RppA, which belongs to the type III polyketide synthase family, catalyses the synthesis of 1,3,6,8-tetrahydroxyxynaphthalene (THN), which is the key intermediate of melanin biosynthesis in the bacterium *Streptomyces griseus*. The reaction of THN synthesis catalysed by RppA is unique in the type III polyketide synthase family, in that it selects malonyl-CoA as a starter substrate. The Cys-His-Asn catalytic triad is also present in RppA, as in plant chalcone synthases, as revealed by analyses of active-site mutants having amino acid replacements at Cys258, His270 and Asp296 of RppA. Site-directed mutagenesis of the amino acid residues that are likely to form the active-site cavity revealed that the aromatic ring of Tyr224 is essential for RppA to select malonyl-CoA as a starter substrate, since substitution of Tyr224 by amino acids other than Phe and Trp abolished the ability of RppA to accept malonyl-CoA as a starter. whereas the mutant enzymes Y224F and Y224W were capable of synthesizing THN via the malonyl-CoA-primed reaction. Of the site-directed mutants generated, A305I was found to produce only a triketide pyrone from hexanoyl-CoA as starter substrate, although wild-type RppA synthesizes tetraketide and triketide pyrones in the hexanoyl-CoA-primed reaction. The kinetic parameters of Ala305 mutants and identification of their products showed that the substitution of Ala305 by bulky amino acid residues restricted the number of elongations of the growing polyketide chain. Both Tyr224 (important for starter substrate selection) and Ala305 (important for intermediate elongation) were found to be conserved in three other RppAs from *Streptomyces antibioticus* and *Streptomyces lividus*.

Key words: chalcone synthase, RppA, starter substrate selectivity, *Streptomyces griseus*, 1,3,6,8-tetrahydroxyxynaphthalene.

INTRODUCTION

The type III polyketide synthases (PKSs) are small homodimeric proteins (monomer size 40–45 kDa) that are responsible for catalysing the biosynthesis of aromatic polyketides in bacteria and plants [1,2]. RppA, the first PKS to be characterized as a type III PKS in bacteria, catalyses the synthesis of 1,3,6,8-tetrahydroxyxynaphthalene (THN) (Scheme 1A), which is the key intermediate in melanin biosynthesis in the bacterium *Streptomyces griseus* [3]. Chalcone synthase (CHS) is a plant-specific type III PKS that catalyses the formation of 4,2',4',6'-tetrahydroxychalcone (naringenin chalcone) (Scheme 1B) [4], an essential precursor of flavonoids and isoflavonoids, which have attracted significant attention because of their wide range of pharmacological properties. A number of type III PKSs are present in plants that differ from CHSs; these include 2-pyrene synthase (PS), which yields 4-hydroxy-6-methyl-2-pyrene (triacetate lactone; TAL) (Scheme 1C) [5]. The discovery of type III PKSs in bacteria has opened up the field of investigation of the pathways of aromatic polyketide biosynthesis. Recently, Pfeifer et al. [6] revealed that the polyketide moiety of a vancomycin-type antibiotic, which is the last-resort antibiotic for treating methicillin-resistant *Staphylococcus aureus* infections, is synthesized by DpgA, a type III PKS sharing 22% sequence identity with RppA.

The first step in the formation of aromatic polyketides by type III PKSs involves the covalent binding of a starter moiety derived from CoA-linked starter substrates on to the thiol group of the cysteine at the active site [7]. Then the acetyl-CoA carbanion, generated by decarboxylation of malonyl-CoA, is condensed stepwise to elongate the growing polyketide chain. A variety of patterns are observed in the final step of the reaction forming new aromatic rings by type III PKSs. The typical reaction is intramolecular Claisen condensation yielding phlorogluconils, which is observed for CHS, while PS catalyses pyrone formation by lactonization of a triketide intermediate [8]. Recent three-dimensional structural studies of the CHS from *Medicago sativa* (alfalfa) identified four amino acids (Cys164, Phe213, His299 and Asn336) involved in malonyl-CoA decarboxylation and condensation [9]. The difference between the products formed by CHS and RppA arises from the selection of starter substrate, the number of condensations of malonyl-CoA, and the pattern of final ring closure. CHS uses *p*-coumaroyl-CoA as a starter substrate and catalyses the condensation of three malonyl-CoAs to form an enzyme-bound tetraketide intermediate that is subsequently folded into naringenin chalcone by a Claisen condensation (Scheme 1B). In contrast, RppA catalyses THN synthesis by selecting malonyl-CoA as the starter substrate, carrying out four successive extensions of malonyl-CoA, and finally Claisen condensation for the ring closure that is presumably accompanied by decarboxylation of the carboxy group of the malonyl-CoA used as the starter substrate (Scheme 1A) [3].

Type III PKSs are known to utilize a wide range of starter substrates to yield phlorogluconils and *α*-pyrones. For example, CHS accepts alphatic acyl-CoAs and *p*-coumaroyl-CoA as...
Scheme 1 Reactions catalysed by type III PKSs

(A) THN synthesis by RppA. The structure of the pentaketide intermediate is hypothetical. THN is readily oxidized to flavilin non-enzymically. (B) Chalcone formation by CHS. (C) TAL formation by PS. (D) Substrate specificity of RppA. RppA yields tetra- and tri-ketide pyrones when hexanoyl-CoA (1) is incorporated as the starter substrate. Phenylacetyl-CoA (2) is not incorporated into wild-type RppA, but is incorporated into mutants Y224G, Y224L, Y224W, Y224F, Y224C, A305S and A305I. The ring closure catalysed by type III PKSs is supposed to proceed when polyketide intermediates are attached to CoA.

EXPERIMENTAL

Materials

[2-14C]Malonyl-CoA (1.96 GBq/mmol) was purchased from Amersham Pharmacia Biotech. All unlabelled CoA esters were purchased from Sigma.

Identification and functional characterization of RppAs from S. lividans and S. antibioticus

Southern hybridization, colony hybridization and nucleotide sequencing were carried out as described by Maniatis et al. [12]. The 1.1 kb rppA gene from S. griseus, excised from pET16b-RppA [3], was used as a 32P-labelled hybridization probe to clone rppA homologues from the chromosomal DNA of S. antibioticusIFO13271 and S. lividans TK21. A gene (Sl-rppA) from S. lividans and two genes (Sa-rppA and Sa-rppB) from S. antibioticus were cloned and their nucleotide sequences were determined. An NdeI site was introduced at the start codon of each rppA gene by PCR with pairs of primers, as follows: Sa-RppA, 5′-GGCGGATCCGAATTCGGCGACTT-3′ and 5′-GGCGGATCCATGATGAGGCTCTGCGCTCGTCCGAG-3′; Sa-RppB, 5′-GGCGGATCCGAATTCGGCGACTT-3′ and 5′-GGCGGATCCATGATGAGGCTCTGCGCTCGTCCGAG-3′; Sl-RppA, 5′-GGCGGATCCGAATTCGGCGACTT-3′ and 5′-GGCGGATCCATGATGAGGCTCTGCGCTCGTCCGAG-3′.
TTTGTGACGCCGACC-3' and 5'-GCGAATTCCTCAGATGCAGTTCAGTATGCTGCCTAC-3' (italic letters indicate an NdeI site and the underlined bases represent restriction sites used for further cloning). After amplification by PCR under standard conditions, the EcoRI–BamHI fragment containing the Sa-rrpA coding sequence, the EcoRI–BamHI fragment containing the Sa-rrpB coding sequence and the HindIII–EcoRI fragment containing the Sl-rrpA coding sequence were cloned in pUC19. The absence of undesired alterations during PCR was confirmed by nucleotide sequencing. The Sa-rrpA, Sa-rrpB and Sl-rrpA coding sequences were then excised as NdeI–BamHI, NdeI–BamHI and NdeI–XhoI fragments respectively, and inserted between the corresponding cloning sites of pET16b (Novagen), resulting in pET16-Sa-RPPa, pET16-Sa-RPPb and pET16-Sl-RPPa respectively. Each of the expression plasmids would direct the synthesis of a protein with the structure Met-Gly-His₅₀-Ser₁-Gly-His-Ile-Glu-Gly-Arg-His-RPP/A/B. The histidine-tagged RppA/B proteins were produced in Escherichia coli BL21 (DE3) and purified with a His-binding resin, as described in [3].

Construction of RppA mutants

Mutations were introduced into the rppA gene of *S. griseus* using the Takara in vitro mutagenesis kit (Mutant-Super Express K.). The NdeI–BamHI fragment excised from pET-RppA was cloned into pKF19k, resulting in pKF19k-RppA. The oligonucleotides used for PCR are shown in Table 1. PCR amplification using pKF19k-RppA as the template was performed according to the supplier’s instructions. The entire coding sequences of the mutant constructs were confirmed by nucleotide sequencing. For protein purification, the mutant rppA genes were cloned between the NdeI and BamHI sites of pET16b. The mutant RppAs were produced and purified as described above.

PKS assay

The standard reaction mixture contained [2-¹⁴C]malonyl-CoA, 100 mM Tris/HCl (pH 7.5) and 45 µg of RppA in a total volume of 500 µl. Reactions were incubated at 30 °C and stopped by adding 100 µl of 6 M HCl, and the products were extracted with 600 µl of ethyl acetate. The organic layer was dried by flushing with N₂ and the residual material was dissolved in 15 µl of methanol for HPLC or TLC analysis. Reverse-phase HPLC conditions were as follows: ODS-80Ts (C₁₈) column (4.6 mm x 150 mm; Tosoh), maintained at 40 °C, using gradient solvent systems of solvent A [2% (v/v) acetic acid in acetonitrile] and solvent B [2% (v/v) acetic acid in water]. The eluate was collected every 1 min and radioactivity was measured directly by liquid scintillation counting. Reverse-phase TLC was performed by using RP-18 (Merck). The polyketides produced were identified by LCQ (Thermo Quest), liquid chromatography/ atmospheric-pressure chemical ionization MS (LC-APCIMS).

Products of the malonyl-CoA-primed reaction

(HPLC was performed in the mobile-phase system described in the legend to Figure 2.) (i) THIN: retention time was 15 min on LC. LC-APCIMS: positive, m/z 193 (M + H⁺); negative, m/z 191 (M – H⁻). (ii) 2,5,7-Trihydroxy-1,4-naphthoquinone (flavilien): retention time was 22 min on LC. LC-APCIMS: positive, m/z 207 (M + H⁺); negative, m/z 205 (M – H⁻). (iii) TAL: retention time was 9.5 min on LC. LC-APCIMS: positive, m/z 127 (M + H⁺); negative, m/z 125 (M – H⁻). (iv) 6-Acetonyl-4-hydroxy-2-pyrene (tetraketide lactone): retention time was 8 min on LC. LC-APCIMS: positive, m/z 169 (M + H⁺); negative, m/z 167 (M – H⁻).

Table 1 Primer sequences used for site-directed mutagenesis

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>C166A</td>
<td>5'-TCGCTACATGATCCAGCGGTTGTATG-3'</td>
</tr>
<tr>
<td>T107A</td>
<td>5'-TCGCTACATGATCCAGCGGTTGTATG-3'</td>
</tr>
<tr>
<td>C128A</td>
<td>5'-GCTGCCGCACGCGGACGCGGGCGGCGGATCAC-3'</td>
</tr>
<tr>
<td>C139Q</td>
<td>5'-GCTGCCGCACGCGGACGCGGGCGGCGGATCAC-3'</td>
</tr>
<tr>
<td>C168A</td>
<td>5'-TCGCTACATGATCCAGCGGTTGTATG-3'</td>
</tr>
<tr>
<td>C171A</td>
<td>5'-CTGCCGCACGCGGACGCGGGCGGCGGATCAC-3'</td>
</tr>
<tr>
<td>C171L</td>
<td>5'-CTGCCGCACGCGGACGCGGGCGGCGGATCAC-3'</td>
</tr>
<tr>
<td>C171T</td>
<td>5'-CTGCCGCACGCGGACGCGGGCGGCGGATCAC-3'</td>
</tr>
<tr>
<td>F168A</td>
<td>5'-CGCGGTTCGCGACACCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>F168S</td>
<td>5'-CGCGGTTCGCGACACCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>F188Y</td>
<td>5'-CTGCCGCACGCGGACGCGGGCGGCGGATCAC-3'</td>
</tr>
<tr>
<td>I222A</td>
<td>5'-TCGCCGCACGCGGACGCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>I222F</td>
<td>5'-CGCGGTTCGCGACACCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>I222M</td>
<td>5'-CGCGGTTCGCGACACCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>I224A</td>
<td>5'-TCGCCGCACGCGGACGCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>I224C</td>
<td>5'-TCGCCGCACGCGGACGCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>I224F</td>
<td>5'-TCGCCGCACGCGGACGCGGGTTCCAC-3'</td>
</tr>
<tr>
<td>I224Y</td>
<td>5'-TCGCCGCACGCGGACGCGGGTTCCAC-3'</td>
</tr>
</tbody>
</table>

Products of the hexanoyl-CoA-primed reaction

Hexanoyl-CoA is structure (I) in Scheme 1. (i) 4-Hydroxy-6-pentyl-2-pyrene (3): retention time was 12.5 min on LC. LC-APCIMS: positive, m/z 183 (M + H⁺); negative, m/z 181 (M – H⁻). LC-APCIMS/MS (precursor ion at m/z 181): m/z 137 (M – CO₂H⁻). (ii) 4-Hydroxy-6-(2-oxoheptyl)-2-pyrene (5): retention time was 11 min on LC. LC-APCIMS: positive, m/z 225 (M + H⁺); negative, m/z 223 (M – H⁻). LC-APCIMS/MS (precursor ion at m/z 223): m/z 179 (M – CO₂H⁻), 125 (C₅H₇O₅).

Products of the phenylacetyl-CoA (2)-primed reaction

(i) 6-Benzyl-4-hydroxy-2-pyrene (4): retention time was 9.5 min on LC. LC-APCIMS: positive, m/z 203 (M + H⁺); negative, m/z 201 (M – H⁻). (ii) 4-Hydroxy-6-(2-oxo-3-phenylpropyl)-2-pyrene (6): retention time was 11 min on LC. LC-APCIMS: positive, m/z 245 (M + H⁺); negative, m/z 243 (M – H⁻).

Malonyl-CoA decarboxylation assay

The reaction mixture contained 51.8 µM [2-¹⁴C]malonyl-CoA, 100 mM Tris/HCl (pH 7.5) and 4.5 µg of wild-type or mutant
RppA in a total volume of 50 l. Reactions were incubated at 30 °C for 15 min and stopped by adding 1 l of 6 M HCl, and a portion (20 l) was applied to Merck no. 5744 TLC plate. The TLC plate was developed with a solvent system of isopropyl alcohol/water/28%-saturated ammonium hydroxide (80:5:15, by vol.). The Rf of acetyl-CoA was determined by using the authentic compound as a standard.

Determination of the kinetic parameters of Tyr224 and Ala305 mutant enzymes

The standard reaction, in a total volume of 100 l, contained 100 mM Tris/HCl (pH 7.5), 52.6 lM [2-14C]malonyl-CoA (264 000 d.p.m.), 5–50 lM hexanoyl-CoA and 2.9 lg of wild-type or mutant RppA. After the reaction mixture had been preincubated at 30 °C for 3 min, the reaction was initiated by adding the substrates and then continued for 3–30 min. The reaction was stopped with 20 l of 6 M HCl and the material in the mixture was extracted with 200 l of ethyl acetate. The organic layer was combined with non-labelled authentic products and dried by flushing with N2 for HPLC analysis. After separation by HPLC, the amount of polyketides produced was quantified by means of [2-14C]malonyl-CoA incorporation.

RESULTS

Characterization of RppA from S. antibioticus and S. lividans

A large number of CHS genes have been isolated from plants and sequenced, providing a reliable consensus sequence that can be used to predict target amino acid residues for mutational analysis [13]. However, only two genes, one from S. coelicolor A3(2) (accession number CAC01488) and the other from S. avermitilis (BAB69299), encoding proteins highly similar to RppA were deposited in the DNA databases. In the present study we isolated three genes, Sl-RppA from S. lividans TK21 and Sa-RppA and Sa-rppB from S. antibioticusIFO13271, by standard DNA manipulation, including colony hybridization with the S. griseus rppA gene as probe. The nucleotide sequences of the three cloned genes were determined and their deduced amino acid sequences were compared with those of CHS, PS and all available RppAs (Figure 1). The overall amino acid identity in alignment of Sl-RppA, Sa-RppA and Sa-RppB with S. griseus RppA is 70%, 68% and 72%, respectively.

The putative RppAs contained all of the signature sequences for CHS-related enzymes (Cys, Phe, His and Asn) (Figure 1) [9], which suggested that the protein would catalyse the condensation of an acyl-CoA substrate with malonyl-CoA. To test this prediction, Sl-RppA, Sa-RppA and Sa-RppB were produced in E. coli as histidine-tagged proteins, purified and characterized. All of the recombinant proteins had the same mobility on SDS/PAGE, migrating with a monomer molecular size of approx. 40 kDa (results not shown). TLC and HPLC analysis of the reaction products revealed that these proteins catalysed THN formation solely from malonyl-CoA (results not shown), which clearly indicates that the three RppA homologues are THN synthases that belong to type III PKSs.

Activities of active-site mutants

The amino acid sequence alignment of all available RppAs and CHS (Figure 1) revealed the presence of four highly conserved residues; these are Cys, Phe, His and Asn in RppA from S. griseus. Structural and functional studies of CHS showed that Cys serves as the nucleophile that initiates the reaction and as the attachment site for the enzyme-bound polyketide intermediates required for chalcone formation [4]. The imidazolium ion of His has a property to stabilize the thiolate

Figure 1 Amino acid sequence comparison of type III PKSs from Streptomyces and plants

Active-site residues are marked by ▼; (RppA numbering). The residues proposed for the determination of substrate specificity are highlighted with boxes. The CHS sequence is from Medicago sativa (accession number P30974) and the PS sequence is from Gerbera hybrid (CA486219).
Site-directed mutagenesis of RppA

Figure 2 HPLC analysis of the products synthesized from [14C]malonyl-CoA by wild-type (WT) and mutant RppAs

Under the conditions of the standard RppA assay, 51.4 μM [14C]malonyl-CoA (88 000 d.p.m.) was incubated for 1 h (C138A, F188A, H270A and N303A) or 15 min (wild-type and H270Q). HPLC gradient conditions: linear from 5% (v/v) solvent A [2% (v/v) acetic acid in acetonitrile] to 40% (v/v) solvent A in solvent B [2% (v/v) acetic acid in water] over 30 min, then 100% solvent A for 10 min. The flow rate was 0.8 ml/min. The enzyme used in each reaction is indicated at the top right of the chromatogram. Symbols connected by broken lines represent radioactivity measurements (right axis), and those connected by solid lines represent the UV absorbance detected at 280 nm (left axis).

The reaction of wild-type RppA with malonyl-CoA results in THN with a small amount of TAL, a derailment product that is formed as a result of fewer condensations of malonyl-CoA. Cys138 mutants, Phe188, H270A, N303D, N303H or N303Q did not form any polyketide (for alanine-substituted mutants, the results are shown in Figure 2). N303A (Figure 2) and H270N (results not shown) produced TAL and flavilin, an auto-oxidized product of THN, at a reduced rate. H270Q retained high activity to catalyse polyketide formation, whereas the derailment products TAL and 6-acetonyl-4-hydroxy-2-pyrene (tetraacetyl lactone) were observed in increased amounts (Figure 2).

Since Phe188, His270 and Asn303 are thought to contribute to acetyl-CoA carbanion formation, we investigated the malonyl-CoA decarboxylation activity of mutants (Figure 3). Amino acid replacement at Phe188 and His270 caused complete loss (F188A and F188S) or a marked decrease (F188Y, H270A and H270N) of activity towards malonyl-CoA, with the notable exception of H270Q, which was active at a rate comparable with that of the wild-type enzyme. Asn303 mutants were still able to decarboxylate malonyl-CoA, but with substantially diminished activity when compared with the wild-type, indicating that this residue is important, but not essential, for malonyl-CoA decarboxylation. Mutation of Cys138 to Ser did not influence the decarboxylation of malonyl-CoA. However, mutants C138A and C138Q lost the ability to decarboxylate malonyl-CoA, presumably because of

The total volume of the reaction was 100 μl. For the extender substrate, 51.8 μM [14C]malonyl-CoA (88 000 d.p.m.) was incubated for 15 min. Substrates(s) used were 50 μM hexanoyl-CoA plus 51.8 μM [14C]malonyl-CoA (A), 50 μM phenylacetyl-CoA plus 51.8 μM [14C]malonyl-CoA (B), and 51.8 μM [14C]malonyl-CoA (C). TLC was developed in acetonitrile/water/acetic acid (50:50:1, by vol.). The positions of THN (Rf 0.71), tetraacetyl pyrones (5, Rf 0.43; 6, Rf 0.52; see Scheme 1D) and triketide pyrones (3, Rf 0.34; 4, Rf 0.46) are indicated.

© 2002 Biochemical Society
Figure 5 HPLC analysis of products synthesized from various starter substrates and [14C]malonyl-CoA by wild-type (WT) and mutant RppAs

Under the conditions for the standard RppA assay, 51.4 µM [14C]malonyl-CoA (88000 d.p.m.) and hexanoyl-CoA (left panels) or phenylacetyl-CoA (right panels) were incubated for 15 min. HPLC gradient conditions: linear from 20% (v/v) solvent A [2% (v/v) acetic acid in acetonitrile] to 80% (v/v) solvent A in solvent B [2% (v/v) acetic acid in water] over 20 min, then 100% solvent A for 5 min; the flow rate was 1.0 ml/min. The enzyme used in each reaction is indicated at the top right of the chromatogram. Symbols connected by broken lines represent radioactivity measurements (right axes), and those connected by solid lines represent the UV absorbance detected at 280 nm (left axes). The existence of the relatively small peaks indicated by arrows was further confirmed by selected ion monitoring at the molecular mass of corresponding polyketides using LC-APCIMS.

the instability of these two mutants, which accumulated predominantly as an insoluble form in E. coli cells.

Screening for residues that determine the substrate specificity of RppA

The crystal structure of alfalfa CHS2 was used to predict the residues in the active-site cavity of RppA. Jez et al. [14] proposed that residues Thr132, Ser131, Thr194, Thr196, Ile204, Gly236, Leu233, Phe235 and Ser238 determine the substrate specificity of CHS and the size of the product. In RppA, these residues are replaced by Cys106, Thr107, Cys168, Cys171, Ile221, Tyr222, Phe231, Phe233 and Ala235 respectively, which are completely conserved among the RppA sequences (Figure 1). We therefore chose these nine residues for mutagenesis analysis to determine their contribution to the starter substrate selectivity of RppA. Since RppA accepts both hydrophilic malonyl-CoA and hydrophobic hexanoyl-CoA as a starter substrate, specific residues seem to interact with each substrate. Therefore some of the mutants generated may be inactive only in the malonyl-CoA-primed reaction. We tested the ability of the mutants to accept as a starter substrate not only malonyl-CoA, but also hexanoyl-CoA and phenylacetyl-CoA. The selectivity of the starter substrate was assessed by TLC using [14C]malonyl-CoA as the extender substrate (Figure 4). When incubated with hexanoyl-CoA and malonyl-CoA, wild-type RppA catalysed the formation of tetra- and tri-ketide pyrones besides THN; phenylacetyl-CoA was a poor substrate of wild-type RppA, as previously observed [11]. Mutants C106A, T107A, C168A, C171A, C171T, I222F, F231A and F233A did not form polyketides, probably because replacement of the amino acid...
residues diminished appropriate binding of the substrates. C171L, I222A, I222M, A305G and A305S were active in hexanoyl-CoA-, phenylacetyl-CoA- and malonyl-CoA-primed reactions with a similar or reduced rate when compared with that of the wild-type enzyme, suggesting that these residues are not crucial for determination of the starter substrate selectivity of RppA. Exceptionally, mutant A305I preferentially catalysed reactions with a similar or reduced rate when compared with that of the wild-type enzyme, suggesting that these residues are not crucial for determination of the starter substrate selectivity of RppA.

Activities of Tyr224 and Ala305 mutants

To investigate the influence of Tyr224 with regard to starter substrate selectivity, we generated Tyr224 mutants using Cys, His, Phe, Ser and Trp replacements at this position, in addition to the Y224A, Y224G and Y224L mutants studied previously. Y224H and Y224S were produced predominantly as an insoluble form in *E. coli*, which prevented further study. The product profiles of the mutants were analysed by HPLC using [14C]malonyl-CoA as the extender substrate, and the products were identified by LC-APCIMS analysis (Figure 5). Consistent with the results of TLC analysis, mutants Y224G, Y224L and Y224C were found not to produce THN from malonyl-CoA. However, these mutants incorporated hexanoyl-CoA and phenylacetyl-CoA as a starter substrate, both yielding a tetraketide α-pyrone (3, 4) and triketide α-pyrone (3, 4) (Scheme 1D; Figure 5). Interestingly, those mutants with the aromatic amino acids Trp or Phe at the Tyr224 position retained their ability to accept malonyl-CoA as a starter substrate, which is indicated by the presence of THN in the products.

Mutants A305D, A305F, A305L, A305R and A305T were also generated, in addition to A305G, A305S and A305I, to test the possibility that Ala305 contributes to the determination of product size. A305D, A305F, A305L and A305R were not analysed because they were produced as an inclusion body in *E. coli* cells. Although A305S and A305T showed a similar product profile, yielding a tetra- and tri-ketides in both the hexanoyl-CoA- and phenylacetyl-CoA-primed reactions, as in the case of wild-type (results shown in Figure 5 for A305S), A305I produced only triketide pyrones (3, 4; Scheme 1D).

Steady-state kinetic analysis of Tyr224 and Ala305 mutants with hexanoyl-CoA as the starter substrate

Tyr224 and Ala305 of RppA correspond to Gly236 and Ser238 respectively in CHS, and these residues of CHS are believed to form the coumaroyl-binding and cyclization pockets in chalcone formation [14,15]. In PS, the bulky residues Leu245 and Ile246 correspond to Gly236 and Ser238 respectively of CHS. These replacements would reduce the volume of both of the pockets in PS, so that the number of elongations of an acetate unit is restricted to two, as implied from the three-dimensional structure of PS [14]. Simultaneous amino acid replacement at three positions in CHS (Thr237, Gly236 and Ser238) by the ‘PS-type’ residues functionally converts CHS into PS, due to the shrinking of the active-site cavity volume, which governs the choice of starter substrate and controls the final length of the polyketide [14]. We determined the steady-state kinetic parameters of the reactions of wild-type and mutant RppAs using hexanoyl-CoA as a starter substrate (Table 2). In terms of the product ratio of tetraketide versus triketide, A305S was kinetically similar to the reaction catalysed by the wild-type enzyme, compared with the reaction catalysed by Y224G, A305I produced a triketide exclusively. This suggests that the replacement of Ala305 with the bulky ‘PS-type’ Ile results in a decrease in the volume of the cyclization pockets in RppA, as a result of which the size of the polyketide formed is restricted.

All of the mutants, except for Y224G, consumed hexanoyl-CoA with 2–12-fold improvements in catalytic efficiency (kcat/Km) compared with the reaction catalysed by the wild-type enzyme, presumably because of less competition in occupying Cys378 against malonyl-CoA. Although monopoly of the catalytic centre by hexanoyl-CoA would also occur in the reaction of Y224G, this mutant showed reduced activity towards hexanoyl-CoA. We suppose that hexanoyl-CoA takes up different conformations in the mutants.

DISCUSSION

On the basis of the reaction mechanism of CHS, the initial step of THN formation by RppA would involve the loading of malonyl-CoA on to the thiol group of Cys378, resulting in formation of enzyme-bound malonate via the thioester bond. Apparently, this transfer reaction is a distinct step in the determination of the starter substrate in type III PKs. RppA mutants of Tyr224, such as Y224A, Y224C, Y224G and Y224L, cannot synthesize polyketides solely from malonyl-CoA

Table 2 Steady-state kinetic parameters of wild-type and mutant RppAs

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Triketide (3)</th>
<th>Tetraketide (5)</th>
<th>Hexanoyl-CoA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kcat (min⁻¹)</td>
<td>Kₘ (µM)</td>
<td>kcat/Km (min⁻¹)</td>
</tr>
<tr>
<td>Wild type</td>
<td>101±3</td>
<td>15.0±2.9</td>
<td>27.8±2.2</td>
</tr>
<tr>
<td>Y224G</td>
<td>39.4±10.1</td>
<td>15.5±15.3</td>
<td>11.5±3.3</td>
</tr>
<tr>
<td>Y224L</td>
<td>83.4±3.5</td>
<td>14.9±1.1</td>
<td>90.4±6.9</td>
</tr>
<tr>
<td>A305S</td>
<td>37.9±11.0</td>
<td>16.0±5.9</td>
<td>563.19±2</td>
</tr>
<tr>
<td>A305I</td>
<td>124±13</td>
<td>8.7±0.9</td>
<td>238.863</td>
</tr>
</tbody>
</table>

* A305I synthesized only a triketide (3).
5), whereas these mutants are active in the hexanoyl-CoA- and phenylacetyl-CoA-primed reactions, implying that they accept malonyl-CoA as the elongation substrate, but not as the starter substrate. This suggests the existence of two distinct substrate-binding pockets for starter and elongation substrates in the active-site pocket of RppA. It is possible that some malfunction occurs at the loading step of malonyl-CoA onto Cys238 in the initial reaction in the Tyr224 mutants. In contrast, mutants having an aromatic amino acid, Trp or Phe, at this position are still active with malonyl-CoA as starter substrate, and produce THN. These results clearly indicate that the aromatic ring of Tyr224 is essential for recruiting malonyl-CoA to the thiol group of Cys238. The electronic X-ray crystallographic structure of CHS has revealed that Gly254, the residue corresponding to Tyr224 of RppA, is present at the surface of the active-site pocket [9]. The substitution of Gly254 of CHS with a bulky residue reduces the size of the active-site cavity, which causes alterations in both the number of condensation reactions for chain extension and the conformational changes of the triketide and tetraketide intermediates during the cyclization reaction [16]. Considering the high amino acid sequence conservation between RppA and CHS, we believe that the overall backbone architecture of the active-site cavity of RppA is similar to that of CHS, and therefore that Tyr224 of RppA lies in the active-site pocket, permitting direct interaction with malonyl-CoA. The structural similarity without sequence identity between CHS and ketoacyl carrier protein synthase III [17,18], which initiates fatty acid biosynthesis and is believed to have a common ancestor with type III PKSs, supports this idea. A minor difference in architecture leads to the mechanistic difference; Tyr224 of RppA contributes to starter substrate selectivity, while Gly254 of CHS determines the size of the active-site cavity and the terminal chain lengths of resultant polyketides. It is worth noting that Tyr224 of RppA is also conserved in DpgA, a type III PKS involved in the biosynthesis of balhimycin (a vancomycin derivative) that also utilizes malonyl-CoA as a starter substrate [6].

The substitution of Ala305 with the bulky ‘PS-type’ Ile causes the mutant RppA to condense an acetate unit twice in the hexanoyl-CoA- and phenylacetyl-CoA-primed reactions. However, a small amount of THN was detected in the same reaction mixture, indicating that the mutation neither eliminates the ability to adopt malonyl-CoA as a starter substrate nor affects the size of the product of the malonyl-CoA-primed reaction. It appears that, in the active-site pocket, the conformation of the nascent chain of the malonyl-CoA-primed polyketide might differ from that of the hexanoyl-CoA-primed reaction. No observed influence on the size of the products by amino acid replacement at position Ala305 can be explained in terms of the conformational difference in the nascent chains. Recently, Jez et al. [16] reported that a decrease in the size of the active-site cavity of CHS, generated by substitution of Gly254 by bulkier residues, decreased the number of extensions in the aromatic-starter-primed reaction, but did not affect that in the hexanoyl-CoA-primed reaction. Given that a single PKS uses various starter substrates and synthesizes products with a wide variety in size [11], it is likely that the structure of the starter substrate moiety, which correlates with the conformation of the nascent polyketide chain accommodated in the active-site cavity, contributes more towards the determination of the length of the polyketide produced than does the physical capacity determined by the size of the active-site pocket.

The results of mutagenesis analysis of the active-site residues of RppA are almost identical with those for CHS. For example, of the His306 mutants of CHS, only H303Q retains high activity for chalcone formation and decarboxylation of malonyl-CoA when compared with wild-type CHS [4]. A minor difference was observed in the reaction of the Phe318 mutants; the three Phe318 mutants of RppA cannot efficiently decarboxylate malonyl-CoA as the extender, whereas the Phe215 mutants of CHS were capable of forming polyketides. Our findings confirm that the mechanism of decarboxylation of malonyl-CoA proposed for plant CHSs also works for RppA, a bacterial type III PKS. The diversity of reactions catalysed by the type III PKSs is ascribed to changes in certain residues during evolution without changing the principal machinery of the active site. RppA mutant H270Q retains decarboxylation activity at a near wild-type level (Figure 3), but increased amounts of derailment products were observed (Figure 2). Perhaps the impaired catalytic machinery cannot provide a sufficient amount of acetyl-CoA carbaniion, which is required for chain extension, and derailment occurs before the elongation reaction has been completed.

RppA mutant H270Q produces large amounts of tri- and tetra-ketide derailment products, but never yields any pentaketide derailment product. We had expected the production of pentaketide polyketides, such as α-acetylsorrellinic acid or its isomer, as derailment products. The predicted mechanism for the final ring closure of the pentaketide intermediate to yield THN, i.e. Claisen condensation accompanied by decarboxylation of the malonate moiety incorporated as the starter substrate [19], would resemble the decarboxylative chain elongation reaction. We had therefore thought that this reaction would be catalysed by the same machinery used for generating an acetyl-CoA carbaniion. However, the absence of any pentaketide derailment product in the reaction products of H270Q, despite the presence of THN, suggests that the impaired machinery is still active in catalysing ring closure, although the possibility of a spontaneous nucleophilic attack of the active methylene and subsequent decarboxylation during aromatization cannot be excluded. Alternatively, an unidentified residue(s) may be responsible for the final ring closure.

It is surprising that a single amino acid replacement results in a change in the substrate specificity of RppA. Identification of the residues critical for substrate specificity and amino acid replacement at these positions could facilitate the tailoring of this catalyst for the production of novel polyketides. As demonstrated in the present study, for example, Tyr224 mutants use phenylacetyl-CoA, instead of malonyl-CoA, as a starter substrate, since the mutation diminishes the competition against malonyl-CoA.

N. F. was supported by the Japan Society for the Promotion of Science. This work was supported by the Bio Design Program of the Ministry of Agriculture, Forestry, and Fisheries of Japan (BDP-02-VI-2-5), and by the Industrial Technology Research Grant Program in 00 Program of the New Energy and Industrial Technology Development Organization of Japan (00A03004).

REFERENCES

© 2002 Biochemical Society
Site-directed mutagenesis of RppA