A 13C-NMR study of the inhibition of papain by a dipeptide-glyoxal inhibitor

Jonathan LOWTHER, Aleksandra DJURDJEVIC-PAHL, Chandralal HEWAGE and J. Paul G. MALTHOUSE 1

Department of Biochemistry and Centre for Synthesis and Chemical Biology, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland

Z-Phe-Ala-glyoxal (where Z is benzoyloxy carbonyl) has been synthesized and shown to be a competitive inhibitor of papain with a $K_i = 3.30 \pm 0.25$ nM. 13C-NMR has been used to show that in aqueous media, Z-Phe-[2-13C]Ala-glyoxal gives signals at 207.7 p.p.m. and 96.3 p.p.m. showing that both the α-keto carbon and its hydrate are present. When this inhibitor is bound to papain a single signal at 207.7 p.p.m. is observed due to the 13C-enriched carbon. This demonstrates that the aldehyde α-keto carbon is not hydrated when it is bound to papain and that it does not form a thiohemiketal with the thiol group of Cys-25.

Z-Phe-[1-13C]Ala-glyoxal has also been synthesized and its aldehyde carbon is fully hydrated in aqueous solution giving signals at 88.7 p.p.m. and 90.2 p.p.m. when the α-keto carbon and its hydrate are present respectively. When this inhibitor is bound to papain a single signal at 71.04 p.p.m. was observed due to the 13C-enriched carbon showing that the 13C-enriched aldehyde carbon forms a thiohemiacetal with Cys-25.

Key words: protease, tetrahedral adduct, thiohemiacetal, thiol.

INTRODUCTION

Specific-substrate-derived glyoxal or α-keto-β-aldehyde (RCOCHO) inhibitors of proteases have been synthesized [1] and shown to be potent inhibitors of chymotrypsin [2–4], cathepsin B [3,5], cathepsin L [5], cathepsin S [6] and the proteasome [7]. We have recently [4] used 13C-NMR to study the mechanism of inhibition of chymotrypsin by specific-substrate-derived glyoxal inhibitors. However, there have been no similar studies on the mechanism of inhibition of thiol proteases by glyoxal inhibitors. Therefore one of the main aims of the present work is to undertake such studies with the thiol protease papain.

If specific-substrate-derived glyoxal inhibitors bind in the same way as substrates, then the ketonic glyoxal carbonyl group should be in the same position as the carbonyl of the hydrolysed peptide bond in the corresponding substrate. This has led to the suggestion that the active site thiol of the thiol proteases could form a thiohemiketal intermediate with the ketonic carbonyl group of the glyoxal [3]. Such a thiohemiketal adduct would be analogous to the tetrahedral adduct thought to be formed during catalysis. Substrate-derived aldehyde inhibitors whose carbonyl group is in the same position as the carbonyl of the hydrolysed peptide bond in the corresponding substrate have been shown to be potent inhibitors of papain, forming tetrahedral thiohemiacetals with the thiol group of Cys-25 [8–10]. However, with substrate-derived chloromethylketone [11,12] or diazoketone [13] inhibitors of papain a stable thiohemiketal is not formed; instead, the active-site thiol is alkylated by the methylene carbon adjacent to the inhibitor carbonyl carbon which is analogous to the carbonyl of the hydrolysed peptide bond. It is therefore not clear whether the thiol group of Cys-25 will form a hemiketal or hemiacetal with glyoxal inhibitors. However, due to the lower electronegativity of sulphur compared with oxygen the chemical shifts of thiohemiacetal and thiohemiketal carbons are ≈ 15 p.p.m. smaller than those of the corresponding hydrates. Therefore we intend to prepare specific-substrate-derived glyoxal inhibitors of papain with either the ketonic or aldehyde carbon enriched in carbon-13 and then use 13C-NMR to determine which carbonyl carbon reacts with Cys-25 of papain. This should allow us to determine whether specific-substrate-derived glyoxal inhibitors of papain form tetrahedral adducts analogous to the tetrahedral intermediate thought to be formed during catalysis.

MATERIALS AND METHODS

N-α-Benzoyloxy carbonyl-L-phenylalanine was obtained from Sigma-Aldrich Chemical Co., Poole, Dorset, U.K. 1-[1-13C]-Ala-L-Alanine (99 atom %) was obtained from Cambridge Isotope Laboratories (Andover, MA, U.S.A.). Papaya latex (which hydrolyses 3 μmol of N-benzoyl-L-arginine ethyl ester/min at pH 6.2 and 25 °C) was the Fluka product obtained from Sigma-Aldrich Ireland. All other chemicals used were obtained from Aldrich Chemical Co. (Gillingham, Dorset, U.K.).

Synthesis of benzoyloxy carbonyl (Z)-Phe-Ala and Z-Phe-[1-13C]Ala

These were synthesized from Z-Phe and L-Ala-methyl ester using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride as a coupling reagent, as described by Sheehan and Ledis [14], and by the mixed anhydride method of Coggins et al. [15]. Yield was 0.41 g (1.11 mmol, 82.3 %) of Z-Phe-Ala. 13C-NMR ([^{1}H]DMSO) δ: 17.15 (1C, CH$_2$), 37.43 (1C, CH$_2$), 47.54 (1C, CH$_2$), 55.91 (1C, CH$_2$), 65.17 (1C, CH$_2$), 126.24–129.24 (10C, CH=CH), 137.05–138.19 (2C, CH=CH=), 155.87 (1C, O=C=O—NH), 171.50 (1C, CH$_2$), 174.04 (1C, COOH). Chemical analysis (calculated) for C$_{13}$H$_{11}$N$_2$O$_2$: C, 64.86; H, 5.95; N, 7.57; O, 21.62. Found: C, 64.80; H, 6.00; N, 7.47; O, 21.73.

The 13C-NMR spectrum of Z-Phe-[1-13C]Ala in [^{1}H]DMSO contained a single signal at 174.03 p.p.m. due to the 13C-enriched carbon atom.

Conversion of Z-Phe-Ala into Z-Phe-Ala-glyoxal, Z-Phe-Ala-[1-13C]glyoxal and Z-Phe-Ala-[2-13C]glyoxal

Z-Phe-Ala was converted into Z-Phe-Ala-diazoketone using diazomethane and the mixed anhydride method described by Coggins et al. [15]. The diazoketone was converted into a glyoxal using a procedure modified from that described by Ihmels et al. [16]. A 100 mg (0.252 mmol) quantity of Z-Phe-Ala-diazoketone

Abbreviations used: Ac-Phe-Gly-H, acetyl-Phe-glycinal; T_1, spin lattice relaxation time; Z, benzoyloxy carbonyl.

1 To whom correspondence should be addressed (e-mail J.Paul.G.Malthouse@ucd.ie).
was oxidized by dissolving it in a 5 ml solution of 0.1 M dimethylsulfoxide in acetonitrile and stirring until no more nitrogen evolved. The reaction mixture was then moistened by addition of \(\approx 0.25\% \) (v/v) water and the acetonitrile removed by evaporation under reduced pressure. The moist compound was then dissolved in \([\text{D}_2]\)HJDCMO, \(^{13}C\)-NMR (\([\text{D}_2]\)JDCMO) \(\delta \) : 16.48 (1C, CH\(_{2}\)), 37.50 (1C, CH\(_{2}\)CH\(_2\)), 49.80 (1C, CH\(_{2}\)), 55.88 (1C, CH\(_{2}\)CH\(_2\)), 65.21 (1C, CH\(_{2}\)), 89.06 (1C, CO–CH(OH)), 126.28–129.23 (10C, CH=CH\(_2\)), 137.02–138.14 (2C, CH=CH\(_2\)), 155.89 (1C, O–CO–NH), 171.45 (1C, CH\(_{2}\)CH\(_{2}\)CH=CH–CO–NH), 206.81 [1C, CO(CH\(_{2}\)OH)].

Z-Phe-Ala-[\(^{13}C \)]glyoxal and Z-Phe-Ala-[\(^{14}C \)]glyoxal were synthesized by the same procedure except that \(N[^{13}C] \)methyl-N-nitrosotoluene-\(p \)-sulphonamide was used to generate the diazomethane used in the synthesis of Z-Phe-Ala-[\(^{13}C \)]glyoxal and [\(^{13}C \)]glyoxal-[\(^{14}C \)]Ala-ethyl ester was used for the synthesis of Z-Phe-Ala-[\(^{13}C \)]glyoxal. In \([\text{D}_2]\)HJDCMO the \(^{13}C \)-enriched carbon of Z-Phe-Ala-[\(^{13}C \)]glyoxal gave signals at 95.42 p.p.m. and 206.98 p.p.m. \(\text{C} \)-enriched carbons in water are described and assigned in the Results and discussion section.

Isolation and quantification of fully active papain

Papain was isolated from papaya latex essentially as described by Baines and Brocklehurst [17]. Papain was also further purified by covalent chromatography [18]. The concentration of fully active papain was determined by thiol titration with 2,2’-dipyridyl disulphide [19]. Papain was shown to be free of any contaminating chymopapains by equal thiol titrations at pH 4 and pH 8 [17, 19]. Its identity was confirmed by the pH dependence of its reactivity towards 2,2’-dipyridyl disulphide [20] and its catalytic activity \(k_\text{cat}/K \) towards N-benzoyl-L-arginine-\(p \)-nitroanilide [21]. For NMR experiments with Z-Phe-[\(^{13}C \)]Ala-glyoxal, papain was prepared by the method of Baines and Brocklehurst [17] and it had 0.38 mol of thiol/mol of protein.

Inhibition of papain by Z-Phe-Ala-glyoxal

The inhibition of the papain catalysed hydrolysis of \(N \)-benzoyl-L-arginine-\(p \)-nitroanilide by Z-Phe-Ala-glyoxal was studied at 25 \(^\circ \text{C} \) in 0.1 M sodium phosphate buffer, pH 7.03, containing 1.67 \(% \) (v/v) DMSO. \(K_i \) values for the inhibitor were determined using the method of Henderson [22]. Stock solutions of \(\approx 10 \text{ mM} \) substrate and 0.4 mM inhibitor were dissolved in water and DMSO respectively. Final concentrations of the enzyme, substrate and inhibitor were 0.37 \(\mu \text{M} \), 0.52–3.14 mM and 0.5–4.0 \(\mu \text{M} \) respectively.

NMR spectroscopy

NMR spectra at 11.75 T were recorded with a Bruker Avance DRX 500 standard-bore spectrometer operating at 125.7716 MHz for \(^{13}C \)-nuclei. Unless stated otherwise 10 mm-diameter sample tubes were used. The spectral conditions for the samples of chymotrypsin inhibited by Z-Phe-[\(^{13}C \)]Ala-glyoxal at 11.75 T were: 16384 time-domain data points; spectral width, 240 p.p.m.; acquisition time, 0.270 s; 1.73 s relaxation delay time; 90\(^\circ\) pulse angle; 512–8192 transients were recorded per spectrum. Waltz-16 composite pulse \(^1\text{H} \) decoupling with a BLAH100 amplifier was used with 16 dB attenuation during the acquisition time and 34 dB attenuation during the relaxation delay to minimize dielectric heating but maintain the nuclear Overhauser effect. All spectra were transformed using an exponential weighting factor of 50 Hz. For samples of papain inhibited by Z-Phe-[\(^{13}C \)]Ala-glyoxal at 11.75 T the spectral conditions were: 32768 time-domain data points; spectral width, 240 p.p.m.; acquisition time, 0.541 s; 7.46 s relaxation delay time; 90\(^\circ\) pulse angle; 512–6144 transients were recorded per spectrum. All spectra were zero filled to give 64000 data points before being transformed.

Both \(^1\text{H} \) and \(^{13}C \) chemical shifts are quoted relative to tetramethylsilane at 0.00 p.p.m. In aqueous solutions the chemical shift of the \(\alpha \)-carbon of glycine was used as a chemical reference as described previously [23]. For non-aqueous solvents either 10\(^\%\) tetramethylsilane was used as an internal standard or an appropriate solvent signal was used as a secondary reference [24].

All aqueous samples contained 10\(^\%\) (v/v) \(^1\text{H}_2\text{O} \) to obtain a deuterium lock signal, as well as 10 mM sodium phosphate buffer to help maintain stable pH values. All samples were at 25 \(^\circ\text{C} \).

RESULTS AND DISCUSSION

Inhibition of papain by Z-Phe-Ala-glyoxal

The inhibition of the papain-catalysed hydrolysis of \(N \)-benzoyl-L-arginine-\(p \)-nitroanilide by Z-Phe-Ala-glyoxal at pH 7.0 was analysed using eqn. (1) [22]:

\[
I_i/(1 - v_i/v_{0i}) = (K_i[(S + K_{m0})/K_{m0}]v_{0i}/v_{0i}) + E_i
\]

where \(E_i \), \(S \), and \(I_i \) are the total concentrations of enzyme, substrate and inhibitor respectively, and \(v_i \) and \(v_{0i} \) are initial rates of substrate catalysis in the absence and presence of the inhibitor respectively. Plots of \(I_i/(1 - v_i/v_{0i}) \) versus \(v_{0i}/v_i \) were linear and a plot of the slopes of these graphs versus the substrate concentration was linear with a positive non-zero slope, demonstrating that the inhibition was competitive [22] and that \(K_i = 3.30 \pm 0.25 \text{ mM} \) at pH 7.03 and 25 \(^\circ\text{C} \). Specific-substrate-derived glyoxal inhibitors are 3–10-fold more effective inhibitors than their aldehyde equivalents [3] and so it is expected that Z-Phe-Ala-glyoxal (Z-Phe-Ala-CHO) will be a more effective papain inhibitor (Table 1) than the similar aldehyde inhibitor acetyl-Phe-glyoxal (Ac-Phe-Gly-H).

\(^{13}C \)-NMR signals obtained from Z-Phe-[\(^{13}C \)]Ala-glyoxal and Z-Phe-[\(^{12}C \)]Ala-glyoxal in water

In fully aqueous media at pH 5.5 (Figure 1, trace f) the intensity of the \(\alpha \)-keto-carbon of Z-Phe-Ala-[\(^{13}C \)]glyoxal at 207.7 p.p.m. (Scheme 1, structure 1) was approximately half that of its hydrate at 96.3 p.p.m. (Scheme 1, structure 2). The signal at 38.7 p.p.m. is due to the \(^{13}C \)-enriched carbon of Z-Phe-Ala-[\(^{12}C \)]glyoxal. In fully aqueous media at pH 5.5 (Figure 1, trace f) the intensity of the \(\alpha \)-keto-carbon of Z-Phe-Ala-[\(^{13}C \)]glyoxal at 207.7 p.p.m. (Scheme 1, structure 1) was approximately half that of its hydrate at 96.3 p.p.m. (Scheme 1, structure 2). The signal at 38.7 p.p.m. is due to the \(^{13}C \)-enriched carbon of Z-Phe-Ala-[\(^{12}C \)]glyoxal.
in fully aqueous media at pH 5.5 with signals at 88.7 p.p.m. and 90.2 p.p.m. (Figure 1, trace a), which were assigned to structures 1 and 2 in Scheme 1 respectively. The intensity and chemical shifts of the signals from Z-Phe-[1-13C]-glyoxal and Z-Phe-[2-13C]-glyoxal and Z-Phe-[1-13C][glyoxal were unchanged from pH 3 to 10. As in our earlier studies [4] the glyoxals underwent internal Cannizzaro reactions at pH values > 10 involving both C-1-to-C-2 hydride and C-2-to-C-1 alkyl shifts to give the corresponding α-hydroxy-carboxylic acid (RCHOHCOOH). At pH 5.5 this gave signals at 178.9 p.p.m. and 74.6 p.p.m. due to the 13C-enriched carboxy- and α-hydroxy-carbons respectively.

13C-NMR signals from Z-Phe-[1-13C]-Ala-glyoxal, Z-Phe-[2-13C]-Ala-glyoxal and papain at pH 5.5

On adding Z-Phe-[1-13C]-Ala-glyoxal (Figure 1, trace a) to papain (Figure 1, trace b) a new signal at 71.04 p.p.m. was detected (Figure 1, trace c). The chemical shift of this signal is very similar to those of the two diastereomeric thiohemiacetal carbons (76.91 p.p.m. and 75.49 p.p.m.) formed when N-acetyl-L-cysteine is added to Z-Phe-[1-13C]-Ala-glyoxal at pH 5.5. Therefore the signal at 71.04 p.p.m. is assigned to the thiohemiacetal formed when the thiolate ion of Cys-25 reacts with the 13C-enriched aldehyde carbon of Z-Phe-[1-13C]-Ala-glyoxal. Examination of the signal at 71.04 p.p.m. showed that only one signal was present, demonstrating that only one diastereoisomer was present and that thiohemiacetal formation was stereospecific. Linewidths of 50 Hz have been observed when only one diastereomeric hemiacetal is formed with papain [9, 10]. The signal at 71.04 p.p.m. had a linewidth of 48.1 ± 3.5 Hz giving further support to our suggestion that only one diastereomeric thiohemiacetal is formed when papain reacts with Z-Phe-Ala-glyoxal. Addition of an excess of Z-Phe-Ala-[1-13C]-glyoxal led to the signal at 71.04 p.p.m. reaching its maximum intensity and to the reappearance of the signals at 88.7 p.p.m. and 90.2 p.p.m. due to the free inhibitor (Figure 1, trace d). As separate signals are observed for the free and bound inhibitor this shows that they are not in fast exchange on the NMR timescale. When chymotrypsin was inhibited by Z-Ala-Pro-[1-13C]Phe-glyoxal there was a slow pH-dependent irreversible breakdown of the inhibitor to give the hydroxy-acid which had a chemical shift in the range of 72.85–74.93 p.p.m. [4]. These chemical shifts are similar to that of the signal at 71.04 p.p.m. assigned to the formation of a thiohemiacetal. Therefore it was important to confirm that the signal at 71.04 p.p.m. is not due to formation of an hydroxy-acid. 2,2'-Dipyridyl disulphide is an active-site-directed reagent which rapidly covalently modifies the active-site thiol group of papain [20]. Addition of this reagent displaced the bound inhibitor at 71.04 p.p.m. leading to an increase in intensity of the signals at 88.7 p.p.m. and 90.2 p.p.m. due to the free inhibitor (Figure 1, trace e). This confirmed that Z-Phe-Ala-[1-13C]-glyoxal did not break down to give hydroxy-acid and that it is a reversible inhibitor of papain at pH 5.5. The signals at 122.0 p.p.m., 123.2 p.p.m., 139.7 p.p.m. and 150.0 p.p.m. (Figure 1, trace f) were due to the added 2,2'-dipyridyl disulphide.

The signal at 71.04 p.p.m. due to the thiohemiacetal carbon had one directly bonded proton (∊NCH = 170.1 ± 2.7 Hz), a line-width of 48.1 ± 3.5 Hz and a spin lattice relaxation time (T1) of 1.65 ± 0.19 s.

A ≈ 3-fold excess of Z-Phe-[2-13C]-Ala-glyoxal (Figure 1, trace f) was added to papain and unbound materials were removed by ultrafiltration using an Amicon PM10 membrane. Only one new signal was detected, at 209.7 p.p.m., due to the 13C-enriched carbon of the protein-bound inhibitor (Figure 1, trace g). The absence of a thiohemiketal signal at ≈ 80 p.p.m. (Figure 1, trace g) shows that the thiolate ion of Cys-25 does not react with the 13C-enriched carbon of the inhibitor. The absence of a hydrate signal at ≈ 96 p.p.m. and the presence of a signal at 209.7 p.p.m. shows that the 13C-enriched carbon of the bound inhibitor is not hydrated and that it is sp2 hybridized.

The signal at 209.7 p.p.m. due to the α-keto carbon had no directly bonded protons, a line-width of 28.1 ± 0.6 Hz and a spin lattice relaxation time (T1) of 2.59 ± 0.21 s.

General conclusions

As Z-Phe-Ala-glyoxal is a specific-substrate-derived inhibitor of papain, the Phe and Ala amino acid residues are expected to bind
demonstrating that the tight binding by this inhibitor is not due to the inhibitor residue (i.e. the C-2 glyoxal keto-carbon) confirming that the absorbance of the peptide carbonyl carbon is dependent on there being tetrahedral geometry at this carbon. The 2 p.p.m. increase in chemical shift at the C-2 glyoxal keto-carbon on binding to papain (Figure 1, traces f and g) could reflect more effective hydrogen bonding of the carbonyl oxygen on binding to papain [29]. If the glyoxal inhibitor binds in a similar way to its chloromethylketone analogue then the oxygen atom of the C-2 keto-oxygen will be 3.6 Å from both the backbone NH of Cys-25 and the side-chain NH$_2$ of Gln-19. From model building experiments we estimate that the oxygen atom of the thiohemiacetal will also be 3.6 Å from the side-chain NH$_2$ of Gln-19 and 2.2 Å from ND1 of His-159. However, it is much further away (4.2 Å) from the backbone NH of Cys-25. Therefore both the keto and thiohemiacetal oxygens of the bound glyoxal inhibitor should be stabilized by hydrogen bonding. The additional hydrogen bonding to the thiohemiacetal oxygen may explain the greater potency of glyoxal inhibitors relative to their aldehyde analogues [5,6].

Earlier studies had proposed that with peptide aldehyde inhibitors a neutral thiohemiacetal was formed with papain and that the thiohemiacetal hydroxyl group might not be in the oxyanion hole [10]. However, the crystal structure of the complex between papain and the aldehyde inhibitor, leupeptin, showed that the oxygen atom of the thiohemiacetal is located in the oxyanion hole where it can hydrogen bond to the backbone amide nitrogen of Cys-25 and to the side-chain amide nitrogen of Gln-19 [30]. However, the removal of the hydrogen-bonding interaction with Gln-19 by site-directed mutagenesis led to a small improvement in binding of leupeptin and the aldehyde inhibitor Ac-Phe-Gly-H, which led to the conclusion that the thiohemiacetal formed between papain and a peptide aldehyde cannot be considered a good model for the transition state in substrate hydrolysis [31]. Likewise, although peptide glyoxals are potent inhibitors of papain they cannot be regarded as transition-state analogues of the tetrahedral intermediates formed during substrate catalysis.

This work was supported by Basic Research Grant SC/2001/440 from Enterprise Ireland. C.H. was supported by grant no. 05637/2/98 from the Wellcome Trust, which was also used to purchase the NMR spectrometer used in these studies. We thank University College Dublin for a research demonstratorship for J.L. and also Enterprise Ireland for a Basic Research Award for J.L. We also acknowledge the help of T. Walsh with the molecular modelling experiments.

© 2002 Biochemical Society
REFERENCES

17 Baines, B. S. and Brocklehurst, K. (1979) A necessary modification to the preparation of papain from any high-quality latex of Carica papaya and evidence for the structural integrity of the enzyme produced by traditional methods. Biochem. J. 177, 541–548

28 Brocklehurst, K. and Malthouse, J. P. G. (1978) Mechanism of the reaction of papain with substrate-derived diazomethyl ketones. Implications for the difference in site specificity of halomethyl ketones for serine proteinases and cysteine proteinases and for stereoelectronic requirements in the papain catalytic mechanism. Biochem. J. 175, 761–764

