A computational model on the modulation of mitogen-activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB signalling

Mariko HATAKEYAMA*1,2, Shuhei KIMURA*1, Takashi NAKA†, Takui KAWASAKI†, Noriko YUMOTO*, Mio ICHIKAWA*, Jae-Hoon KIM*, Kazuki SAITO*, Miharu SAEKI*, Mikako SHIROUZU*, Shigeyuki YOKOYAMA*5∥ and Akihiko KONAGAYA*

*RIKEN Genomic Sciences Center, 1-7-22 Suehirocho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan, †Department of Computer Science, Kyusyu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan, ‡Fuji Research Institute Corporation, 2-3 Kanda Nishikicho, Chiyoda-ku, Tokyo 101-8443, Japan, §Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan, and ||Cellular Signalling Laboratory and Structure Group, RIKEN Harima Institute at SPring-8, 1-1-1 Kohto, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan

INTRODUCTION

ErbB tyrosine kinase receptors mediate mitogenic signal transduction cascade by binding a variety of ligands and recruiting the different cassettes of adaptor proteins. In the present study, we examined heregulin (HRG)-induced signal transduction of ErbB4 receptor and found that the phosphatidylinositol 3-kinase (PI3K)-Akt pathway negatively regulated the extracelluar signal-regulated kinase (ERK) cascade by phosphorylating Raf-1 on Ser259. As the time-course kinetics of Akt and ERK activities seemed to be transient and complex, we constructed a mathematical simulation model for HRG-induced ErbB4 receptor signalling to explain the dynamics of the regulation mechanism in this signal transduction cascade. The model reflected well the experimental results observed in HRG-induced ErbB4 cells and in other modes of growth hormone-induced cell signalling that involve Raf-Akt cross-talk. The model suggested that HRG signalling is regulated by protein phosphatase 2A as well as Raf-Akt cross-talk, and protein phosphatase 2A modulates the kinase activity in both the PI3K-Akt and MAPK (mitogen-activated protein kinase) pathways.

Key words: computer simulation, cross-talk, ErbB, heregulin, signal transduction.

ErbB receptor tyrosine kinases play essential roles in cellular proliferation and differentiation, and their deregulated expression or mutation highly correlates with the incidence of certain types of human cancer [1–3]. The ErbB receptor family is composed of ErbB1 [epidermal growth factor receptor (EGFR)], ErbB2, ErbB3 and ErbB4. Among these receptors, the signalling pathway of EGFR has been extensively analysed and studied by experiments and mathematical modelling [4–7]. These ErbB proteins share several characteristic features, including conserved intrinsic tyrosine kinase domains and extracellular ligand-binding domains that are distinct from each other in their binding properties and affinities to several kinds of epidermal growth factor-like ligands. The binding of these ligands to ErbB receptors results in diverse biological outputs, such as different potency in several types of cell lines [15,16]. A number of recent studies further showed that PI3K-activated Akt phosphorylates Raf-1 on Ser259, thereby inhibits Raf-1 and the subsequent ERK activity [17–21]. In muscle cells, the Akt-induced inhibition of Raf-MEK-ERK pathway is stage-specific, and this cross-regulation depends on the state of cell differentiation [20]. Similarly, this kind of cross-inhibition is supposed to be ligand-specific in vascular smooth-muscle cells [22] or specific for high concentrations of insulin-like growth factor (IGF)-1-induced cell signalling in MCF-7 cells [18].

In the present study, we examined how the PI3K-Akt pathway and its interference with the Raf-ERK pathway were involved in HRG-stimulated ErbB4 receptor signalling in Chinese-hamster.
ovary (CHO) cells that express ErbB4. As a result, we found that the addition of HRG induced rapid phosphorylation of Akt in ErbB4-expressing cells. Pretreatment of the cells with wortmannin, a PI3K inhibitor, abolished Akt phosphorylation under this condition, although it increased the phosphorylation of ERK to a level higher than that observed in the cells treated with HRG alone. In another study examining Ser259 phosphorilation of Raf-1, a basal level of phosphorylation of Ser259 was observed in the absence of HRG, and this phosphorylation was inhibited by the addition of wortmannin before HRG treatment. Thus Ser259 phosphorylation was considered to, at least partially, account for the PI3K-Akt pathway. These results have led us to the conclusion that PI3K-induced Akt activation suppresses the ERK pathway through the negative regulation of Raf-1.

Based on this observation, we developed a computer simulation model for the HRG-induced ErbB4 signalling pathway to understand the dynamics of the regulation of kinase activities in the system. To judge the validity of this model, we also analysed the pattern of ERK activation in response to the dephosphorylation of MEK and Akt by protein phosphatase 2A (PP2A) using the model with and without Raf-Akt cross-talk and PP2A regulation. In conclusion, the simulation results raised the possibility that HRG signalling is regulated by PP2A as well as Raf-Akt cross-talk and Raf-MEK-ERK pathways. Furthermore, in our model, ERK and Akt showed maximum activity and behaved as if there were no cross-talk in the signalling cascades under certain conditions where the catalytic activity or the concentration of PP2A is very low. Thus the system behaviour in our model, which contains Raf-Akt cross-talk, is influenced significantly by the concentration and kinetic character of kinases and phosphatases. We therefore assume that such mechanisms may contribute to the cellular machinery for the induction of Raf-Akt cross-talk in ligand- or stage-specific signal transduction of cells.

EXPERIMENTAL

Materials

Recombinant human HRG-β\textsubscript{176–246} was purchased from R&D Systems (Minneapolis, MN, U.S.A.). Antibodies detecting phospho-p44/42 ERK, phospho-Ser473 Akt, phospho-Ser259 Raf-1, ERK and Akt were purchased from Cell Signalling Technology (Beverly, MA, U.S.A.). The specific antibodies used in detecting protein phosphorylation and protein interaction were obtained as follows: anti-ErbB4 receptor, anti-phosphotyrosine antibody (PY20) and anti-Raf-1 antibody from Santa Cruz Biotechnology (Santa Cruz, CA, U.S.A.); anti-p85 domain of PI3K from Upstate Biotechnology (Lake Placid, NY, U.S.A.); and anti-Shc antibody from Transduction Laboratories (Lexington, KY, U.S.A.). Wortmannin (PI3K inhibitor) and PD98059 (MEK inhibitor) were obtained from Calbiochem (San Diego, CA, U.S.A.). The method to construct CHO cells expressing human ErbB4 receptor has been described elsewhere [23].

Cell culture

CHO cells expressing ErbB4 receptor were routinely maintained in Dulbecco’s modified Eagle’s medium/F12 medium (Gibco BRL, Gaithersburg, MD, U.S.A.), supplemented with 10 % (v/v) bovine calf serum and antibiotics. For detection of the effect of HRG, the cells were starved in serum-free Dulbecco’s modified Eagle’s medium/F12 medium for 16–24 h before the experiment.

To test the effect of wortmannin, the cells were pretreated with the inhibitor 10 min before the addition of HRG.

Western-blot analysis

HRG-stimulated cells were rinsed by ice-cold PBS and lysed with cell lysis buffer (1 % Triton X-100, 0.5 % deoxycholate, 0.1 % SDS, PBS and protease inhibitors; pH 7.4). The cell lysate was cleared by centrifugation, and the protein concentration of the supernatant was determined by Protein Assay Reagent (Bio-Rad Laboratories, Hercules, CA, U.S.A.). To detect and quantify the phosphorylated receptor in total ErbB4 receptor protein, cell lystate samples containing equal amounts of protein were immunoprecipitated using anti-ErbB4 antibody and anti-phosphotyrosine antibody (PY20) respectively, incubated once for at least 3 h at 4 °C and then incubated again with Protein A/G–agarose for 2 h at 4 °C. After extensive washing with PBS, the immunoprecipitate samples were resolved by SDS/PAGE side by side, and the resolved proteins were transferred to a PVDF membrane and blotted with anti-ErbB4 antibody. Protein bands were detected using chemiluminescent reagent (Santa Cruz Biotechnology), and the band intensity was quantified by a densitometer (Fuji-Film Corp., Tokyo, Japan). Alternatively, ErbB4 immunoprecipitates were detected with PY20 and then rebotted with anti-ErbB4 antibody. Anti-Shc and anti-p85 antibodies were used to detect the association of Shc and PI3K in the immunoprecipitated ErbB4 receptor. We examined ERK and Akt phosphorylation as downstream markers of Raf-MEK-ERK cascade and the PI3K-Akt pathway respectively. Given that Ser473 phosphorylation accounts for more than 90 % of enzymic activity of Akt, anti-phospho-Ser473 Akt antibody was used for the detection of the active form of Akt in the evaluation of Akt activity [24]. For the detection of phospho-p44/42 ERK and phospho-Ser473 Akt, equal amounts of protein were subjected to SDS/PAGE, the membrane was transferred, and the protein bands were then detected using the corresponding phospho-specific antibodies. Next, the membrane was treated in stripping buffer (Bio-Rad Laboratories) and rebotted with non-phospho-ERK or Akt antibodies. To estimate roughly the amount of active kinase in the total kinase protein, cell lysate was immunoprecipitated by anti-ERK (or anti-Akt) and anti-phospho-ERK (or anti-phospho-Akt) antibody, resolved by SDS/PAGE and stained with silver. Protein bands corresponding to the molecular mass of the proteins were quantified using a densitometer, and the ratio of phosphoproteins to the total proteins was calculated.

For the detection of phosphorylation of Raf-1 on Ser259 cell lysates were immunoprecipitated with anti-phospho-Ser259 antibody (Cell Signaling Technology) and examined by Western blotting. Resolved bands were detected with the same antibody. An equal amount of the protein was subjected to Western blotting and detected by anti-Raf-1 antibody to judge the content of the protein corresponding to Raf-1.

Computation

To evaluate the dynamics of signal transduction pathways, we developed a stoichiometric simulation program YAGNS (Yet Another Gene Network Simulator), in our laboratory. The program solves the ordinary differential equations that are automatically formed from the inputs, and displays various time-course results in graphs. The inputs for the program include the reaction formula, kinetic parameters, initial concentrations of reactants and the simulation time. All computations for the present study

© 2003 Biochemical Society
were performed on a Pentium III personal computer. The web interface version of this program is available at https://access.obigrid.org/.

To estimate unknown kinetic parameters and the concentrations of reactants, we developed a genetic algorithm called DIDC (Distance Independent Diversity Control). Parameter calculation was run on the PC cluster system (256CPU). This parameter estimation technique allows us to establish computer simulations of signal transduction pathways when kinetic parameters of the reactants are not obtained from laboratory experiments. The DIDC algorithm is described in Appendix A. This program is also available on the above website.

RESULTS

Raf-Akt cross-regulation in HRG signalling

To initiate the signal transduction pathways, a ligand-induced association of adaptor proteins with the activated and tyrosine-phosphorylated receptor is necessary. At first, we examined whether the p85 domain of PI3K and Shc could directly associate with HRG-activated ErbB4 receptor in our CHO cell line expressing ErbB4. In concordance with the results reported previously, we found that p85 and Shc directly interacted with the ErbB4 receptor immunoprecipitates after the addition of 10 nM HRG to the cells (Figure 1) [13,14]. Treatment of the cells with HRG induced a rapid Akt activation that reached a peak after 2 min and sustained phosphorylation for over 30 min (Figure 2A). Pretreatment of the cells with the PI3K inhibitor wortmannin completely inhibited this Akt phosphorylation. This confirmed that HRG activated Akt in a PI3K-dependent manner in the ErbB4-expressing cells. HRG also triggered ERK activation (Figure 2B). This activation was transient, and reached a peak 5–10 min after the addition of HRG. On the other hand, the cells pretreated with wortmannin showed a higher level of phosphorylated ERK than the cells treated with HRG alone. We repeated the same experiments three times and confirmed that the ERK phosphorylation was more extensive in the cells pretreated with wortmannin.

Akt is a serine/threonine kinase known to phosphorylate specifically proteins with the highly conserved peptide motif RXRXXS/T. The same motif is located in the Raf-1 N-terminal regulatory domain at Ser259 (RQRSTS). The potential ability of Akt to phosphorylate Raf-1 protein was first pointed out by bioinformatics analysis based on peptide library screening [25,26], and later it was proven experimentally in vitro [21]. Experimental studies have shown that a PI3K inhibitor inhibits the IGF-induced phosphorylation of Raf-1 on Ser259 and increases the extent of the kinase activities of Raf-1 and ERK in HEK-293 and MCF-7 cells. Later, the direct phosphorylation of Raf-1 on Ser259 by Akt was proven, and this Akt activity was confirmed to inhibit Raf-1 activity [18,21]. Thus the extent of Ser259 phosphorylation is critical for Raf-1 activity.

To confirm whether the PI-3K-Akt pathway is involved in the phosphorylation of Raf-1 on Ser259 in HRG-induced ErbB4
signalling, we examined the phosphorylation of Raf-1 on Ser259 after HRG treatment in the presence or absence of wortmannin. Our results showed that Ser259 was constitutively phosphorylated, and this unphosphorylated form proved to be most remarkable at 2 min in the cells pretreated with wortmannin (Figure 3). Noting that this pattern of phosphorylation after wortmannin treatment inversely corresponded to the activity profile of Akt in our experiment (Figure 2A), we surmised that the Akt activity largely accounted for the Ser259 phosphorylation of Raf-1 at 2 min. At the same time, Akt-induced Ser259 phosphorylation remained low throughout the incubation time period, and most of the phosphorylation of Raf-1 on Ser259 seemed to depend on another kinase that is yet to be identified [17]. These results provided evidence that the PI3K-Akt pathway regulates Raf-1 activation in HRG-induced ErbB4 receptor signalling.

The signal transduction mechanism was assumed to be complex, commencing with the association of Shc and PI3K with the receptor after HRG binding and the consequent cross-regulation of ERK activity by the PI3K-Akt pathway. We organized the biochemical information on the regulatory mechanism of Akt on ERK and developed a mathematical simulation model for HRG signalling to analyse a signal transduction system involving Raf-MEK-ERK and PI3K-Akt pathways.

Description of ErbB4 model

The model is shown in Scheme 1. HRG-induced ErbB4 receptor bears two distinct signalling cassettes, the Ras-Raf-MEK-ERK and PI3K-Akt pathways. HRG binds to ErbB4 receptor (‘R’ in Scheme 1) and causes receptor dimerization, then the ErbB4 receptor kinase transphosphorylate each other at certain tyrosine residue sites in the receptor molecule [‘RP’ (a phosphorylated form of ErbB4 receptor)]. Phosphorylated ErbB4 possesses binding sites for the phosphotyrosine-binding (PTB) domain of Shc and for the SH2 domain of p85 [27]. The binding kinetics of these two molecules to the receptor was assumed to be competitive [22].

For Shc signalling, we adopted the models and kinetic parameters from the EGFR simulation model described in [4,5,28,29], with some slight modifications. Shc was assumed to bind to Grb2–Sos complex (GS) in the model, since an earlier surface plasmon resonance experiment showed that tyrosine-phosphorylated Shc peptide (pY317) had a much higher affinity to GS than a single Grb2 molecule [30]. Guanine nucleotide exchange factor Sos accelerates GDP–GTP exchange on Ras protein, and Ras GTPase-activating protein (GAP) accelerates turnover of GTP hydrolysis by 10000-fold when GAP is associated with RasGTP [31]. Therefore reaction 11 was taken...
RasGTP + Raf ⇔ RasGTP − Raf → RasGTP + Raf^+ + Pi

Raf^+ + E + Pi ⇔ Raf^* − E − Pi → Raf + E

(2)

An activated form of Raf-1 catalyses the double phosphorylation of MEK on certain serine/threonine residues. Phosphorylated MEK (MEKPP) phosphorylates threonine/tyrosine residues of ERK. Phosphorylated ERK (ERKPP), in turn, activates transcription factors after its relocation to nuclei [33]. The MAPK cascade is negatively regulated by MAPK phosphatase 3 (MKP3) for the dephosphorylation of ERK and by PP2A for the dephosphorylation of MEK [34,35]. On the other hand, PI3K activation in HRG-stimulated cells was confirmed to cause Akt activation in our experiment. The mechanism of PI3K-initiated Akt activation can be explained as follows: PI3K catalyses the phosphorylation of phosphatidylinositol (PI) on the inner surface of the cell membrane and generates phosphatidylinositol-3,4-biphosphate (PIP_2) and phosphatidylinositol-3,4,5-trisphosphate (PIP_3). PIP_3 binds to the pleckstrin homology (PH) domain of Akt and translocates the enzyme to the inner surface of the cell membrane and binds to RasGTP, ShGS (1)

RasGTP + GAP ⇔ RasGTP − GAP → RasGDP + GAP + Pi

where Pi represents a phosphate.

The activation and regulation of Raf-1 kinase are complex. Although the mechanism of Raf-1 kinase activation remains unclear, recent studies [17,32] have shown that the phosphorylation of Ser259 on Raf-1 serves as a regulatory switch for this activation. When Raf-1 on Ser259 is phosphorylated, Raf-1 (an unactivated form) is translocated to the cell membrane and binds to RasGTP. This binding step is a critical step for Raf-1 activation. The next three steps after this binding are dephosphorylation of Raf on Ser259 [Raf^* (an activated form of Raf)], activation of Raf-1 and activation of MEK. Finally, Raf-1 on Ser259 is dephosphorylated by an unknown kinase (enzyme ‘E’) in a Ras-dependent manner to attenuate the signal.

The mechanism of Raf-1 activation is described in the following approximation:

RasGTP + Raf ⇔ RasGTP − Raf → RasGTP + Raf^+ + Pi

Raf^+ + E + Pi ⇔ Raf^* − E − Pi → Raf + E

(2)

An activated form of Raf-1 catalyses the double phosphorylation of MEK on certain serine/threonine residues. Phosphorylated MEK (MEKPP) phosphorylates threonine/tyrosine residues of ERK. Phosphorylated ERK (ERKPP), in turn, activates transcription factors after its relocation to nuclei [33]. The MAPK cascade is negatively regulated by MAPK phosphatase 3 (MKP3) for the dephosphorylation of ERK and by PP2A for the dephosphorylation of MEK [34,35]. On the other hand, PI3K activation in HRG-stimulated cells was confirmed to cause Akt activation in our experiment. The mechanism of PI3K-initiated Akt activation can be explained as follows: PI3K catalyses the phosphorylation of phosphatidylinositol (PI) on the inner surface of the cell membrane and generates phosphatidylinositol-3,4-biphosphate (PIP_2) and phosphatidylinositol-3,4,5-trisphosphate (PIP_3). PIP_3 binds to the pleckstrin homology (PH) domain of Akt and translocates the enzyme to the inner surface of the cell membrane and binds to RasGTP, ShGS (1)

RasGTP + GAP ⇔ RasGTP − GAP → RasGDP + GAP + Pi

where Pi represents a phosphate.

The activation and regulation of Raf-1 kinase are complex. Although the mechanism of Raf-1 kinase activation remains unclear, recent studies [17,32] have shown that the phosphorylation of Ser259 on Raf-1 serves as a regulatory switch for this activation. When Raf-1 on Ser259 is phosphorylated, Raf-1 (an unactivated form) is translocated to the cell membrane and binds to RasGTP. This binding step is a critical step for Raf-1 activation. The next three steps after this binding are dephosphorylation of Raf on Ser259 [Raf^* (an activated form of Raf)], activation of Raf-1 and activation of MEK. Finally, Raf-1 on Ser259 is dephosphorylated by an unknown kinase (enzyme ‘E’) in a Ras-dependent manner to attenuate the signal.

The mechanism of Raf-1 activation is described in the following approximation:

RasGTP + Raf ⇔ RasGTP − Raf → RasGTP + Raf^+ + Pi

Raf^+ + E + Pi ⇔ Raf^* − E − Pi → Raf + E

(2)
Our model employs the Michaelis–Menten approximation for most of the enzymatic reactions (PI3K, Raf-1, ERK, MEK, PDK1, Akt, PI3K, and enzyme ‘E’) and the interaction of Shc-GS (ShGS) with RasGDP. The following reaction sets in Scheme 1 share common enzymes individually: reactions 15 and 17 for activated Raf-1, reactions 16, 18, 31 and 33 for PP2A, reactions 19 and 21 for activated MEK, reactions 20 and 22 for MKP3 and reactions 30 and 32 for PDK1. The concentrations of the active enzymes in reactions 11, 13–15, 17, 19, 21 and 27 in Scheme 1 were assumed not to remain constant throughout the reactions. We used the formula by Kholodenko [29] to express the conversion rates of the active and inactive enzymes. To express the production rates for the enzymatic reactions (e.g. reactions 16, 18, 31 and 33) that recruit a common enzyme (e.g. PP2A), we used the equations presented in Appendix B. Regarding the turnover of ErbB4 receptor after ligand binding, the rate of internalization and degradation of ErbB4 is slower than that of EGFR, or is approx. 0.001 s⁻¹ according to our calculation [47].

Simulation on HRG-induced ErbB4 signalling

When the simulation model was used to examine HRG (10 nM), the result showed the following: transient receptor phosphorylation reached a peak within 1 min, MEK and ERK activation from 5 to 10 min, rapid activation of Akt activity within 2 min and sustained Akt activity over the entire time course (Figures 4A–4G). When lower concentrations of HRG (0.1–10 nM) were added, receptor phosphorylation, Akt, MEK and ERK phosphorylation levels also varied in a dose-dependent manner. These results are consistent with our experimental results.

We monitored the reaction rates of phosphorylation and dephosphorylation reactions (reactions 11–22 and 27–33 in Scheme 1) during the simulation period to understand the dynamics of the kinases and phosphatases on the signal amplitude in each step (Figure 5). In these Figures, kinases in the MAPK cascade generally showed a higher reaction rate than the corresponding phosphatases at early time points where amplification of the signals is observed; the reaction rate of the phosphatases slowly increased and retained a higher rate than the kinases at later time points (Figures 5B–5F). In contrast, phosphorylation and dephosphorylation reactions of Ras GDP–GTP exchange (Figure 5A) and PI (Figure 5G) showed almost identical reaction rates in forward and backward reactions, indicating that turnover of the activated form of the reactants is rapid. Since Ras GDP–GTP exchange is a limiting step for the MAPK cascade, this GDP–GTP exchange balance to induce rapid GTP hydrolysis seemed to be biologically relevant [47]. Overall, the time course
ErbB signalling model

Figure 4 Computer simulation of HRG-induced ErbB4 signalling cascade at different HRG concentrations

(A) Phosphorylation of the ErbB4 receptor (RP); (B) phosphorylation of Shc (ShP); (C) activation of PI3K (PI3K⁺); (D) activation of Raf-1 (Raf⁺); (E) activation of MEK (MEKPP); (F) activation of ERK (ERKPP); (G) activation of Akt (Akt-PI-PP). In (A, E–G), symbols show experimental results of Western-blot analysis (——, 10 nM; ——, 1 nM; ······, 0.1 nM).

of the reaction rates in phosphorylation reactions, rather than dephosphorylation reactions, well reflected the patterns of the signal amplitude.

Effect of PI-3K inhibitor

Next, we simulated the effect of PI3K inhibition on the kinetics of ERK and Akt activation. Since wortmannin is an irreversible inhibitor of PI3K [48] and functionally lowers the V_{max} of this enzyme, we set a lower V_{max} value for the enzymic activity of PI3K (Figure 6).

As a result, a lower V_{max} for enzymic activity of PI3K caused a higher activation in ERK. On the other hand, Akt activity was decreased under the same condition, dwindling almost to nothing when the V_{max} was set at 1/100th of the initial value. This simulation well reflected a pattern similar to that of the experimental result (Figure 2B).

PP2A regulates the activities of MEK and Akt

Since PP2A deactivates both MEK and Akt within a short time period, sharing of the common enzyme PP2A with either of the active forms of MEK and Akt may affect the downstream kinetics of ERK activity. We examined whether such an availability of PP2A and Raf-Akt cross-talk is a truly major regulatory mechanism for ERK activity in HRG signalling. We compared the simulation results obtained from the following three models: (A) with the sharing of PP2A and Raf-Akt cross-talk (the original model); (B) without the sharing of PP2A (the activated forms of MEK and Akt do not share the same enzyme; reactions 16 and 18 differ from reactions 31 and 33); (C) without Raf-Akt cross-talk (the activated form of Akt does not stimulate reaction 14). In this test, the initial concentration of Akt was set four times higher than the original concentration (40 nM) to derive a significant difference in each ERK activity in the presence or absence of wortmannin ($V_{\text{max}} = 1/100$ of the original value). In conclusion, the three models showed characteristically different patterns of ERK activity. The results observed in the model with both sharing of PP2A with the active forms of MEK and Akt and Raf-Akt cross-talk (i.e. an earlier and higher peak in ERK in the presence of wortmannin; Figure 7A) were the most consistent with the results experimentally observed in our laboratory (Figure 2B), as well as with the results observed in IGF-1-stimulated MCF-7.

© 2003 Biochemical Society
cells, a cell line that also possesses Raf-Akt cross-talk [18]. On the other hand, in the model without sharing of PP2A, wortmannin elicited a later and higher peak of ERK activity (Figure 7B), and without Raf-Akt cross-talk, wortmannin elicited early but inhibited ERK activity (Figure 7C). Although these simulation results may only be hypothetical for real cellular events, we find it significant that our simulation model reflected the experimental results only under the condition where both Raf-Akt cross-talk and sharing of PP2A were present. Given this finding, it seems highly likely that this dual regulation is responsible for the kinetic regulation of ERK activity.

Since PP2A is recruited to both MEK and Akt pathways, the total amount of PP2A and the affinity of PP2A to the active forms of MEK and Akt also affects the downstream kinetics of ERK and Akt activities. In our simulation model, \(V_{\text{max}} \) and \(K_m \) in the corresponding reactions reflect the concentration and affinities of PP2A to MEK and Akt respectively. To illustrate the kinetic character of PP2A on MEK and Akt, we set the \(K_m \) for reactions 16 and 18 (MEK dephosphorylation) as equal, and for reactions 31 and 33 (Akt dephosphorylation) as equal. Similarly, we set the \(V_{\text{max}} \) for the above reactions as equal: \(V_{\text{max}} = 0.058[\text{PP2A}] \) and \(K_m = \alpha K_{\text{MEK}} \) for reactions 16 and 18, and \(V_{\text{max}} = 0.1747[\text{PP2A}] \) and \(K_m = \alpha K_{\text{Akt}} \) for reactions 31 and 33, where \(\alpha \) is a multiplicative factor. The affinity ratio \(\beta \) is expressed as \(\beta = K_{\text{MEK}}/K_{\text{Akt}} \). These parameters (\(\alpha \), \(\beta \) and PP2A concentration) were varied to monitor the effect of concentration and the affinities of PP2A on downstream ERK and Akt activities (Figure 8). As a result, the activities of ERK and Akt are suppressed in a PP2A-concentration-dependent manner and a high concentration of PP2A eliminated all ERK and Akt activities where \(\alpha = 1 \) or 10 (Figures 8A–8D). The graphs also showed that a higher affinity of PP2A to MEK (\(\beta \) is small) decreased ERK activation and increased Akt activation (Figures 8A–8F). Where \(\beta \) is large, ERK shows high activity. Akt shows low activity where PP2A concentration is high (Figures 8C and 8D). This mechanism underlies the sharing of the common enzyme PP2A in our
The affinity ratio β seemed to be crucial especially when α is 1×10^{2}. Since the K_m value represents the affinity of an enzyme (in this case, PP2A) for a substrate (MEK or Akt) and implies catalytic activity of the enzyme towards the substrate, a larger K_m value means lower enzyme activity. When the K_m value is large enough for a PP2A reaction, the effect of PP2A concentration is only negligible, and apparent kinase activities reach a 100% maximum. In our model, when α is approx. 10^{4}, both ERK and Akt gained maximal enzymic activity independent of β and there appeared to be no Raf-Akt cross-talk or regulatory effect of PP2A concentration (Figures 8I and 8J). This is because MEK and Akt cascades have no reverse reactions to reduce the active forms of the enzymes, meaning that in practical terms this model can behave as two different signalling models, depending on the kinetic parameter of the kinases and phosphatases. In particular, it may be assumed that the kinetic parameters of PP2A significantly affect downstream kinase activities.

DISCUSSION

There is increasing evidence that PI3K, largely responsible for cell survival and differentiation, interferes with ERK activity [49–51]. In addition to demonstrating Akt-induced suppression of ERK in growth-hormone-induced signalling pathways in several cell lines, our experiments in the present study confirmed that a similar mode of ERK inhibition took place in HRG-induced ErbB4 signalling in ErbB4-expressing CHO cells. We formulated these experimental observations in a mathematical model to understand the complex mechanisms of kinase regulation in cellular signalling cascade. Overall, our mathematical model accurately reflected the experimental data and yielded clues to understand the regulatory mechanism of Raf-Akt cross-talk. In our evaluation of the model, we found that it encompassed major
activity did not have a similar effect in vascular smooth-muscle cells [22]. In our model, sustained Akt activity can be reproduced where a weak association between Akt and PP2A and a strong association between MEK and PP2A co-exist, and this condition inhibits ERK activity. In contrast, opposite conditions do not cause ERK inhibition. When the catalytic activity of PP2A is very low for ERK and Akt reactions, there is no apparent Raf-Akt cross-talk. As was the case in an earlier study by Heinrich et al. [52], our model containing cross-talk showed drastic changes in dynamic behaviour in response to small parameter variation. If no qualitative difference occurs in the signal transduction of the above IGF-1 signalling pathways, regulation of phosphatase activity will affect quite probably the kinetics of Akt and ERK activities. Localization mechanisms of PP2A in the reaction sites, structural change or modification of the corresponding proteins to influence the affinity and the catalytic activity of PP2A may possibly induce such phenomena in cells.

Despite the fact that PP2A is an abundant phosphatase and is supposed to exist at the micromolar range in the cells [53], we estimated the concentration to be as low as 11 nM. In our model, when the concentration is as high as 100 nM, PP2A totally suppresses ERK and Akt activities. Considering that PP2A contributes to a wide variety of cellular events such as DNA replication and transcription, RNA splicing, translation, cell-cycle progression, morphogenesis and the regulation of a variety of signal transduction cascades [54,55], its localization and availability rather than the absolute amount of PP2A appear to affect temporal signalling dynamics. Moreover, PP2A activity is tightly regulated by the use of different subunits and its expression is highly controlled [55]. The apparent PP2A concentration available for specific cellular phenomena may be much lower than the physiologically known concentration. A similar explanation may apply to PI3K and Akt, the concentration of which is much lower than that of other signalling reactants, and these kinases should have other roles to play in cellular differentiation cascade or prevention of apoptosis rather than in Raf inhibition.

There is increasing evidence that the amplification mechanism of signal transduction cascade is regulated by phosphatases as well as kinases, and a computer simulation approach applying the kinetic model is quite useful to evaluate this type of regulatory mechanism. PP2A is a serine/threonine phosphatase that plays a central role in the regulation of protein kinases that are transiently phosphorylated and activated, and PP2A appears to determine the activation kinetics of a protein kinase cascade [18,40,41,56,57]. Although our model focused on the deactivation of Akt and MEK by PP2A, the Raf-1 protein is known to be positively regulated by the same enzyme [17]. As Raf-1 serves as the heart of several activation steps for Raf-1 activation, we can safely affirm that the dephosphorylation of Raf-1 by PP2A is not a kinetic limiting factor for Raf-1 activation [17].

It is known that PI3K begins bestowing positive effects on ERK later during growth hormone signalling (after approx. 30 min), probably through Rac or PAK [18,58]. In HRG-stimulated cells, Gab2 is reported to regulate negatively Ras-PI3K activation via negative feedback through the PI3K-Akt pathway [59]. It has been recently found that PI3K and its enzymic products have many regulatory roles in membrane receptor-mediated signal transduction cascade. Whereas PI3K binds directly to the receptor molecule in our model, PI3K binds to the receptor via Gab1 and positively regulates ERK in EGFR signalling. The PI3K product PIP2, also induces up-regulation of ERK by additionally recruiting Gab1 to the activated receptor.

regulatory systems to modulate ERK activity. One is the cross-talk between Raf-MEK-ERK and PI-3K-Akt pathways, and the other is the regulation by PP2A.

In the course of our analysis, we found that our model behaved as two different signalling models, either possessing or not possessing Raf-Akt cross-talk, depending on the kinetic parameters of PP2A. A similar phenomenon is observed in IGF-1-activated signalling pathways, where high doses of IGF-1 triggered Raf-Akt cross-talk but low doses of IGF-1 did not [18]. Similarly, it has been reported that platelet-derived growth factor receptor-induced long-sustained Akt activity results in Raf-Akt cross-talk, but protease-activated receptor-induced weak Akt activity did not have a similar effect in vascular smooth-muscle cells [22]. In our model, sustained Akt activity can be reproduced where a weak association between Akt and PP2A and a strong association between MEK and PP2A co-exist, and this condition inhibits ERK activity. In contrast, opposite conditions do not cause ERK inhibition. When the catalytic activity of PP2A is very low for ERK and Akt reactions, there is no apparent Raf-Akt cross-talk. As was the case in an earlier study by Heinrich et al. [52], our model containing cross-talk showed drastic changes in dynamic behaviour in response to small parameter variation. If no qualitative difference occurs in the signal transduction of the above IGF-1 signalling pathways, regulation of phosphatase activity will affect quite probably the kinetics of Akt and ERK activities. Localization mechanisms of PP2A in the reaction sites, structural change or modification of the corresponding proteins to influence the affinity and the catalytic activity of PP2A may possibly induce such phenomena in cells.

Despite the fact that PP2A is an abundant phosphatase and is supposed to exist at the micromolar range in the cells [53], we estimated the concentration to be as low as 11 nM. In our model, when the concentration is as high as 100 nM, PP2A totally suppresses ERK and Akt activities. Considering that PP2A contributes to a wide variety of cellular events such as DNA replication and transcription, RNA splicing, translation, cell-cycle progression, morphogenesis and the regulation of a variety of signal transduction cascades [54,55], its localization and availability rather than the absolute amount of PP2A appear to affect temporal signalling dynamics. Moreover, PP2A activity is tightly regulated by the use of different subunits and its expression is highly controlled [55]. The apparent PP2A concentration available for specific cellular phenomena may be much lower than the physiologically known concentration. A similar explanation may apply to PI3K and Akt, the concentration of which is much lower than that of other signalling reactants, and these kinases should have other roles to play in cellular differentiation cascade or prevention of apoptosis rather than in Raf inhibition.

There is increasing evidence that the amplification mechanism of signal transduction cascade is regulated by phosphatases as well as kinases, and a computer simulation approach applying the kinetic model is quite useful to evaluate this type of regulatory mechanism. PP2A is a serine/threonine phosphatase that plays a central role in the regulation of protein kinases that are transiently phosphorylated and activated, and PP2A appears to determine the activation kinetics of a protein kinase cascade [18,40,41,56,57]. Although our model focused on the deactivation of Akt and MEK by PP2A, the Raf-1 protein is known to be positively regulated by the same enzyme [17]. As Raf-1 serves as the heart of several signalling pathways, this regulation mechanism is complicated and remains largely unknown. Nonetheless, given that the Raf-1 translocation to the membrane and its binding with Ras are limiting steps for Raf-1 activation, we can safely affirm that the dephosphorylation of Raf-1 by PP2A is not a kinetic limiting factor for Raf-1 activation [17].

It is known that PI3K begins bestowing positive effects on ERK later during growth hormone signalling (after approx. 30 min), probably through Rac or PAK [18,58]. In HRG-stimulated cells, Gab2 is reported to regulate negatively Ras-PI3K activation via negative feedback through the PI3K-Akt pathway [59]. It has been recently found that PI3K and its enzymic products have many regulatory roles in membrane receptor-mediated signal transduction cascade. Whereas PI3K binds directly to the receptor molecule in our model, PI3K binds to the receptor via Gab1 and positively regulates ERK in EGFR signalling. The PI3K product PIP2, also induces up-regulation of ERK by additionally recruiting Gab1 to the activated receptor.
Given the complexity of the regulatory mechanism of PI3K, a regulatory model of this type involving PI3K might facilitate our understanding of the cellular behaviour more accurately.

One of the challenging purposes of ErbB modelling was to resolve unknown mechanisms causing malignant phenotypes when different ErbB receptors were co-expressed in the same cells. For example, long-term treatment of ErbBs-co-expressing cells with growth factor induced cellular transformation, whereas a single ErbB receptor triggered no such effect [60, 61]. An ensemble of qualitative experimental data may not be sufficient to resolve these unknown mechanisms. As an alternative, we propose that a mathematical quantitative analysis of the signal transduction cascade will provide a theoretical understanding of ErbB signalling that may prove useful to unravel the amplification mechanisms of the cellular phenomena caused by ErbB receptors.

APPENDIX A

DIDC algorithm (a genetic algorithm with Distance Independent Diversity Control)

We used DIDC as a parameter estimator to obtain unknown kinetic constants and concentrations of cellular signalling molecules for our simulation model. DIDC is a real-coded genetic algorithm and was designed to solve high-dimensional and multi-modal function optimization problems. It uses two different search operators, ENDX (Extended Normal Distribution Crossover) and NDM (Normal Distribution Mutation).

The DIDC algorithm is as follows:

1. As an initial population, create \(n_p \) individuals randomly. Set Generation \(= 0 \) and a mutation applying probability of \(p_m = 1 \).
2. Go to step 3 with probability \(p_m \). Otherwise, jump to step 4.
3. Select a pair of individuals randomly without replacing it from the population. Generate \(n_c \) children by applying NDM to the selected pair of individuals. Choose an individual with the best fitness from the family, which includes the parent. Exchange the parent for the selected individual. Jump to step 5.
4. Select a pair of individuals randomly without replacing it from the population. Generate \(n_c \) children by applying ENDX to the selected pair of individuals. Choose two individuals from the family. One has the best fitness, and the other is selected randomly. Exchange the parents for the selected individuals.
5. If the best individual in the population has not been improved in the last \(T_s \) generations, set the probability \(p_m = 0 \). Otherwise, set \(p_m = 1 \).

The parameters \(T_s = 3n_p, n_c = 15n \) and \(n_p = 50 \) are recommended, where \(n \) is the dimension.

ENDX (Extended Normal Distribution Crossover) requires \(m \) parents.

Let randomly selected parental vectors be \(\mathbf{p}_1, \ldots, \mathbf{p}_m \). ENDX generates a child vector \(\mathbf{c} \) as follows:

\[
\mathbf{c} = \mathbf{p} + \xi \mathbf{d} + \sum_{i=1}^{m} \eta_i \mathbf{p}_i
\]

where \(\mathbf{p} = (\mathbf{p}_1 + \mathbf{p}_2)/2, \mathbf{d} = \mathbf{p}_2 - \mathbf{p}_1, \mathbf{p}_i = \mathbf{p} - \lfloor 1/(m-1) \rfloor \sum_{j=2}^{m} \mathbf{p}_j \) and \(\eta_i \sim \mathcal{N}(0, \beta^2) \) with \(\alpha = 0.434, \beta = 0.35/\sqrt{m - 3} \) and \(m = n + 2 \) are recommended, and \(n \) is the dimension.

For the generation alternation, first, \(m \) parents are randomly selected, then ENDX generates \(n_c \) offspring using the \(m \) parents. Two individuals are selected from the family, which includes two parents (\(\mathbf{p}_1 \) and \(\mathbf{p}_2 \)) and their offspring. One is the best individual. The other is selected randomly from the family. Finally, the two parents, \(\mathbf{p}_1 \) and \(\mathbf{p}_2 \), are exchanged for the selected offspring.

NDM (Normal Distribution Mutation) is very similar to ENDX.

Like ENDX, NDM uses \(m \) randomly selected parents. NDM generates a child vector \(\mathbf{c} \) as follows:

\[
\mathbf{c} = \mathbf{p} + \sum_{i=1}^{m} \eta_i \mathbf{p}_i
\]

where \(\mathbf{p} = \mathbf{p} - \lfloor 1/(m-1) \rfloor \sum_{j=2}^{m} \mathbf{p}_j \) and \(\eta_i \sim \mathcal{N}(0, \gamma^2) \) with \(\gamma = 0.35/\sqrt{m - 2} \) and \(m = n + 2 \) are recommended.

For the generation alternation, \(m \) parents are randomly selected.

NDM then also generates \(n_c \) offspring using the \(m \) parents. For the generation alternation, only one individual is selected (i.e. the best individual is selected from the family that includes the parent \(\mathbf{p}_1 \) and their offspring). Finally, the parent \(\mathbf{p}_1 \) is exchanged for the selected offspring.

APPENDIX B

Equations expressing the production rates for the two enzymic reactions that share the common enzyme PP2A

Let us consider two reactions of the simplest Michaelis–Menten type with a common enzyme ‘E’ that catalyses the conversion of substrates \(S_1 \) and \(S_2 \) into products \(P_1 \) and \(P_2 \) respectively as shown by the following equations:

\[
S_1 + E \xrightarrow{k_{11}} S_1E \xrightarrow{k_{13}} P_1 + E \\
S_2 + E \xrightarrow{k_{21}} S_2E \xrightarrow{k_{23}} P_2 + E
\]

The rate equations for the products and the enzyme–substrate complexes for each reaction are expressed as follows:

\[
\frac{d[S_1]}{dt} = k_{13}[S_1][E] \\
\frac{d[P_1]}{dt} = k_{13}[S_1][E] \\
\frac{d[S_2]}{dt} = k_{23}[S_2][E] \\
\frac{d[P_2]}{dt} = k_{23}[S_2][E]
\]

Assuming a quasi-steady-state approximation expressed as \(d[S_1]/dt = 0 \) and \(d[S_2]/dt = 0 \) for eqns (B3) and (B4), we have

\[
[S_1] = \frac{k_{11}[S_1][E]}{k_{12} + k_{13}} \\
[S_2] = \frac{k_{21}[S_2][E]}{k_{22} + k_{23}}
\]

Elimination of \([E]\) in eqns (B5) and (B6) by means of the conservation law \([E]_0 = [E] + [S_1][E] + [S_2][E]\) yields the following equations:

\[
\frac{d[P_1]}{dt} = \frac{V_1[S_1]}{K_1(1 + [S_1]/K_1 + [S_2]/K_2)} \\
\frac{d[P_2]}{dt} = \frac{V_2[S_2]}{K_2(1 + [S_1]/K_1 + [S_2]/K_2)}
\]

where \(V_1 = k_{13}[E]_0, K_1 = (k_{12} + k_{13})/k_{11}, V_2 = k_{23}[E]_0 \) and \(K_2 = (k_{22} + k_{23})/k_{21} \). Equations (B7) and (B8) express the production rates for the two enzymic reactions that share the common enzyme.
REFERENCES

