Differential effects of reduced glycoprotein VI levels on activation of murine platelets by glycoprotein VI ligands

Daniel C. SNELL*1, Valerie SCHULTE†1, Gavin E. JARVIS*, Kanako ARASE‡, Daiju SAKURAI‡, Takashi SAITO‡, Steve P. WATSON*2 and Bernhard NIESWANDT†

*Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K., †Department of Molecular Oncology, General Surgery, Witten/Herdecke University, 42117 Wuppertal, Germany, and ‡Department of Molecular Genetics (H1), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan

We have investigated the effects of decreased levels of the complex between glycoprotein VI (GPVI) and the Fc receptor γ-chain (FcRγ) on responses to collagen and GPVI-specific ligands in murine platelets. We show that levels of GPVI–FcRγ of the order of 50% and 20% of wild-type levels caused 2- and 5-fold shifts to the right respectively in the dose–response curve for aggregation in response to collagen, the snake toxin convulxin and the monoclonal antibody JAQ1. In addition, there is a delay in the onset of aggregation in response to collagen. In contrast, the stimulation of protein tyrosine phosphorylation by collagen (as measured after 150 s) and adhesion to a collagen-coated surface under static conditions were unaffected in platelets with 50% and 20% of wild-type levels of GPVI. In contrast, responses to a collagen-related peptide (CRP), made up of repeat glycine-proline-hydroxyproline motifs, were markedly inhibited and abolished in platelets expressing 50% and 20% of wild-type levels of GPVI respectively. We suggest that the marked effect of a reduction in GPVI levels on the CRP-induced activation of platelets is due to the multivalent nature of CRP and the fact that GPVI is its sole receptor on platelets. Thus it appears that the interaction of CRP with GPVI is determined by a combination of affinity and avidity. The observation that collagen does not behave like CRP in platelets expressing reduced levels of GPVI, even in the combined presence of blocking antibodies against integrin α2β1 and GPVI, suggests that collagen has a greater affinity than CRP for GPVI, and/or that other receptors are involved in its binding to platelets. The clinical significance of these results is discussed.

Key words: aggregation, collagen, FcRγ-chain, GPVI, platelets.

INTRODUCTION

Over the course of the last 20 years, a remarkable number of platelet surface proteins have been proposed as receptors for the subendothelial matrix protein collagen. Within this group, attention has focused on the integrin α2β1 [also known as glycoprotein Ia–IIa (GPIa–IIa)] and the immunoglobulin-domain-containing GPVI as the major receptors underlying the interaction. It was originally proposed that these two receptors interact in a two-site/two-state model, with integrin α2β1 being critical for adhesion and GPVI for activation. More recently, several lines of evidence have emerged which support a pivotal role for GPVI in both of these events [1–3]. In a revised two-site/two-state model, it is now proposed that the initial interaction of collagen with platelets is via GPVI, leading to activation of integrin α2β1 and a strengthening of adhesion [1,2]. This model is supported by observations on platelets from integrin β1- and α2-deficient mice which demonstrate that the integrin is not essential for platelet activation by collagen [2,4].

GPVI is present on the platelet surface in a complex with the Fc receptor γ-chain (FcRγ) [5,6]. The latter is necessary for the surface expression of GPVI in platelets and for the regulation of intracellular signalling events. Mice engineered to lack expression of FcRγ fail to express GPVI on their platelets [7]. In line with this, a patient with a marked reduction in GPVI levels was found to have a corresponding reduction in FcRγ [6]. FcRγ is also required for expression of several other Ig-domain-containing receptors on the surface of other haematopoietic cells, including the Fc receptors for IgG (FcγRI and III) and IgE (FcεRI) [8] and the paired immunoglobulin-like receptor-A (PIR-A) [9,10]. Signalling via GPVI is believed to take place entirely through FcRγ. Activation of GPVI leads to tyrosine phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) in FcRγ by a Src-like kinase [11,12] and subsequent recruitment of the tyrosine kinase Syk [13]. This initiates a series of events that culminate in activation of phospholipase Cγ2, phosphoinositide 3-kinase and other downstream effector enzymes.

The critical role of GPVI in platelet activation has been demonstrated using GPVI-deficient platelets and selective agonists [14]. A number of synthetic collagen-related peptides (CRPs) have been developed by the group of Barnes and Farndale [15] which activate GPVI but are inactive on integrin α2β1. These peptides are based on a repeat glycine-proline-hydroxyproline (GPO) motif and are cross-linked by cysteine or lysine residues in their N- and C-termini. Several snake venom toxins activate platelets through GPVI [16]. The snake C-type lectin convulxin, from the tropical rattlesnake Crotalus durissus terrificus, was the...
first member of this group to be identified and is the best
described. A number of antibodies to GPVI have been
developed, including the rat monoclonal antibody (mAb) JAQ1,
which recognizes murine GPVI [7].

Recently, studies in GPVI-transfected cells have demonstrated
that a high level of expression of the receptor, approaching that
found in platelets, is necessary to confer adhesion and activation
in response to collagen [17,18]. In the present study, we have
investigated whether this relationship also holds for collagen
in platelets, as well as for a number of GPVI-specific agonists. A
reduction in expression of the GPVI–FcRγ complex has been
achieved using mice that are heterozygous for FcRγ, or FcRγ−/−
mice that express a transgene for FcRγ.

EXPERIMENTAL

Animals

C57Bl/6 mice deficient in FcRγ were obtained as previously
described [19] or from Taconics (Germantown, NY, U.S.A.)
FcRγ heterozygous mice were generated by crossing FcRγ-
deficient mice with wild-type mice. C57Bl/6 FcRγ transgenic
(FcRγ-Tg) mice express a transgene for FcRγ in an FcRγ-null
background; the engineering of these mice will be described
elsewhere (K. Arase, D. Sakurai and T. Saito, unpublished
work; details on application to K.A.). The FcRγ-Tg mice were
bred with FcRγ-deficient mice to reduce the level of expression
of FcRγ; these mice are termed FcRγ-Tg/KO mice. Specific-
pathogen-free C57Bl/6 mice were obtained from Charles River
(Sulzfeld, Germany) or Harlan SERA-LAB Ltd. (Belton, Leics.,
U.K.).

Materials

Horm collagen (predominately Type I; derived from equine
tendon) was from Nycomed (Munich, Germany). Convulxin
and FITC-labelled convulxin were kindly donated by Dr Mireille
Leduc and Dr Cassian Bon (Unité des Venins, Institut Pasteur,
Paris, France). CRP [GKO(GPO)]_2 (single-letter code,
where O is hydroxyproline) was synthesized by Tana Laboratories
(Houston, TX, U.S.A.); it was cross-linked with 0.25 %
glutaraldehyde for 3 h on ice and then dialysed into PBS. All salts
and Nomidot P-40 were purchased from BDH–Merck (Poole, Dorset,
U.K.). The mAb JAQ1 was produced as described previously [7].
Polycyonal rabbit antibodies against murine FcRγ were purchased
from Upstate Biotechnology (Lake Placid, NY, U.S.A.). Hamster
anti-α2 integrin (HA1/29) was purchased from BD
Pharmingen (Oxford, U.K.). The anti-GPV antibody was kindly
provided by Dr Francois Lanza (INSERM, Strasbourg, France).

Preparation of mouse platelets

Blood (750–1000 µl) was taken into 300 µl of heparin solution
(10 units/ml) by cardiac puncture under terminal CO2 narcosis.
Alternatively, mice were bled under terminal ether anaesthesia
from the retro-orbital plexus and blood was collected in a tube
containing 7.5 units/ml heparin. Platelets obtained using either
procedure gave the same results.

Platelet-rich plasma (PRP) was obtained by centrifugation at
300 g for 10 min at room temperature. PRP was centrifuged
at 1000 g in the presence of prostacyclin (0.1 µg/ml) for 6 min at
room temperature. Pelleted platelets were resuspended in modi-
fied Tyrode’s/Heps buffer (134 mM NaCl, 0.34 mM Na2HPO4,
2.9 mM KCl, 12 mM NaHCO3, 20 mM Heps, 5 mM glucose,
1 mM MgCl2, pH 7.3) to the required concentration and left for
30 min at 37°C prior to stimulation. All experiments were
performed at 37°C in siliconized glass tubes with continuous
stirring. Agonists were added as 10–100-fold concentrates.

Aggregometry

Platelet aggregation was monitored in PRP. To determine
aggregation, light transmission was measured relative to that in
platelet-poor plasma. Transmission was recorded on a BioData
PAP-4 (Alpha Laboratories, Eastleigh, Hants., U.K.) or a
Fibrintimer 4-channel aggregometer (APACT Laborgeräte und
Analysensysteme, Hamburg, Germany) over 10 min, and the
transmission with PRP was expressed as a percentage of that
with platelet-poor plasma.

Protein phosphorylation studies

Platelet stimulation was carried out using 500 µl of platelet
suspension containing 2 × 10⁴ cells/ml. All experiments were
carried out in the presence of the GPIIb–IIIa antagonist lotra-
fibin (10 µM). For measurement of whole-cell tyrosine phos-
phorylation, reactions were stopped by the addition of an equal
volume of Laemmli sample buffer, boiled for 5 min and separated
by SDS/PAGE on 4–12 % (w/v) pre-cast Bis-Tris gels (NuPage;
Invitrogen) under reducing conditions before transfer to a PVDF
membrane. For measurement of GPVI and FcRγ, proteins were
separated on 10 % (w/v) acrylamide gels under non-reducing
and reducing conditions respectively. Membranes were blocked
by incubation with TBS-T (Tris-buffered saline containing
TWEEN; 20 mM Tris/137 mM NaCl/0.1 %, Tween 20, pH 7.6)
containing 10 % (w/v) BSA. Antibodies were diluted 1:1000 in
blocking buffer and incubated with blots for 1 h at room
temperature. Membranes were washed twice for 30 min in TBS-
T before incubation for 1 h with an appropriate horseradish
peroxidase (HRP)-conjugated secondary antibody diluted
1:10000 in TBS-T. Following washing in TBS-T as above, the
membranes were developed using an enhanced chemilumin-
escence detection system.

Glycoprotein receptor densities

Flow cytometry was performed by incubating 10⁶ washed plate-
lets with 10 µg/ml phycoerythrin-conjugated mAb JAQ1 for
20 min at room temperature. Samples were analysed on FACS-
calibur (Becton Dickinson, Heidelberg, Germany). Western
blotting for GPVI was carried out by lysis of 10⁶ unstimulated
washed platelets in non-reducing Laemmli sample buffer. A
volume of 20 µl of platelet lysate was separated by SDS/PAGE
as described above. GPVI was detected using HRP-conjugated
JAQ1 (10 µg/ml) and visualized by enhanced chemiluminescence
as above.

Adhesion

Static adhesion assays were performed with washed platelets
from the indicated mice in modified Tyrode’s buffer containing
1 mM MgCl2 and 1 mM CaCl2 on 96-well plates (Nunc, Wies-
baden, Germany) coated with different concentrations of Horm
collagen as described previously [14].

Data analysis

Results are shown as means±S.D. Statistical analyses were
performed using Student’s t test, with P < 0.05 taken as the level
of significance.
RESULTS

Modulation of GPVI–Fcγ expression in murine platelets

We used the observation that the expression of GPVI on murine platelets is dependent on the presence of Fcγ [7] to study platelets with decreased levels of GPVI. Platelets from mice that were heterozygous for Fcγ (+/−) had 50% of wild-type levels of Fcγ and a comparable decrease in GPVI levels, as measured by flow cytometry and Western blotting (Figure 1). We also used platelets from mice that were deficient in Fcγ but which also expressed a transgene for Fcγ (Fcγ-Tg mice). Platelets from these mice expressed 40% of the control level of Fcγ (results not shown). Platelets from a cross between the Fcγ-Tg and Fcγ-deficient mice (Fcγ-Tg/KO mice) expressed 20% of the wild-type level of Fcγ (Figure 1B). The level of GPVI on platelets from these mice was also 20% of control, as revealed by Western blotting and flow cytometry (Figure 1). Importantly, the level of expression of the integrin α2 subunit was not altered in the platelets from heterozygote or Fcγ-Tg/KO mice, as measured by Western blotting (results not shown). The observation that the level of GPVI is directly related to the level of Fcγ is consistent with the need for formation of a complex between the two proteins to ensure stable expression in platelets, and suggests that all of the GPVI is associated with the Fcγ in the cell. Flow cytometric analysis showed that the level of the collagen receptor GPⅠa–ⅠⅠa or of integrin α2β1, as well as of several other surface glycoproteins, was unaffected by a decrease in the levels of the GPVI–Fcγ complex (Table 1).

Influence of the level of GPVI–Fcγ expression on responses to collagen

The dose–response curve for stimulation of aggregation by collagen was right-shifted by approx. 2- and 5-fold in platelets expressing levels of 50% and 20% of GPVI-Fcγ complex respectively relative to wild-type controls (Figure 2A). In all cases, a high concentration of collagen induced a maximal aggregation response. However, there was a clear delay in the onset of aggregation in response to low concentrations of collagen in the platelets from Fcγ (+/−) and Fcγ-Tg/KO mice. This is illustrated in Figure 2(B) for a concentration of 2 μg/ml collagen, whereby a 50% reduction in the level of GPVI-Fcγ complex led to a significant increase in the time taken for the aggregation trace to fall below the basal level after the initial shape change response, namely from 59±15 to 103±30 s (n=10 per group; P<0.05). We also investigated whether the dose–response curve for tyrosine phosphorylation was also right-shifted following a decrease in GPVI levels. Due to the varying delay in activation, tyrosine phosphorylation was measured at 150 s, at which time the aggregation response had reached a plateau in all groups of platelets. There was no detectable reduction in tyrosine phosphorylation in platelets expressing 50% and 20% levels of GPVI as compared with that in platelets expressing control (100%) GPVI levels (Figure 3), although phosphorylation was blocked in Fcγ-deficient platelets (results not shown). In all cases, aggregation in response to thrombin was not altered in platelets expressing a reduced level of GPVI (results not shown).

The effect of reduced GPVI levels on platelet adhesion to collagen was also investigated under static conditions. Adhesion to collagen was dose-related over the concentration range of 0.05–10 μg of collagen per well. Platelets with 50% and 20% of control levels of GPVI–Fcγ adhered to collagen to the same extent as control platelets at all concentrations when measured at 15 min (results not shown) and 60 min (Figure 2C). Fcγ-null platelets did not adhere to the collagen-coated surface (results not shown), as reported previously [2].

Effects of blocking antibodies to other collagen receptors on platelets expressing a reduced level of GPVI

It has been proposed that the interaction of collagen with GPVI–Fcγ is supported by other receptors, including integrin α2β1 and GPⅠa. We used blocking antibodies to integrin α2β1 and GPⅠa to investigate their importance in platelets expressing a reduced level of GPVI. An integrin α2β1 blocking antibody delayed the onset of aggregation in response to collagen in wild-type platelets, and shifted the curve to the right by approx. 2-fold.

![Figure 1](image1.png)

Figure 1 Different levels of GPVI expression in platelets from Fcγ heterozygous and transgenic mice

(A) Flow cytometric analysis of GPVI expression levels using phycoerythrin-conjugated mAb JAQ1 on platelets from wild-type (wt), Fcγ heterozygous (+/−), Fcγ-Tg/KO (Tg) and Fcγ-deficient (−/−) mice. Results are shown as means±S.D. for groups of six mice. (B) Platelet proteins were separated by SDS/PAGE, transferred to PVDF membranes and immunoblotted with HRP-labelled JAQ1 (anti-GPVI) or anti-Fcγ and anti-rabbit–HRP.

<table>
<thead>
<tr>
<th>Glycoprotein</th>
<th>Log[Fluorescence (units)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPVI</td>
<td>+/+, 51.6±8.7; +/−, 28.3±10.8; −/−, 6.6±2.3</td>
</tr>
<tr>
<td>GPⅠa (α2)</td>
<td>42.3±7.5; 43.8±6.3; 41.7±6.5</td>
</tr>
<tr>
<td>GPIb (α3)</td>
<td>133.2±17.6; 130.2±14.1; 130.3±12.2</td>
</tr>
<tr>
<td>GPIb/IIIa</td>
<td>350.8±19.5; 358.5±21.4; 355.6±25.6</td>
</tr>
<tr>
<td>GPV</td>
<td>288.3±26.1; 279.7±22.8; 280.3±30.4</td>
</tr>
<tr>
<td>CO9</td>
<td>145.4±13.2; 150.4±15.3; 149.7±15.5</td>
</tr>
<tr>
<td>GPⅠa–ⅠⅠa</td>
<td>549.5±42.1; 541.7±49.6; 551.3±46.6</td>
</tr>
</tbody>
</table>

Table 1 Surface expression of glycoproteins on platelets from control (+/+), heterozygous (+/−) and Fcγ chain-null (−/−) mice

The surface expression of the indicated glycoproteins was detected by flow cytometry. Platelets were gated by FSC/SSC characteristics. Results are expressed as means±S.D. for six mice per group.
Figure 2 Influence of the level of GPVI–FcR\(_c\) expression on platelet responses to collagen

(A) Heparinized PRP from wild-type (circles; +/-) or FcR\(_c\) heterozygous (triangles; +/-) or FcR\(_c\)-Tg/KO (squares) mice was incubated with stirring in the presence of different concentrations of collagen. Dose–responses to collagen are shown as means±S.D. (n = 6–10). (B) Aggregation traces for the indicated concentration of collagen. (C) Washed platelets from wild-type (circles), FcR\(_c\) heterozygous (triangles) or FcR\(_c\)-Tg/KO (squares) mice were incubated for 60 min in microtitre plates coated with the indicated collagen concentrations, and adherent platelets were quantified fluorimetrically (OD = absorbance). The data shown are representative of three identical experiments and are expressed as means±S.D. of triplicate readings.

Figure 3 Effect of a decrease in GPVI–FcR\(_c\) levels on protein tyrosine phosphorylation in response to collagen

Washed platelets from mice expressing 100%, 50% and 20% of control levels of GPVI were incubated at 37 °C and stimulated with the indicated concentrations of collagen for 150 s. Aliquots were lysed by sample buffer and dissolved in reducing SDS buffer. After separation by SDS/4–12%–PAGE and transfer to PVDF membranes, blots were incubated with the anti-phosphotyrosine antibody 4G10, and proteins were detected by anti-(mouse IgG)–HRP and enhanced chemiluminescence. Results are representative of four experiments. MW, molecular mass; LAT, Linker for Activation of T-cells.

(Figure 4A). In the presence of the blocking antibody, the onset of aggregation was further delayed in the platelets from FcR\(_c\) (+/–) mice (results not shown), and the curve was shifted a further 2-fold to the right (Figure 4A). The integrin \(\alpha_2\beta_1\) blocking antibody caused an even greater delay in aggregation in the platelets from FcR\(_c\)-Tg/KO mice (results not shown), and again shifted the dose–response curve 2-fold further to the right (Figure 4A). A blocking antibody to GPV did not cause an obvious delay in the onset of aggregation and caused a shift of less than 2-fold in the dose–response curve for aggregation in platelets from wild-type, FcR\(_c\) (+/–) and FcR\(_c\)-Tg/KO mice (Figure 4A). The combination of antibodies to integrin \(\alpha_2\beta_1\) and GPV caused a similar delay in the onset of aggregation and shift in the dose–response curve to collagen to those caused by the integrin \(\alpha_2\beta_1\) blocking antibody alone (results not shown).

We have previously reported that the anti-GPVI mAb JAQ1 prevents the aggregation of platelets induced by low concentrations of collagen and reduces the rate of response to concentrations of 5 \(\mu g/ml\) collagen and above. On the other hand, it fully inhibits the response to CRP [21]. We have interpreted these results to suggest the presence of two epitopes on GPVI which support binding to collagen, and that JAQ1 blocks the site for interaction with CRP. We investigated here whether platelet aggregation shows a greater dependency on the levels of GPVI following inhibition of the CRP binding site with JAQ1. As shown in Figure 4(B), JAQ1 induced a similar shift to the right in the dose–response curve to collagen in platelets expressing 100%, 50% and 20% levels of GPVI.

Effects of a reduction in GPVI–FcR\(_c\) levels on platelet responses to GPVI-specific ligands

The effects of a reduction in the level of the GPVI–FcR\(_c\) complex on responses to a number of GPVI-specific ligands were investigated. The dose–response curves for aggregation in response to the snake venom toxin convulxin and cross-linked mAb JAQ1...
Figure 4 Effects of blocking antibodies against integrin α2β1, GPV and GPVI on aggregation in platelets expressing a reduced level of GPVI

(A) Heparinized PRP from wild-type (+/+), FcRγ heterozygous (+/−) or FcRγ-Tg/KO (Tg−/−) mice was incubated with stirring with control IgG (circles), anti-GPV (squares) or anti-α2 (triangles) monoclonal antibodies (all 20 μg/ml) for 5 min before addition of collagen (0.1–10 μg/ml). (B) Heparinized PRP from wild-type (+/+), FcRγ heterozygous (+/−) or FcRγ-Tg/KO (Tg−/−) mice was incubated under stirring conditions in the absence (black symbols) or presence (grey symbols) of mAb JAQ1 (20 μg/ml) for 5 min before addition of collagen (0.5–20 μg/ml). Results are shown as means ± S.D. (n = 6–10).

Figure 5 Effect of a decrease in GPVI–FcRγ levels on aggregation in response to GPVI-specific ligands

Heparinized PRP from wild-type (circles), FcRγ heterozygous (triangles) or FcRγ-Tg/KO (squares) mice was stimulated with different concentrations of convulxin (A), cross-linked mAb JAQ1 (JAQ1 x1) (B) or CRP (C). Results are shown as means ± S.D. (n = 6–10).

were shifted approx. 2- and 5-fold to the right in platelets expressing 50 % and 20 % respectively of the endogenous level of GPVI–FcRγ (Figures 5A and 5B). In marked contrast, the dose–response curve for aggregation to the synthetic GPVI ligand CRP was shifted 20-fold to the right in the FcRγ (+/−) platelets and abolished in cells expressing 20 % of the endogenous level of GPVI (Figure 5C). Consistent with these observations, the dose–response curve for tyrosine phosphorylation to con-
vulxin was right-shifted in platelets expressing 50% of the endogenous level of GPVI, and right-shifted further in platelets with 20% of the control level (Figure 6A). High concentrations of CRP stimulated protein tyrosine phosphorylation in the FcRγ complex (results not shown), but had no effect in platelets expressing 20% of the control level of the GPVI–FcRγ complex (Figure 6B).

DISCUSSION

The GPVI–FcRγ complex plays a pivotal role in platelet activation by collagen. In the present study, we have investigated the effects of 2- and 5-fold decreases in the level of GPVI–FcRγ in platelets on responses to collagen and GPVI-specific ligands. The results show that functional events induced by collagen, convulxin and cross-linked mAb JAQ1 are inhibited in parallel with a decrease in GPVI levels. Thus platelets expressing 50% or 20% of control levels of GPVI–FcRγ exhibit 2- and 5-fold shifts to the right respectively of the dose–response curves to all three agonists. The dose–response curve to collagen, but not those for convulxin or JAQ1, was also shifted to the right by approx. 2-fold in the presence of a blocking antibody to integrin α2/1, and this shift was additive with that induced by a reduction in expression of GPVI–FcRγ. In contrast, a blocking antibody to GPV had little effect on the dose–response curve to collagen in platelets with a reduced level of GPVI, even in the presence of the integrin α2/1 blocking antibody. Thus these results demonstrate that the sensitivity of platelets to collagen, in terms of aggregation, is related to the density of GPVI, and that this relationship is maintained in the presence of blockers of integrin α2/1 and GPV.

We previously reported that GPVI is essential for platelet adhesion to collagen under static conditions [2]. Interestingly, however, adhesion to a collagen-coated surface was not affected by a decrease of GPVI levels of up to 80% over a 200-fold range of collagen concentrations. Several factors may contribute to this difference in dependency on GPVI levels with respect to aggregation. A decrease in the level of GPVI causes a delay in the onset of aggregation as a consequence of the decrease in intracellular signalling at the initial stages of the response. This, in turn, would reduce the positive feedback signals from ADP and thromboxanes, by spreading them out over a longer period of time. Aggregation in response to collagen is dependent on the release of secondary mediators [23]. While it seems highly probable that adhesion would also have been impaired at early times, this could not be monitored because of limitations in sensitivity. Such a difference, however, would be enhanced under flow conditions, where initial events are key to thrombus formation. The observation that static adhesion is not impaired in platelets when measured at later times is consistent with the observation that tyrosine phosphorylation was not altered in platelets from FcRγ (+ /−) and FcRγ-Tg/KO mice at 150 s.

GPVI is critical for platelet adhesion to collagen [2]. The observation, therefore, that the level of adhesion was not altered by a 5-fold reduction in the level of GPVI indicates that additional receptors must also support the adhesion of platelets to collagen. Moreover, the critical role of GPVI in the adhesion process means that binding of collagen to the other receptors is GPVI-dependent. For example, signals from GPVI increase the affinity of integrin α2/1 and thereby enable it to bind to collagen [3].

A marked difference in the effect of a reduction in GPVI–FcRγ was seen between the synthetic peptide CRP, which consists of GPO repeat sequences, and collagen. Aggregation to CRP was shifted 20-fold to the right in platelets with 50% of control levels of the GPVI–FcRγ complex and abolished in platelets with 20% of endogenous levels. This profound effect on the dose–response curve to the multivalent CRP indicates that the response is determined by a combination of receptor affinity and avidity, such that the “apparent affinity” of CRP for the platelet surface is increased through multiple interactions with GPVI. In essence, the binding of the one GPO motif of CRP to GPVI facilitates the interaction of a second GPO motif with the glycoprotein as a consequence of proximity, and so on. In contrast, the effect of a reduction in the level of GPVI on aggregation to convulxin and cross-linked mAb JAQ1 was similar to that seen with collagen, despite the fact that both ligands interact with multiple GPVI receptors. This difference is explained by the fact that CRP has many more binding motifs for GPVI than convulxin and JAQ1.

Interestingly, a decrease in the level of GPVI had a differential effect on the dose–response curves for tyrosine phosphorylation to collagen and convulxin. Whereas the response to collagen was not altered, the curve for convulxin was right-shifted by the reduction in GPVI levels. The absence of a shift in the collagen dose–response curve demonstrates that the level of GPVI is not rate limiting for tyrosine phosphorylation. This is consistent with the observation that collagen stimulates a much lower level of tyrosine phosphorylation of the FcRγ and downstream proteins relative to convulxin [22]. Further, this also suggests that the degree of tyrosine phosphorylation is not related to the extent of aggregation, consistent with the dependency of the aggregation.
response to collagen on the release of ADP and thromboxanes [23,24]. In contrast, ADP and thromboxanes play only a minimal role in aggregation in response to convulxin [23].

The question emerges as to what are the key differences between collagen and CRP that influence their differential dependency on the level of expression of GPVI. The ability of collagen to bind to other surface receptors is likely to be a major factor. Blocking antibodies to two collagen receptors on the platelet surface, integrin α2β1 and GPV, however, caused no more than a 2-fold shift to the right of the dose–response curve to collagen in wild-type platelets and cells expressing 20% or 50% of endogenous levels of GPVI, even when given in combination. This demonstrates that the difference between collagen and CRP is not due solely to the ability of collagen to bind to integrin α2β1 and GPV. Other receptors for collagen on the platelet surface have been proposed, although their significance remains unclear. For example, responses to collagen types I–V are not altered in mouse platelets deficient in CD36, a putative collagen receptor, arguing against a critical role for this protein in platelet–collagen interactions [25]. A critical role for a further receptor in supporting the interaction with collagen is consistent with the data reported in the present work.

An additional explanation for the difference between CRP and collagen is the affinity of the interaction with GPVI. CRP contains the minimal sequence information for recognition of GPVI by collagen, i.e. the GPO motif. It is not known whether additional amino acids surrounding this sequence in collagen influence its affinity for the glycoprotein. Interestingly, we have reported evidence for two epitopes in collagen that support binding to GPVI, only one of which is blocked by mAb JAQ1 [21]. In the present study, we have shown that aggregation of platelets with reduced levels of GPVI was maintained in the presence of JAQ1, whereas it has been reported previously that the combination of JAQ1 and a blocking antibody to integrin α2β1 abolished responses to high concentrations of collagen [2]. This demonstrates that the second epitope on GPVI is unable to support aggregation in response to collagen in the presence of the integrin α2β1 blocking antibody, despite being able to support responses in platelets expressing a reduced level of GPVI. These results argue for a critical role for at least three sites of interaction of collagen with platelets, namely the two sites on GPVI and a site on integrin α2β1. Additional receptors may also help to maintain the affinity of collagen for platelets, as described above.

Collagen is unable to activate GPVI in megakaryocytic and GPVI-transfected cell lines which express low levels of GPVI and often other collagen receptors, notably integrin α2β1 [26–28]. This is exemplified in the original cloning study of Clemetson et al. [17], who demonstrated that DAMI cells could be induced to respond to collagen only following transfection with GPVI, whereas control cells do express a low level of GPVI and can be activated by the snake toxin convulxin. Consistent with this, Chen et al. [18] recently reported that a level of expression of GPVI in transfected RBL-2H3 cells and Jurkat T cells comparable with that in human platelets is essential for functional responses and/or adhesion to collagen. These observations strengthen the conclusion that the presence of a second receptor is necessary to support the interaction of collagen with GPVI in platelets, as described above. The present findings also explain reports that platelets from GPVI-deficient patients are unresponsive to CRP, but are partially activated by collagen [29,30]. The residual level of GPVI expression on the patient’s platelets is likely to be sufficient to support collagen- but not CRP-induced responses.

In conclusion, the present study highlights important differences between collagen and CRP with respect to dependence on GPVI. This is most probably explained by the involvement of one or more additional receptors in platelet activation by collagen, as well as a possible differential binding to GPVI. The additional receptors include integrin α2β1 and possibly an unidentified third receptor for collagen. Finally, it should be emphasized that while a reduction in the level of GPVI produces only a small, albeit predictable, shift in the dose–response curve to collagen, it also induces a significant delay in activation. This is likely to have considerable significance in vivo under conditions of high shear, thereby explaining the increased bleeding problems experienced by individuals with a low level of GPVI.

We thank K. Rackebrandt for excellent technical assistance and U. Banfield for constant support throughout the study. This work was supported by the British Heart Foundation and by grant NI 556/4/1 (to B.N.) from the Deutsche Forschungsgemeinschaft. S.P.W. is a British Heart Foundation Senior Research Fellow.

REFERENCES

© 2002 Biochemical Society
20 Reference deleted

Received 27 February 2002/10 June 2002; accepted 15 July 2002
Published as BJ Immediate Publication 15 July 2002, DOI 10.1042/BJ20020335