existence, in unstimulated cells, of two major subcellular membrane fractions, which contain PI4KIIα possessing different levels of intrinsic activity. Separation of these membranes from each other and from contaminating activities was achieved by density gradient ultracentrifugation at pH 11 in a specific detergent mixture in which both membrane fractions, but not other membranes, were insoluble. Kinetic comparison of the purified membrane fractions revealed a 4-fold difference in K_m for phosphatidylinositol and a 3.5-fold difference in V_max, thereby indicating a different mechanism of regulation to that described previously for agonist-stimulated cells. These marked differences in basal activity and the occurrence of this isozyme in multiple organelles emphasize the need to investigate cell signalling via PI4KIIα at the level of individual organelles rather than whole-cell lysates.

Key words: detergent-insoluble membrane, low-buoyant-density membrane, membrane microdomain, phosphatidylinositol kinase, phosphoinositide signalling, subcellular fractionation.

INTRODUCTION

The synthesis of PI4P (phosphatidylinositol 4-phosphate) by the phosphorylation of PI (phosphatidylinositol) on the 4′ position of the inositol residue is an essential step in the biochemical pathway that produces PtdIns(4,5)P_2 for receptor-dependent phospholipase C and phosphoinositide 3-kinase signalling [1–3]. In addition, PI4P acts at cellular membranes as a binding partner, for example for PI4P-specific pleckstrin homology and ENTH (epsin N-terminal homology) domain-containing proteins [4–6]. Two families of enzymes have been cloned that specifically catalyse the conversion of PI to PI4P: the adenosine-sensitive type II PI 4-kinases (PI4KII) and the wortmannin-sensitive type III PI 4-kinases (PI4KIII) [7].

Type II activity has been found in numerous subcellular organelles and vesicles, although recent results demonstrate that the majority of the PI4KIIα protein is localized to the Golgi compartment, while PI4KIIβ translocates between the cytosol and plasma membrane [8]. PI4KIIα (p230) has been found at the plasma membrane and ER (endoplasmic reticulum), while PI4KIIβ (p92) translocates between the cytosol and Golgi compartment [7]. Studies on phosphoinositide signalling have commonly relied on assays of net PI4P levels and PI4K activity, and the activity and specific functions of different PI4K isozymes in different subcellular membranes, particularly in mammalian cells, are not at all clear.

In A431 cells measurable PI4P production is mainly accounted for by a pool of active PI4KIIα contained within low-buoyant-density membranes, which have a protein composition similar to the ER [9]. These membranes are particularly rich in VCP (valosin-containing protein), an AAA + ATPase (ATPase associated with a variety of cellular activities, and with a hexameric ring structure), but their cellular function is unknown. The bulk of the PI4KIIα protein in these cells has been localized mainly to the Golgi compartment using microscopy and subcellular fractionation techniques and appears to be in a less active form [8,9]. No enzymic comparison of co-existing pools of PI4KIIα has previously been reported.

A major reason for the absence of any comparative analysis of the different subcellular pools of PI4KIIα is their incomplete resolution using ultracentrifugation [9]. Furthermore, although PI4KII activity was previously localized to a buoyant, non-caveolar membrane fraction of A431 cells [10], it was unclear whether this fraction contained one or both pools of PI4KIIα activity. A second reason is that other PI4K isozymes had not been separated from either pool of PI4KIIα, and therefore contributed to the measured activity. Consequently, removal of the other PI4K isozymes was required before any meaningful comparison of type IIα activities was possible.

This report describes a method for the separation of the two pools of PI4KIIα-containing membranes from each other and from other PI4K isozymes, and a quantitative characterization of enzymic differences between the PI4KIIα in these two membrane pools. The recognition of different membrane pools containing PI4KIIα of widely different basal activity combined with the development of a method to resolve the major pools will allow far better informed and more meaningful analyses of the regulation of this enzyme to be performed in future.
EXPERIMENTAL

Materials

Anti-PI4KIIα antisera [9] for use in immunoblotting was purified against recombinant GST (glutathione S-transferase)–PI4KIIα using a Western blotting-based protocol essentially as described in [11], but employing Immobilon-P (Millipore) instead of nitrocellulose. For use in immunoprecipitation the same antisera was purified on Protein A–Sepharose CL4B (Amersham Biosciences). Anti-PI4KIIβ antisera was raised in New Zealand White rabbits using full-length recombinant GST–PI4KIIβ (S. Minogue and J. J. Hsuan, unpublished work). Anti-PI4KIIβ antisera was purified using the Western blotting procedure prior to use in immunoblotting. Anti-calnexin was purchased from StressGen, anti-EGFR (epidermal growth factor receptor) peptide antisera (anti-2E) has been described previously [12]. Anti-PI4KIIα was kindly provided by Dr J. Backer (Albert Einstein College of Medicine, Bronx, NY, U.S.A.) and anti-PI4KIIIα was purchased from Upstate Biotechnology. Anti-serum to the PIPK (P14P 5-kinase type I; PIPKα) and to the PITP (PI-transfer protein; PITPα) were purchased from Santa Cruz Biotechnology. Anti-EGFR antisera was from PharMingen (BD Biosciences). Protein A–Sepharose CL–4B, ECL Western blotting system [13], inositol with PT6-271 stabilizer and [γ-32P]ATP (4500–6000 Ci/mmol) were from Amersham Biosciences. Protease inhibitor cocktail tablets (Complete, without EDTA) were purchased from Roche Diagnostics.

Cell culture and metabolic radiolabelling

A431 cells were cultured, labelled for 48 h to reach equilibrium using [3H]inositol, and analysed using TLC as described previously [9].

PI4K activity assays

PI4K assays in the presence of endogenous and exogenous PI were performed as described previously [10]. Reaction products were separated by TLC and visualized on a Typhoon 9400 phosphorimager (Amersham Biosciences). Quantitative data were obtained using ImageQuant Software. Michaelis–Menten kinetic analyses were performed by non-linear regression curve fitting using Prism software (GraphPad) and compared using the unpaired Student’s t test. Western blotting of fractions indicated that equivalent levels of PI4KIIα were present in the assayed buoyant and dense fractions thus allowing for comparisons of apparent V_max, for both samples. One of the assumptions of Michaelis–Menten kinetic analyses is that both enzyme and substrate are freely diffusible. As substrate PI is present in micellar form in freezefromulin, [4500–6000 Ci/mmol] were from Amersham Biosciences. Previously [9].

Subcellular fractionation

Separation of A431 cell post-nuclear supernatants on a continuous 10–40% (w/v) sucrose gradient was performed as described previously [9]. For agonist stimulations cells were serum-starved overnight in Dulbecco’s modified Eagle’s medium supplemented with 1% fetal calf serum. Agonist stimulations were carried out at 37 °C and the reactions stopped by placing the cells on ice and rapid aspiration. Cell homogenization, generation of post-nuclear supernatants and separation of cell membranes on a discontinuous 10–40% sucrose gradient were as previously reported [10].

Isolation of β-OG (β-octylglucoside) and DOC (deoxycholate)–insoluble membranes

The isolation of detergent-insoluble PI4P-synthesizing membranes was carried out as follows. A431 cell monolayers were washed twice with ice-cold PBS (pH 7.4) prior to the addition of 2 ml of 10 mM β-OG and 4 mM DOC (β-OG/DOC) in 100 mM Na2CO3, 10 mM EDTA and 10 mM EGTA, pH 11, containing Complete protease inhibitor cocktail. Cells were harvested by scraping into a test tube and sonicated for six 5 s blasts using a Vibra-Cell sonicator (Sonics) at amplitude setting 60. The resulting sonicate was mixed with 90% (w/v) sucrose in 20 mM Tris/HCl, pH 7.4 and layered in the bottom of a 12 ml ultracentrifuge tube. A discontinuous sucrose gradient consisting of 4 ml of 35% (w/v) sucrose followed by 4 ml of 5% (w/v) sucrose was then layered on top. The tube was centrifuged overnight at 175 000 g. After centrifugation, 1 ml fractions were collected beginning at the top of the tube. Equal volumes of either low-buoyant-density fractions 4 and 5 or of fractions 11 and 12 from the β-OG/DOC sucrose gradient were pooled and separated from the gradient buffer by centrifugation at 100 000 g for 45 min using a Optima MAX bench-top ultracentrifuge (Beckman-Coulter). The supernatants were decanted and the β-OG/DOC-insoluble pellets dissolved in 2× PI4K assay buffer [0.8% (v/v) Triton X-100, 20 mM Tris/HCl, 20 mM MgCl2, and 0.2 mM EGTA, pH 7.4]. Following gentle mixing and re-suspension of the pellets the solutions were cleared at 100 000 g for 45 min before being used in kinetic studies.

Immunoprecipitation of PI4KIIα

Protein A-purified anti-PI4KIIα antisera was added at a dilution of 1:100 to soluble PI4KIIα prepared for use in kinetic experiments (see above) and incubated for 1 h at 4 °C. PI4KIIα immunocomplexes were then precipitated using Protein A–Sepharose CL–4B.

Immunoblotting of subcellular fractions

Samples were mixed with an equal volume of 2× sample buffer and separated by SDS/PAGE. Proteins were transferred to Immobilon-P membranes and probed with various antibodies. Bound antibody was detected using the ECL system (Amersham Biosciences).

RESULTS

Separation of subcellular organelles prepared from homogenized A431 cells using ultracentrifugation on a continuous density gradient had previously revealed a single major peak of PI4KIIα activity localized to a low-buoyant density, VCP-rich fraction and the two PI4KIII isoforms to the apparent activity, particularly of the higher density fraction, were unclear. Also unclear was the potential effect of endogenous PITP and PIPK activities on the measured PI4K activity.

The location within these gradients of type II/PI4K, PITP and PIPK was unknown. While Western blotting revealed that the type IIIβ PI4K (p92) was well resolved from both the PI4K-containing fractions, the bulk of the type IIIα PI4K (p230) was...
PI4KIIβ in fractions 11–13 indicated that this isozyme contributed to the apparent PI4K activity of the higher-density pool of PI4KIIα and would have to be removed before any kinetic analysis could be performed.

PITPα activity has been implicated in the provision of the PI substrate to PI4KII during receptor signalling [14] and may therefore also affect the activity measured across the density gradient. Indeed, previous results demonstrated that PITP enhances PI4K activity in purified caveolae [10]. Consequently an initial analysis used Western blotting to identify the presence of this protein in each fraction. Western blotting revealed that PITPα was clearly separated from all PI4K activity within the gradient (Figure 1b). Therefore, at least in unstimulated A431 cells, PITPα was not required for the observed pattern of PI4K activity.

In order to explore whether or not either pool of PI4KIIα corresponded with the reported agonist-sensitive activity [15,16], the location within the gradient of the agonist-sensitive PIPKIIα isozyme [17,18] and the effects of known agonists were investigated. The distribution of PIPKIIα overlapped with the less active pool of PI4KIIα (Figure 1b), indicating that this pool contained the agonist-sensitive PI4KIIα. However, addition of epidermal growth factor or bradykinin to serum-starved A431 cells did not result in any reproducible increase in PI4P production across the density gradient, nor any redistribution of PI4KIIα, PITP or PIPKIIα (results not shown). Although the two pools of activity observed in this gradient did not therefore appear to correspond to agonist-sensitive pools, the gradient fractionation procedure necessarily entails a separation of cytosol and membranes over a time course of several hours. Consequently these results do not exclude the importance of dynamic and reversible translocations of proteins such as PITP in agonist-stimulated PI4P production [19,20].

Having established the presence of other PI kinases in the PI4KIIα-containing gradient fractions, it was necessary to improve the purity of the membrane preparation. The incorporation of sonication rather than mild homogenization, a discontinuous rather than a continuous sucrose gradient, and sodium carbonate buffer at pH 11 instead of a neutral buffer were investigated. A continuous gradient in high-pH buffer has been widely used following sonication to separate low- from high-buoyant-density membranes and had been used previously to prepare low-buoyant-density membranes (fractions 4 and 5) containing PI4KIIα [10]. A major advantage of using sonication in sodium carbonate buffer was the dissociation of peripheral membrane proteins, including PIPK and type III PI4K enzymes. Indeed, amongst all the known PI kinases, phospholipases and transfer proteins only acylated PI4KIIα and PI4KIIβ would be expected to remain attached to membranes under these conditions. Nonetheless, the low-buoyant-density fractions (4 and 5) in the previously employed discontinuous gradient were heterogeneous and included fragments derived from the plasma membrane and the ER, containing EGFR and calnexin, respectively ([21] and M. G. Waugh and J. J. Hsuan, unpublished work). Consequently differential solubility in various detergents was investigated as a means to selectively solubilize interfering membranes while leaving the PI4P-generating membrane fragments intact. Precedents for this approach came from work over the last decade on the isolation of detergent-insoluble, cholesterol-rich microdomains (rafts) of the plasma membrane, where non-ionic detergents such as Triton X-100 and Lubrol WX had been used to isolate caveolae and non-caveolar membrane rafts [22,23]. Such selective solubilization conditions remove most membranes completely to the soluble phase and also improve the resolution afforded by density gradient centrifugation by producing more homogeneous populations containing only detergent-insoluble microdomains. One of the
Subcellular fractionation of sonicated A431 cells on a discontinuous sucrose density gradient in the presence of detergent at pH 11

A431 cells were sonicated in buffer containing \(\beta \)-OG/DOC and sodium carbonate, pH 11, and fractionated on a discontinuous sucrose gradient. Fractions were assayed for (a) EGFR, calnexin and PI4KII\(\alpha \) by Western blotting, (b) PI4K activity using either 200 \(\mu \)M PI(H17033) or endogenous PI substrate (H17039), and (c) 3H-labelled PI (H17040) or PI4P (H17034).

most commonly used detergents in the isolation of membrane microdomains is Triton X-100, which is normally used at a concentration of 1% (v/v). However, trial experiments demonstrated that Triton X-100 was effective at solubilizing PI4KII\(\alpha \) at concentrations as low as 0.1% (v/v) (results not shown). An alternative detergent was therefore required to solubilize contaminating membranes, but not PI4KII\(\alpha \)-containing membranes. A solution was found to be a combination of 10 mM \(\beta \)-OG and 4 mM DOC (\(\beta \)-OG/DOC), both used below their critical micelle concentration. Solubilization of buoyant plasma membrane by \(\beta \)-OG and ER fragments by DOC, both used above their critical micelle concentration, have been reported previously (see for example [22,24,25]). Serendipitously, PI4KII\(\alpha \)-containing membranes proved insoluble in this detergent mixture. The established discontinuous gradient procedure was therefore modified by including \(\beta \)-OG/DOC in the cell-disruption buffer in order to remove contaminating plasma membrane and ER membranes. Analysis of the resulting gradient (Figure 2a) revealed as expected that the presence of \(\beta \)-OG/DOC removed EGFR and calnexin to fractions 10–12, which contained soluble proteins and high-buoyant-density membranes. In contrast, the addition of \(\beta \)-OG/DOC did not affect the distribution of PI4KII\(\alpha \) activity which remained at the 5–35% sucrose interface (fractions 4 and 5 in Figure 2b). Furthermore, a clear separation of different pools of PI4KII\(\alpha \) was revealed by Western blotting: most of the activity was present in fractions 4–5, while most of the PI4KII\(\alpha \) protein co-localized with the plasma membrane and ER markers, EGFR and calnexin respectively, in fractions 10–12 (Figure 2a).

In order to test whether the distribution of PI4K activity measured using endogenous substrate could be affected by an uneven distribution of the substrate itself, the amount of PI in each fraction was determined using equilibrium metabolic labelling with \([\text{H}]\text{inositol. The results demonstrated that the bulk of the cellular phosphoinositides were not solubilized by } \beta \text{-OG/DOC and co-fractionated with the PI4K activity in low-buoyant-density membranes (Figure 2c). Nonetheless, approx. 2.5% of the endogenous PI was present in fractions 9–12 and PI4P synthesis was qualitatively unaffected by the addition of excess exogenous PI substrate (Figure 2b).}

A final question concerning the apparent PI4K activity in this gradient was the potential contribution made by PI4KII\(\beta \). Western blotting revealed that the bulk of the detectable PI4KII\(\beta \) was found in the bottom of the 45% sucrose region of the gradient (fraction 12), which contained soluble proteins. Dissociation of PI4KII\(\beta \) but not PI4KII\(\alpha \) from membranes at high pH is consistent with the ability of PI4KII\(\beta \) but not PI4KII\(\alpha \) to translocate between cytosol and membrane [8]. EGFR and calnexin are both transmembrane proteins. As the distribution of PI4KII\(\beta \) did not follow either peak of PI4K activity, it was inferred that both peaks were predominantly due to PI4KII\(\alpha \) activity (Figure 3a).

To further establish that the high and low peaks of PI4K activity arose from differences in the activity of the PI4KII\(\alpha \) isozyme, the
Membranes of high and low phosphatidylinositol 4-kinase IIα activity

Scheme 1 Procedure for the separation and analysis of buoyant and dense membranes containing PI4KIIα

Rates of PI4P production were compared using PI4KIIα immunoprecipitated from each pool using specific antibodies. Similar proportions (approx. 1%) of the total activity in each pool could be immunoprecipitated. As can be seen in Figure 3(b), PI4KIIα immunoprecipitated from the buoyant fraction had a much higher activity relative to PI4KIIα immunoprecipitated from the dense fraction, thereby confirming a difference of intrinsic activity between the two pools of PI4KIIα.

These results therefore confirmed the existence of differentially active forms of PI4KIIα and that the combination of sonication in β-OG/DOC and sucrose density centrifugation was sufficient to clearly separate membrane fragments containing these two forms. Furthermore β-OG/DOC removed plasma membrane and ER contaminants from fractions 4–5, thereby improving the purification of the low-buoyant-density, PI4KIIα-containing membranes. Although solubilized proteins co-fractionated with the higher-buoyant-density PI4KIIα-containing membranes (fractions 10–12), they were easily removed by subsequent centrifugation for 45 min at 100,000 g. In addition to removing soluble proteins, this latter ultracentrifugation step served to remove sucrose, carbonate and β-OG/DOC from both pools of activity. The total procedure is summarized in Scheme 1.

As Michaelis–Menten analysis requires that the enzyme of interest is freely diffusible, β-OG/DOC-insoluble, 100,000 g pellets were dissolved in 2 × PI4K assay buffer, which contained 0.8% Triton X-100, and cleared prior to kinetic analyses. The absence of PI4KIII α isozymes was confirmed using Western blotting (Figure 4a). At this stage of the analysis it was possible that the apparent differences in PI4K activity between the buoyant and dense pools could have been due to heterologous, membrane-bound activators or inhibitors, respectively. For example, heterotrimeric G-proteins, small G-proteins and phospholipids have been reported to modulate type II PI4K activity [8,26,27]. To test these concerns, an experiment was performed which involved mixing equal aliquots of purified, solublized PI4KIIα from each pool in order to test whether or not the amount of PI4P produced would be simply additive. The results of this experiment clearly showed that the PI4K activity produced by mixing different pools was additive (Figure 4b), which indicated that the difference in activity between the two pools was not caused by heterologous activators or inhibitors.

To characterize the apparently intrinsic differences between the two pools of PI4KIIα activity, their V_{max} and $K_{\text{m}}(\text{PI})$ were compared (Figure 4c). The V_{max} of the more buoyant membranes was approx. 3.5-fold higher than the V_{max} of the denser membranes (0.39 ± 0.02 and 0.11 ± 0.03 fmol of PI4P/min, respectively, $P < 0.01$, $n = 3$). In addition, an approx. 4-fold difference in $K_{\text{m}}(\text{PI})$ was apparent between the samples (19.8 ± 7.1 and 81.9 ± 17.6 µM respectively, $P < 0.05$, $n = 3$). These results revealed that an increase in V_{max} and a decrease in $K_{\text{m}}(\text{PI})$ of...
the PI4KIIα in the buoyant relative to the denser membranes is the reason underlying the different rates of PI4P synthesis observed in the gradient fractions, and confirm the existence of differentially active pools of PI4KIIα in unstimulated A431 cells.

DISCUSSION

In these studies we demonstrate that cellular PI4P production is largely accounted for by two distinct pools of PI4KIIα activity, both of which can be isolated as β-OG/DOC-insoluble membranes. A highly active PI4KIIα pool is of low buoyant density, while a less active form of the enzyme is of higher buoyant density. It is noteworthy that both of these membrane pools are readily soluble in Triton X-100 and are therefore not equivalent to the various Triton X-100-insoluble rafts that have been extensively studied in recent years. Instead the β-OG:DOC-resistant membranes identified here seem to represent a novel subtype of membrane microdomain. The observation that the buoyant and dense pools of PI4KIIα both localize to β-OG/DOC-insoluble membranes suggests that similar PI4KIIα-containing membrane microdomains may exist in many of the organelles to which PI4KIIα has been localized, such as the Golgi [8] and endosomal compartments [28]. Although the higher activity pool may be derived from a number of different cellular membranes, the analysis reported here is consistent with their identification as the low-buoyant-density, ER-related PI4KIIα activity, previously found to be distinct from the plasma membrane, ER and trans-Golgi network.

Importantly, numerous previous studies have failed to distinguish between different pools of PI4K activity, for example during phosphoinositide 3-kinase and phospholipase C signalling. The previously unsuspected existence of membranes containing differentially active forms of PI4KIIα in unstimulated cells and the occurrence of this enzyme in many different subcellular membranes raise the need to reconsider the significance of small changes in total PI4K activity observed for example during receptor signalling (e.g. see [16,29]). If these small changes are localized to a small pool of low-activity enzyme, then the magnitude of activation will be far greater than previously inferred.

The difference in activity between the buoyant and dense pools is due to a 3.5-fold increase in V_{max} and a 4-fold decrease in $K_{m}(\text{PI})$ in the buoyant fraction. The $K_{m}(\text{PI})$ values obtained here fall within the range of previously reported values for PI4KIIα, which are characteristically lower than type III isozymes [3]. The constitutively enhanced and agonist-insensitive PI4K activity in the buoyant fraction described here appears to differ from epidermal growth factor-stimulated PI4KII activity in A431 cells [15,16] where epidermal growth factor induced a decrease in $K_{m}(\text{PI})$ from 20 to 8 μM with no change in V_{max} [15]. This difference in enzymic properties indicates that distinct mechanisms of activation exist for agonist-stimulated and constitutively enhanced PI4P synthesis. Future studies will address the molecular basis of these different mechanisms of activation.

Finally, it is interesting to consider the possible functional importance of differentially active pools of PI4KIIα. The results using equilibrium ¹H-labelling of phosphoinositides indicate that the buoyant membrane fraction is the major site of PI4P accumulation as well as its synthesis, and that the denser PI4KIIα-containing membranes contain very little PI4P. Why should the PI4KIIα isozyme be the only known PI kinase to exist in two different states of activity in unstimulated cells? The first point to make is that PI4KIIα is the only PI kinase that is constitutively membrane-bound. All other PI kinases are soluble and appear to be activated by mechanisms involving recruitment to target membranes. Consequently just as the type IIα isozyme is often assumed to be constitutively active, PI4P has been assumed to be freely available as a substrate for PI4P 3- and 5-kinases and to have no signalling role of its own. The results from this study demonstrate that most PI4KIIα is in fact of relatively low activity, while most of the measurable PI4KIIα activity and PI4P are localized to a minor membrane fraction. Furthermore, recent results suggest that PI4P does have a signalling role: for example PI4P-rich membranes may recruit PI4P-specific binding proteins, such as OSBP (oxygen-binding protein), FAPP1 (PI4P adaptor protein 1) or EpsinR [4–6]. In addition a high content of PI4P may bring about physical changes in the buoyant membrane domain, such as altered charge and curvature. The precise role of PI4P in the buoyant membranes and whether PI4KIIα in the denser membranes can be stimulated are areas of ongoing study.

We thank Dr J. Backer (Albert Einstein College of Medicine, Bronx, NY, U.S.A.) for kindly providing antibodies. J. J. H. is a Senior Fellow of the Wellcome Trust, whose support, and that of the Wolfson Trust, are gratefully acknowledged.

REFERENCES

8. Wei, Y. J., Sun, H. G., Yamamoto, M., Wiöders, P., Kunii, K., Martinez, M., Barylko, B., Albanesi, J. P. and Yin, H. L. (2002) Type II phosphatidylinositol 4-kinase beta is a cytosolic and peripheral membrane protein that is recruited to the plasma membrane and activated by Rac-GTP. J. Biol. Chem. 277, 46586–46593

Membranes of high and low phosphatidylinositol 4-kinase IIα activity

Received 11 August 2003/2 September 2003; accepted 3 September 2003
Published as BJ Immediate Publication 3 September 2003, DOI 10.1042/BJ20031212

© 2003 Biochemical Society