Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid

Jacqueline F. AITKEN1, Kerry M. LOOMES1, Barbara KONARKOWSKA and Garth J. S. COOPER2
Biochemistry and Molecular Biology Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand

INTRODUCTION

Type II diabetes mellitus is a major disease [1] and is characterized by the onset of insulin resistance, the formation of islet amyloid and progressive pancreatic islet \(\beta \)-cell failure [2]. Although type II diabetes mellitus is a complex disorder, the occurrence of islet amyloid has been identified as a potentially significant factor contributing to late-stage islet \(\beta \)-cell failure [3]. Islet amyloid was first observed at the beginning of the last century and was assumed until more recent times to be insoluble deposits of insulin. Over the last fifteen years or so, molecular investigations revealed that these islet amyloid deposits are composed primarily of insoluble forms of the pancreatic hormone, amylin [4] (also known as insulinoma amyloid peptide (IAP), insulinoma amyloid polypeptide (IAPP) or islet amyloid polypeptide [5]), which is normally co-secreted with insulin by pancreatic \(\beta \)-cells in response to glucose and other stimuli [6]. Amylin is a 37-amino-acid peptide characterized by a N-terminal cyclic ring structure and an amidated C-terminus that is essential for at least some biological activities [7].

Because amylin is co-regulated with insulin, the insoluble amyloid form of amylin most probably occurs as a consequence of excessive secretion during chronic hyperglycaemia, resulting in progressive extracellular islet deposition of amyloid [2]. Islet amyloid is present in approx. 95% of type II diabetic patients and is strongly associated with islet \(\beta \)-cell loss [8]. Synthetic preparations of human amylin (hA) have been used to study mechanisms of amyloid formation in vitro, and have revealed the presence of structures that assemble spontaneously into higher-order polymorphic fibrils [9,10]. These preparations are cytotoxic to cultured RINm5F (rat insulinoma) islet \(\beta \)-cells in a time-dependent and concentration-dependent manner [11]. Transgenic models of hA support a more direct relationship between overexpression of amylin and induction of diabetes.

Hemizygous transgenic animals that express hA, but do not exhibit any diabetic phenotype, develop diabetes-like syndromes when crossed into an insulin-resistant background [12,13]. In these cases, increased hA expression results in the occurrence of islet amyloid deposition in the pancreases of these animals, and is correlated with hyperglycaemia and \(\beta \)-cell loss.

Despite strong evidence linking the occurrence of islet amyloid to \(\beta \)-cell loss, no compounds have been identified that suppress islet amyloid formation in vivo. In the present study, we investigated the interactions of several polycyclic compounds with synthetic hA preparations. As some of these compounds were shown to suppress amyloid formation in vitro, these findings support an alternative approach to peptide-based strategies for modulation of islet amyloid formation.

EXPERIMENTAL

Materials

Synthetic hA (Lot 0551805) and rat amylin (rA; Lot 0542554) were HPLC-purified products from Bachem (Torrance, CA, U.S.A.). Tripolyr hA ([hA][Pro25,28,29]hA) was obtained from Auspep (Parkville, Vic., Australia; batch K31155). Peptides were freshly dissolved in sterile milliQ water (18 MΩ resistivity), and were then diluted to their final concentration in the appropriate buffer. Tritiated hA (145.3 MBq/mmol) and rA (22.6 GBq/mmol) were synthesized according to protocols described previously [14]. All incubations containing amylin peptides were carried out at 22°C. All polycyclic compounds and thioflavin-T were purchased from Sigma (St. Louis, MO, U.S.A.). Stock solutions were made fresh in sterile milliQ water for each experiment. Calcein-AM (acetoxyethyl ester) and ethidium homodimer-1 (EtdD-1) were

Abbreviations used: AM, acetoxyethyl ester; EtdD-1, ethidium homodimer-1; hA, human amylin; (Pro25,28,29)hA: tripolyr hA; rA, rat amylin.
1 These authors contributed equally to this work.
2 To whom correspondence should be addressed (e-mail g.cooper@auckland.ac.nz).

© 2003 Biochemical Society
obtained from Molecular Probes (Eugene, OR, U.S.A.). The rat insulinoma cell line RINm5F was obtained from the National Institutes of Health (Bethesda, MD, U.S.A.) and cultured at 37 °C in a humidified atmosphere containing 5% CO2. Cell culture medium and its supplements were purchased from Invitrogen (Auckland, New Zealand).

Amyloid-binding assays

Effects of different polycyclic compounds on amyloid formation were measured by fluorescence spectroscopy, using a SpectraMAX Gemini XS fluorescence spectrophotometer (Molecular Devices Corporation, Sunnyvale, CA, U.S.A.). Excitation and emission maxima were set to 450 nm and 510 nm respectively using a cut-off filter at 495 nm. The rate of amyloid formation was determined in 10 mM Tris, pH 7.4, by monitoring thioflavin-T fluorescence in the presence or absence of each of the polycyclic compounds. Tetracycline, Congo Red and Methylene Blue had no intrinsic fluorescence under the conditions used. Background fluorescence by acridine and Acidine Orange in the absence of amylin was subtracted from the experimental results. Fluorescence enhancement by a control preparation containing only hA and thioflavin-T was used as a comparison for amyloid formation in the presence of the polycyclic compounds. Tetracycline, Congo Red and Methylene Blue were measured by fluorescence spectroscopy, using a SpectraMax Gemini XS fluorescence spectrophotometer (Molecular Devices Corporation, Sunnyvale, CA, U.S.A.). Excitation and emission maxima were set to 450 nm and 510 nm respectively using a cut-off filter at 495 nm. The rate of amyloid formation was determined in 10 mM Tris, pH 7.4, by monitoring thioflavin-T fluorescence in the presence or absence of each of the polycyclic compounds. Tetracycline, Congo Red and Methylene Blue had no intrinsic fluorescence under the conditions used. Background fluorescence by acridine and Acidine Orange in the absence of amylin was subtracted from the experimental results. Fluorescence enhancement by a control preparation containing only hA and thioflavin-T was used as a comparison for amyloid formation in the presence of the polycyclic compounds. All other experimental conditions were identical. Each experiment was performed in triplicate and was repeated independently at least twice.

Electron microscopy

hA (60 µM) was incubated in 10 mM Tris, pH 7.4, in the presence or absence of tetracycline (1200 µM). Samples were removed at various time points and were prepared for electron microscopy. Aliquots of the amylin preparations were adsorbed to glow-discharged carbon-coated collodion film on 200-mesh copper grids for 1 min. Grids were blotted, washed twice in droplets of deionized water and stained with 2% (w/v) uranyl acetate. Grids were examined in a Philips Tecnai transmission electron microscope operated at 120 kV.

Amyloid-precipitation assays

The time-dependent precipitation of insoluble amyloid was used as an independent method to monitor amyloid formation in the presence or absence of polycyclic compounds. Trace amounts of [3H]hA were added (typically 10000 c.p.m./ml) to a 10 µM hA solution in 10 mM Tris, pH 7.4, which was incubated in the absence or presence of each of the polycyclic compounds (200 µM final concentration). Samples were removed from the incubation mixtures at the indicated time points and were centrifuged at 16000g for 20 min. The amount of [3H]hA remaining in the supernatant after centrifugation was determined (Beckman LSW 3801 β-counter; Beckman, Palo Alto, CA, U.S.A.) and precipitable amyloid content was expressed as a percentage of total radioactivity in the incubation mixture at that time point. All experiments were performed using the same amylin batch and tritiated amylin tracer in the presence of appropriate controls (hA and rA in the absence of polycyclic compound). Effects of polycyclic compounds on the precipitable amyloid content were reproducible within each set of experiments, performed at least twice independently in triplicate.

Cell culture and cytotoxicity assays

RINm5F cells were cultured in RPMI 1640 medium containing 10% foetal bovine serum, 290 µg/ml l-glutamine, 100 units/ml penicillin and 100 µg/ml streptomycin. Cells were plated in 24-well plates at a density of 15 × 104 cells per well, incubated for 48 h, rinsed with PBS and placed in fresh medium (200 µl/well) in the absence or presence of Congo Red (100 µM final concentration). Following a 30 min incubation, 12 µl of a freshly prepared aqueous solution of hA (500 µM) was added to the cell culture medium to give final amylin and Congo Red concentrations of 28 µM and 94 µM respectively. Following a 22 h incubation, cell viability was determined by double-staining with calcein-AM and EthD-1. Green fluorescence of live cells and red fluorescence marking nuclei of dead cells were simultaneously visualized using a Zeiss Axiom S100 microscope equipped with a Zeiss filter set #09. Photographs were taken at 400 × magnification using a Zeiss AxioCam digital camera.

RESULTS

Compounds were tested in vitro for their ability to interfere with the conversion of hA into its insoluble amyloid form. Interactions were measured using thioflavin-T fluorescence and radiolabelled amylin precipitation assays (Figure 1). When bound to hA

![Figure 1 Amyloid formation by hA](image_url)
Figure 2 Compound structures

Acridine, Acridine Orange and Methylene Blue are selected examples of fused tricyclic ring compounds. Tetracycline is a fused four-ring compound, whereas Congo Red comprises a combination of two paired fused rings with intervening biphenyl structures. Thioflavin-T is widely used in fluorescent assays to measure amylin fibril formation.

Figure 3 Effects of polycyclic compounds on amyloid formation

(A) Thioflavin-T fluorescence following incubation of hA (60 µM) and thioflavin-T (10 µM) in the absence (■) or presence of 1200 µM of either acridine (▲), Acridine Orange (▼), Congo Red (○) or Methylene Blue (●). Results are means ± S.E.M. (n = 3) (B) Time-dependent incorporation of radioactivity into the insoluble pellet of an incubation mixture containing 10 µM hA with added [3H]hA in the absence (■) or presence of 200 µM acridine (▲), Acridine Orange (▼), Congo Red (○), or Methylene Blue (●). Results are shown as the percentage of precipitable radioactive amyloid, relative to total radioactivity in the supernatant at each time point, and are means ± S.E.M. (n = 3).

Several polycyclic compounds were investigated for potential effects on amyloid formation (Figure 2). Congo Red is a conjugated biphenyl structure that is used routinely as a diagnostic non-specific amyloid stain in histopathology [15]. It was reported to inhibit neurotoxicity of two fibrillar β-amyloid peptides in primary rat hippocampal cultures, either by inhibiting fibril formation and/or binding to preformed fibrils [16]. There is also a report that 5 days of in vitro incubation of β-amyloid-(1–42) with fibrils, thioflavin-T showed a marked increase in fluorescence that could be quantified. However, with either rA or the three-proline-substituted hA structure [(Pro25,28,29)hA], both of which are non-fibrillogenic, there were no increases in fluorescence, showing that the effects are amyloid-specific (Figure 1A). For the radioprecipitation assays (Figure 1B), insoluble amyloid was removed from the solution by centrifugation, and the amount of radioactivity in the precipitable amyloid was used as a measure of amyloid content. rA solutions containing tritiated rA as the tracer molecule, which is not amyloid-forming, showed no significant precipitable radioactivity over the time course of the experiments. Furthermore, a 20-fold molar excess of thioflavin-T had no effect on the rate of amyloid formation by hA. Tritiated hA (10 µM) retained the ability to form amyloid structures with associated cytotoxicity to RINm5F cells, showing that the tritiated structure behaved identically with non-modified hA (results not shown). Both radioprecipitation and thioflavin-T fluorescence enhancement assays were validated further on separate commercial batches of hA that exhibited varying rates of fibril formation (results not shown).
tetracycline inhibited fibril formation by this Alzheimer’s peptide, as determined by electron microscopy [17]. Acridine and Acridine Orange are examples of core and derivatized tricyclic structures respectively, whereas Methylene Blue contains a phenothiazine core structure.

Of these compounds, incubation of hA with a 20-fold molar excess of Acridine Orange, Methylene Blue or Congo Red completely inhibited thioflavin-T-enhanced fluorescence, compared with an immediate and sustained increase in fluorescence when hA was incubated with thioflavin-T alone (Figure 3A). Acridine, which contains only the parental tricyclic structure, by contrast showed a moderate reduction in thioflavin-T-enhanced fluorescence. Further measurements showed that these relative reductions in fluorescence effects were not due to shifts in the emission spectrum of thioflavin-T, demonstrating direct interactions with hA amyloid structures.

Precipitation experiments showed clearly that the inhibitory effects on thioflavin-T fluorescence by acridine and Methylene Blue were not due to inhibition of amyloid formation (Figure 3B). Conversely, a 20-fold molar excess of Congo Red resulted in a significant and rapid 3-fold reduction in amyloid content after 5 h that was sustained over the incubation period. Comparable reductions in amyloid content after 24 h also occurred with lower concentrations of Congo Red, down to 1:1 molar ratios (Figure 4).

In addition to Congo Red, we found that incubation of hA with a 20-fold molar excess of the tricyclic compound, Acridine Orange, resulted in an immediate and sustained reduction in amyloid content by approx. 25 % after 72 h (Figure 3B). However, unlike Congo Red, inhibition in the rate of amyloid formation was concentration dependent (Figure 4) with little effect at 1:1 molar ratios.

In contrast with these interactions seen with Congo Red and Acridine Orange, the behaviour of tetracycline was different in that its effects were relatively long-acting (Figure 5). A 20-fold molar excess of tetracycline resulted in only a gradual decrease in thioflavin-T fluorescence with a half-life of 3.4 h (Figure 5A). Parallel effects on amyloid content did not match this decrease. Instead, a significant reduction in amyloid content of approx. 25 % only occurred after a sustained 50 h incubation period (Figure 5B). Transmission electron microscopy of hA incubated with tetracycline for 24 h also revealed a marked change in the morphology of the resulting amyloid fibrils (Figure 6), characterized by short fragmented structures (Figure 6A), compared with the longer, more dense and characteristic amylin fibril appearance of the respective control (Figure 6B). At higher magnification, and in the presence of tetracycline, small globular lightly stained structures were observed together with short fragments of fibrils (Figure 6C). These globular structures were not observed at the higher magnification in the amylin control (Figure 6D). Consistent with the observed interactions in the other two assay systems, these globular structures indicate disruption of existing amylin fibrils after incubation with tetracycline. Interestingly, these globular structures were not observed when hA was incubated with Congo Red or Acridine Orange (results not shown).

We next investigated the effects of suppression of amyloid formation on amyloid-induced cytotoxicity in cultured RINm5F β-cells (Figure 7). These experiments were confined to Congo Red, which displayed no intrinsic cytotoxic effects under these experimental conditions. Results showed that incubation of
RINm5F cells with 28 µM hA for 22 h resulted in a significant increase in cell death compared with the vehicle control (Figure 7). In contrast, rA preparations under identical conditions were not cytotoxic. Co-incubation of hA with a 3.4-fold molar excess of Congo Red inhibited the cytotoxic effects of amylin (Figure 7). The results shown are representative of a series of independent experiments that were performed using different commercial hA batches. Across these preparations, we noted significant variability in associated cytotoxicities that ranged from 7 to 45% cell death. There is evidence that mature amylin fibril preparations are less cytotoxic than less mature intermediate-sized amylin aggregates [18]. Although the hA preparations used in the present study were freshly dissolved before addition to cultured β-cells, these observed variations in cytotoxicity may reflect different relative contents of these amylin aggregates.

DISCUSSION

Islet amyloidosis is regarded as one of a class of otherwise unrelated amyloid-associated states that occur in several diseases such as Alzheimer’s disease [19], the prion encephalopathies [20] and other amyloidoses [21]. There are no primary structure similarities between the respective amyloid-forming proteins implicated in these states; however, they all include extended β-sheet fibrillar structures. In the case of islet amyloid, the positive correlation between amyloid deposition and the onset of diabetic symptoms makes targeting diabetes by the use of compounds that inhibit onset of amyloid formation an intriguing possibility. To date, studies have been confined to investigation of short amylin peptides from within the amyloid-forming region encompassing residues 20–29 [22]. In a further report, synthetic double-N-methylated five-, six-, eight- and ten-amino-acid-long peptide analogues within this region were said to be devoid of β-sheet structure, amyloidogenicity and cytotoxicity, and to inhibit amyloid formation of their non-methylated peptide counterparts in vitro [23]. Two peptides, Ser-Asn-Asn-Phe-Gly- Ala and Gly-Ala-Ile-Leu-Ser-Ser-Thr, were reported to inhibit amyloid aggregation of the full-length molecule with associated decrements in cytotoxicity to cultured RIN-1056 cells [24].

In the present study, we show that polycyclic compounds can also modulate amyloid formation. Some of these were not only able to bind to amylin oligomeric forms, but were also able to inhibit the rate of amyloid formation. Thus incubation with 1:1 or greater molar excesses of Congo Red led to immediate and sustained significant reductions in amyloid content. These findings are in contrast with those of Lorenzo and Yankner [16], who found no effects of Congo Red on hA fibril formation after a 24 h incubation in PBS. This observation was based on a single time-point measurement comprising centrifugation and analysis of insoluble and soluble peptide fractions by SDS/PAGE [16]. The reason(s) for the discrepancy between these results [16] and those of the present study is not clear, but could be related to the different experimental conditions used by Lorenzo and Yankner [16]; for example, the buffer system used for hA incubations. Also, the inability to detect soluble hA peptide in the presence of Congo Red by SDS/PAGE may reflect a limitation of this detection method to quantitatively discriminate between any relative reductions in insoluble amyloid content.

In addition to Congo Red, similar decreases in the rate of amyloid formation were observed with Acridine Orange, although these effects were dose-dependent with little inhibition at 1:1 molar ratios. In contrast, acridine and Methylene Blue were able to bind to hA oligomeric forms, but with no effects on amyloid content even at 20-fold molar excesses. Incubation of hA preparations with a 20-fold molar excess of tetracycline also resulted in an eventual reduction in amyloid content and associated morphological changes in fibril structure. Although the precise molecular mechanisms underlying these interactions await confirmation, the marked differences between these compounds point towards the existence of distinct structural factors that enable binding to amylin oligomeric structures and subsequent suppression of insoluble amyloid formation. For example, an aromatic ring structure of a polycyclic compound could confer binding through aromatic π–π interactions [25], whereas the chemical nature of the ring structure and the stereochemistry of...
side-chain groups could enable interactions that destabilize the formation of mature insoluble amyloid.

Also, unlike other amyloidoses, including Alzheimer’s β-amyloid and the prion protein, PrPc, where α-helix/β-strand-dis
cordant stretches appear to be associated with amyloid formation
[26], amyloid formation in the case of amylin may instead pro-
cceed via a pathway involving the aggregation of relatively unfolded amyloid-forming regions [10]. Although there is
uncertainty over the precise identities of the folding assemblies involved, these aggregates lead to the formation of protofibrils
composed of extended β-sheet structures with β-strand ori-
tentations perpendicular to the longitudinal axes. Of interest is the
amyloidogenic region defined by hA residues 20–29, which
includes the sequence Asn-Phe-Gly-Ala-Ile-Leu [22]. Substitu-
tions within this region with proline residues at positions 25, 28
and 29 are sufficient to substantially decrease amyloid formation
by the intact molecule. It is possible that the decrease in amyloid
content evoked by Congo Red, Acrifine Orange and tetracycline
is attributable to disruptive interactions either within or between
protofibrils at such amyloid-forming regions. Further studies of
these and other compounds with intact amylin and amyloid-
forming fragments of amylin will be of value.

The identification of polycyclic compounds that can affect
fibril morphology and/or amyloid content provides an alternative
strategy to peptide-based approaches [22–24] to decrease the
impact of islet amyloid on pancreatic β-cell function. At the pre-
sent time, experiments on the in vivo modulation of de novo
amyloid formation or disruption of existing islet amyloid deposits
are being planned. Although the molecular identities of the
cytotoxic species have not been established beyond doubt, they are
believed to comprise precursor amyloid conformers as opposed
to mature amyloid fibrils [18]. With these considerations in
mind, the present study nevertheless shows that hA preparations
incubated with 1:1 or greater molar excesses of Congo Red
contained less precipitable amyloid content and were less
cytotoxic to cultured islet β-cells compared with incubation with
hA alone. Consequently, modulation of amyloid formation, in vivo,
may be sufficient for endogenous clearance mechanisms to
predominate and facilitate amyloid removal. The existence of such
mechanisms could account for the absence of islet amyloid and diabetic symptoms observed in some hA transgenic
mouse lines [27].

This research was supported by grants from the Foundation for Research, Science and
Technology, New Zealand, Endocrine Research Trust, Lottery Health (NZ), Maurice & Phyllis
Paykel Trust, and the University of Auckland Research Fund.

REFERENCES

Purification and characterization of a peptide from amyloid-rich pancreases of type 2
cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc.
Natl. Acad. Sci. U.S.A. 84, 3881–3885
cultured islet β-cells: modulation by nutrient secretogogues, islet hormones and
7. Cooper, G. J. S. (1994) Amylin compared with calcitonin gene-related peptide: structure,
biology, and relevance to metabolic disease. Endocr. Rev. 15, 163–201
misfolding to islet pathophysiology. Biochim. Biophys. Acta 1537, 179–203
10. Goldsberry, C., Golde, K., Pettaud, J., Seelig, J., Frey, P., Muller, S. A., Kistler, J., Cooper,
G. J. S. and Aebi, U. (2000) Amyloid fibril formation from full length and fragments of
12. Soeller, W. C., Janson, J., Hart, S. E., Parker, J. C., Carly, M. D., Stevenson, R. W.,
mice expressing human islet amyloid polypeptide. Diabetes 47, 743–750
13. Hoppener, J. W., Oostervik, C., Nieuwenhuis, M. G., Posthumus, G., Thijssen, J. H.,
induced by development of type II diabetes mellitus and contributes to its progression:
pathogenesis of diabetes in a mouse model. Diabetologia 42, 427–434
amylin and salmon calcitonin. Anal. Biochem. 285, 100–104
amyloid-specific dye? J. Biol. Chem. 276, 22715–22721
islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48, 491–498
Curr. Opin. Pharmacol. 2, 87–92
basis. Annu. Rev. Neurosci. 24, 519–550
properties of an amyloid precursor of β2-microglobulin. Nat. Struct. Biol. 9, 326–331
22. Tenidis, K., Waldner, M., Bernhagen, J., Fischle, W., Bergmann, M., Weber, M., Merke,
and hexapeptide of islet amyloid polypeptide (IAPP) with amyloidogenic and cytotoxic
non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of
polypeptide fibrillogenesis. J. Mol. Biol. 318, 697–706
FASEB J. 16, 77–83
Prediction of amyloid fibril-forming proteins. J. Biol. Chem. 276, 12945–12950
Transgenic overproduction of islet amyloid polypeptide (amylin) is not sufficient for islet
amyloid formation. Horm. Metab. Res. 29, 311–316