The cyclo-oxygenase-2 inhibitor celecoxib perturbs intracellular calcium by inhibiting endoplasmic reticulum Ca$^{2+}$-ATPases: a plausible link with its anti-tumour effect and cardiovascular risks

Amy J. JOHNSON*, Ao-Lin HSU*, Ho-Pi LIN†, Xueqin SONG* and Ching-Shih CHEN†

*Division of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0082, U.S.A., and †Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and the Comprehensive Cancer Center, The Ohio State University, 500 West 12th Avenue, Columbus, OH 43210-1291, U.S.A.

INTRODUCTION

The discovery of the two isoforms of cyclo-oxygenase (COX) has prompted the development of selective COX-2 inhibitors for the treatment of chronic inflammatory diseases in light of their significantly reduced gastrointestinal toxicity [1–3]. In addition to the anti-inflammatory utility, recent epidemiological and animal model studies demonstrate the potential of COX-2 inhibitors as chemopreventive agents [4–6]. An array of in vitro evidence has correlated this anti-tumour activity with the ability of these molecules to induce apoptosis in cancer cells [7–17]. Together, these findings have led to the recent approval by the U.S. Food and Drug Administration of celecoxib (Celebrex*) for the adjunct treatment of familial adenomatous polyposis. In addition, celecoxib has been tested in numerous advanced clinical trials against a variety of epithelial malignancies including colon, oesophagus, skin and bladder cancers. However, the mechanism by which COX-2 inhibitors mediate apoptosis in cancer cells remains elusive [18]. Given the importance of pro-inflammatory prostaglandins in carcinogenesis [4,19–21], one school of thought attributes the anti-tumour effect of COX-2 inhibitors to the inhibition of COX-2 enzyme activity. However, an expanding body of evidence from this and other laboratories suggests that these molecules mediate apoptosis via a multitude of signalling targets other than the COX-2 enzyme itself [22,23].

Our research has focused on the effect of COX-2 inhibitors on apoptosis in prostate cancer cells [16,17,23]. Our data indicate that celecoxib mediates apoptosis in prostate cancer cells by targeting signalling components essential to cell survival such as Akt and extracellular signal-regulated kinase 2 (ERK2). It is noteworthy that this induction of apoptosis is irrespective of androgen responsiveness, p53 functional status and Bcl-2 expression levels. In this study, we report a new pharmacological effect of celecoxib on intracellular calcium concentration ([Ca$^{2+}$]), which may provide a link with its anti-tumour and/or toxicological effects. Evidence indicates that celecoxib perturbs intracellular Ca$^{2+}$ by blocking endoplasmic reticulum (ER) Ca$^{2+}$-ATPases (also called SERCAs). As Ca$^{2+}$ is taken into the ER lumen by ER Ca$^{2+}$-ATPases [24], inhibition of this Ca$^{2+}$ reuptake results in Ca$^{2+}$ mobilization from ER stores, thereby leading to [Ca$^{2+}$] elevation. Ca$^{2+}$ plays a central role in apoptosis via a plethora of plausible mechanisms (see Discussion). It has been hypothesized that androgen-insensitive prostate cancer cells survive androgen ablation-induced apoptosis by preventing intracellular Ca$^{2+}$ elevation [25]. The Ca$^{2+}$ rise by celecoxib may account for its effectiveness in triggering apoptotic death in both androgen-dependent and androgen-independent prostate cancer cells. It is noteworthy that this Ca$^{2+}$-perturbing effect is not limited to prostate cancer cells. It is also observed in many other cell lines examined, including A7r5 smooth muscle cells, NIH 3T3 fibroblast cells and Jurkat T cells. Consequently, this Ca$^{2+}$-perturbing effect may provide a plausible link with the reported toxicities of celecoxib such as increased cardiovascular risks in long-term anti-inflammatory therapy.

Key words: apoptosis, PC-3 prostate cancer cell.

Abbreviations used: AEBSF, 4-(2-aminoethyl)benzenesulphonyl fluoride; AM, acetoxymethyl ester; [Ca$^{2+}$], intracellular calcium concentration; COX, cyclo-oxygenase; DTT, dithiothreitol; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; IP3, d-Ins(1,4,5)P3.

1 To whom correspondence should be addressed, at the College of Pharmacy, The Ohio State University (e-mail chen.844@osu.edu).
pared with the placebo group \((P = 0.02)\) [26]. Other reported side effects of celecoxib include elevated blood pressure and leucocyte adherence in a rat model [27].

MATERIALS AND METHODS

Reagents

Celecoxib and rofecoxib were obtained from commercial Celebrex® and Vioxx® capsules, respectively, by solvent extraction followed by recrystallization. The identity and purity of both molecules were verified by NMR and MS. DuP697 was a kind gift from Professor Hsin-Hsiung Tai (University of Kentucky, Lexington, KY, U.S.A.). NS398, fluo-3 acetoxymethyl ester (AM), fluo-3, fura-2/AM, thapsigargin, Ruthenium Red, cytochrome, saponin and bromo-A23187 were purchased from Calbiochem (San Diego, CA, U.S.A.). \(d\)-myo-Inositol(1,4,5)P₃ (IP₃) was synthesized according to a procedure previously reported by this laboratory [28].

Cell culture

Human prostate cancer cell lines LNCaP and PC-3, A7r5 smooth muscle cells, NIH 3T3 fibroblast cells, MCF-7 breast cancer cells, Jurkat T cells and HepG2 hepatoma cells were purchased from American Type Culture Collection (Rockville, MD, U.S.A.). Cells were cultured in RPMI 1640 or Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum at 37°C and a humidified 5% CO₂ incubator. Cells were replensed daily with a new medium and were passaged 1:4 with fresh medium every 3 days.

Ratiometric digital imaging of \([Ca^{2+}]_i\)

Cells were seeded on round (25 mm) glass coverslips with a density of 5000 cells/coverlip, and were cultured in RPMI 1640 supplemented with 10% fetal bovine serum at 37°C in a humidified 5% CO₂ incubator. Assay buffer contained 118 mM NaCl, 5 mM KCl, 1.6 mM CaCl₂, 1.2 mM MgCl₂, 1.2 mM Na₂HPO₄, 25 mM Hepes and 10 mM glucose, pH 7.54. Before each experiment, the cells were loaded with 1 μM fura-2/AM in assay buffer for 30 min at 37°C. After loading, the cells were washed twice with assay buffer; each wash lasted 15 min. Coverslips were placed in a chamber (Molecular Probes) and covered with 500 μl of assay buffer. Drugs were added at 2× concentration to obtain maximal mixing. Experiments were imaged using an inverted microscope (Nikon) equipped with a CCD camera (CoolSnap HQ) and a 40× lens. Capture and analysis was done with the aid of MetaFluor software (Universal Imaging). Images were obtained every 1 s with excitation wavelengths of 340 and 380 nm and an emission wavelength of 510 nm. Regions of interest containing 10 cells were isolated and the average fluorescence intensity at 340 and 380 nm was converted to a ratio. The cells were monitored for 2 min from the time they made contact with celecoxib. Using the Grynkiewicz equation, the ratio data were calibrated to calcium concentration based on minimal (calcium-free buffer) and maximal (1 μM bromo-A23187) ratio values [29].

Fluorescence spectrophotometric measurement of \([Ca^{2+}]_i\)

[Ca²⁺], was monitored by the change in the fluorescence intensity of fluo-3-loaded cells. PC-3 cells (1 × 10⁵ cells) were suspended in 1 ml of assay buffer consisting of 4.3 mM Na₂HPO₄, 24.3 mM NaH₂PO₄, 4.3 mM K₂HPO₄, 113 mM NaCl and 5 mM glucose, pH 7.4, plus 0.5% BSA and 2 mM probenacid, and incubated with 10 μM fluo-3/AM in the dark for 1 h at 37°C. The cells were then pelleted by centrifugation at 1000 g for 10 min, washed with the assay buffer twice, and resuspended at approx. 8 × 10⁵ cells/ml in the same buffer containing 1 mM Ca²⁺. The effect of celecoxib or thapsigargin on [Ca²⁺], was examined by fluo-3 fluorescence in a spectrofluorimeter at 37°C with excitation and emission wavelengths at 506 and 526 nm, respectively. The maximum fluo-3 fluorescence intensity \((F_{max})\) in PC-3 cells was determined by adding 1 μM bromo-A23187 and the minimum fluorescence \((F_{min})\) was determined following depletion of external Ca²⁺ by the addition of 5 mM EGTA. \([Ca^{2+}]_i\) was calculated according to the equation \([Ca^{2+}]_i = K_d(F_{max} - F_{min})/(F_{max} - F)\), where \(K_d\) denotes the apparent dissociation constant (= 450 nM) of the fluorescence dye–Ca²⁺ complex [29].

Preparation of the microsomal and plasma membrane fractions of PC-3 cells

PC-3 cells were collected, and homogenized with a Dounce homogenizer (pestle B; 15 strokes) in 10 vol. of ice-cold buffer A, consisting of 20 mM Tris/HCl, pH 7.2, 110 mM KCl, 10 mM NaCl, 2 mM MgCl₂, 5 mM KH₂PO₄, 2 mM EGTA, 1 mM dithiothreitol (DTT), 2 μg/ml leupeptin, 1 μg/ml pepstatin A and 100 μM 4-(2-aminoethyl)benzenesulphonyl fluoride (AEBSF). The homogenate was centrifuged at 1000 g at 4°C for 20 min, and the supernatant was first centrifuged at 15000 g at 4°C for 20 min to remove the mitochondria and then pelleted by centrifugation at 100000 g at 4°C for 40 min. The microsomal fraction was resuspended in buffer A without 2 mM EGTA (buffer B), with a protein concentration of 2–3 mg/ml. For the preparation of plasma membranes, collected PC-3 cells were homogenized with a Dounce homogenizer (pestle B; 5 strokes) in 5 ml of ice-cold PM buffer, consisting of 20 mM Hepes, pH 7.2, 110 mM KCl, 10 mM MgCl₂, 5 mM KH₂PO₄, 1 mM DTT, 1 mM EGTA, 1 mM AEBSF and 20 μg/ml leupeptin. The homogenate was centrifuged at 1500 g at 4°C for 10 min. The pellet was resuspended in 3.125 ml of PM buffer and mixed with 5.5 ml of 69% (w/w) sucrose. Sucrose [42.3 % (w/w)] was overlaid and centrifuged at 90000 g at 4°C for 2 h in a swinging-bucket rotor. Plasma membranes at the interface of the two phases were collected and resuspended in 5 ml of 10 mM Hepes, pH 7.5, 1 mM DTT, 1 mM AEBSF and 20 μg/ml leupeptin, then spun at 25000 g at 4°C for 10 min. The pellet containing plasma membranes was resuspended in 1 ml of the same buffer and used immediately for the Ca²⁺-ATPase assay.

Ca²⁺-release assay

Measurement of free Ca²⁺ concentrations in incorporation media was performed by fluo-3 fluorescence spectrophotometry [28]. The assay medium consisted of 40 units of creatine kinase, 20 mM creatine phosphate and 0.5 μM fluo-3 free acid in 2 ml of buffer B containing 0.2–0.25 mg of microsomal proteins. The mixture was incubated for 5 min at 37°C, and treated with 2 mM ATP to allow loading of Ca²⁺ stores. Until the external Ca²⁺ concentration returned to a near-base level, the microsomes were stimulated with different Ca²⁺-mobilizing agents (IP₃, ryanodine and celecoxib). Excitation and emission wavelengths were 506 and 526 nm, respectively.

Ca²⁺-ATPase assay

Ca²⁺-ATPase activity was determined by a coupled enzyme assay. The assay medium consisted of 30 mM imidazole/HCl, pH 6.9, 6 mM MgCl₂, 100 mM KCl, 20 mM NaCl, 0.4 mM EGTA, 5 mM NaN₃, 1.5 mM phosphoenolpyruvate, 40 units/ml pyruvate kinase, 40 units/ml lactic dehydrogenase, 0.26 mM.
NADH, 2 mM ATP and 10 μM free Ca^{2+} [30]. The assay was started by adding 20 μl of the microsomal preparation to 980 μl of the assay medium at 37 °C, and reaction rates were measured by the decrease in the absorbance at 340 nm. Plasma membrane Ca^{2+}-ATPases were analysed in the same manner by using assay medium with the addition of 10 μM ouabain and 0.1 μM calmodulin [31,32]. The assay was started by adding 20 μl of the plasma membrane preparation to 980 μl of the assay medium, and reaction rates were measured by the decrease in the absorbance at 340 nm.

RESULTS

Celecoxib stimulates intracellular Ca^{2+} increase

In view of the crucial role of [Ca^{2+}]_{i} in regulating apoptosis in androgen-insensitive prostate cancer cells, we investigated the effect of celecoxib on [Ca^{2+}]_{i} in PC-3 cells. PC-3 cells were grown on coverslips, loaded with fura-2/AM and exposed to celecoxib at different concentrations (10 μM to 100 μM). Changes in [Ca^{2+}]_{i} were monitored by a digital ratiometric imaging system. Figure 1(A) displays a set of pseudocolour images representing the immediate Ca^{2+} response to 50 μM celecoxib (panels a–f, 0–10 s post-treatment; 2 s per image).

These cells exhibited an increase in [Ca^{2+}]_{i}, immediately following celecoxib treatment, while no appreciable effect was noted with control cells receiving DMSO vehicles (results not shown). It appears that the nuclear region shows a higher ratio value, suggestive of a high-[Ca^{2+}] environment. However, these hot spots might, in part, be attributable to compartmental accumulation of the dye, which has been cited as a common problem with ester-loaded fura-2 for cultured cells in monolayers [33,34]. Nevertheless, this Ca^{2+}-perturbing effect is unique to

Figure 1 Effect of celecoxib on intracellular calcium in PC-3 cells

(A) Digital ratiometric imaging Ca^{2+} analysis. PC-3 cells grown on coverslips were loaded with fura-2/AM and exposed to 50 μM celecoxib; [Ca^{2+}]_{i} of the cells was monitored using a digital ratiometric imaging station as described in the Materials and methods section. Shown are pseudocolour ratiometric images taken every 2 s post-treatment (a–f, 0–10 s). (B) Dose- and time-dependent effect of celecoxib on [Ca^{2+}]_{i}. Fura-2-loaded PC-3 cells were treated with different levels of celecoxib, ranging from 0 to 100 μM, and were subjected to digital ratiometric Ca^{2+} analysis as described in the Materials and methods section. (C) Celecoxib does not perturb the permeability of lipid vesicles to Ca^{2+}. Fluo-3-loaded multilamellar lipid vesicles were prepared as follows. A mixture of 50 mol% phosphatidylcholine, 30 mol% cholesterol, 10 mol% phosphatidylethanolamine and 10 mol% phosphatidylethanolamine was dissolved in chloroform, and dried under a stream of N_{2} followed by vacuum overnight. The lipids were dispersed in 0.1 M Hepes, pH 7.0, containing 10 μM fluo-3, warmed up to 40 °C for 5 min, and vortexed for 30 s. The suspension was centrifuged at 12000 g for 10 min, and the liposomal pellet was suspended in the assay buffer (described in the Materials and methods section) containing 1 mM CaCl_{2}. The fluo-3-loaded liposomes were treated with 50 μM celecoxib or 1 μM bromo-A23187, and the influx of Ca^{2+} was monitored by fluo-3 fluorescence spectrophotometry. The traces are the representative of three independent experiments.

© 2002 Biochemical Society
celecoxib since other COX inhibitors examined, including aspirin, ibuprofen, naproxen, rofecoxib, DuP697 and NS398, failed to elicit an appreciable effect on [Ca2+] even at 100 \mu M after a prolonged exposure (results not shown).

The Ca2+ imaging data show that the Ca2+-perturbing effect of celecoxib was dose- and time-dependent (Figure 1B). At 50 \mu M or lower, the [Ca2+], rapidly reached a plateau after celecoxib exposure. The maximum [Ca2+], elicited by 10, 25 and 50 \mu M celecoxib was approx. 200, 250 and 300 \%, respectively, of the baseline. However, the kinetics of Ca2+ response differed when celecoxib concentrations exceeded 50 \mu M. At 75 and 100 \mu M, a biphasic pattern of [Ca2+], response was observed, i.e. a sharp increase to 100 nm followed by a more gradual rise, depending on the drug dose, to approx. 280 nm. It is noteworthy that the threshold for eliciting Ca2+ perturbation was approx. 10 \mu M, which is in line with that required to trigger apoptotic cell death [16].

We also examined this Ca2+-perturbing effect in other cell lines that included androgen-responsive LNCaP prostate cancer cells, A7r5 smooth muscle cells, NIH 3T3 fibroblast cells, MCF-7 breast cancer cells, Jurkat T cells and HepG2 hepatoma cells. All of these cells were subjected to celecoxib-induced [Ca2+], rise with the same level of susceptibility (results not shown), indicating that it was a general phenomenon among all the cell lines examined.

Moreover, our data demonstrate that the increase in [Ca2+], was not attributable to the disturbance of membrane permeability by celecoxib (Figure 1C). To examine the effect of celecoxib on membrane integrity, fluo-3-loaded multimellar vesicles with a lipid composition similar to that of the plasma membrane were exposed to celecoxib (50 \mu M) vis-\-à-vis the Ca2+ ionophore bromo-A23187 (1 \mu M) in the presence of 1 mM CaCl\textsubscript{2}. While bromo-A23187 caused a rapid and robust Ca2+ influx into liposomes, celecoxib did not elicit any appreciable effect on fluo-3 fluorescence. This observation excluded the possibility that celecoxib caused a [Ca2+], increase by perturbing membrane permeability.

Celecoxib-stimulated Ca2+ response is attributable to ER Ca2+ release and capacitative Ca2+ entry

The kinetics of celecoxib-induced Ca2+ response in PC-3 cells were further examined (Figure 2). Suspended PC-3 cells were loaded with fluo-3/AM, and Ca2+ response to celecoxib was monitored by fluorescence spectrophotometry.

Figure 2(A) indicates [Ca2+], changes following the treatment with 50 and 100 \mu M celecoxib. Exposure to 50 \mu M celecoxib stimulated a transient [Ca2+], increase, whereas 100 \mu M celecoxib gave a robust, sustained [Ca2+], elevation with a significantly higher amplitude. This Ca2+ response was quantitatively different from that observed with digital ratiometric measurement (Figure 1). This discrepancy might, in part, be accounted for by differences in the cell preparation, i.e. cell suspension versus monolayers, and assay conditions. Figure 2(B) suggests that the Ca2+ response elicited by 100 \mu M celecoxib was largely due to Ca2+ influx from the medium. Trace a (Figure 2B) shows changes in [Ca2+], following two tandem treatments of 50 \mu M celecoxib. As shown, after the Ca2+ transient levelled off to the baseline following the initial treatment, a subsequent challenge stimulated a gradual rise in [Ca2+], to a level similar to that elicited by 100 \mu M celecoxib alone. The second [Ca2+], increase, however, could be abrogated by removing external Ca2+ with EGTA (Figure 2B, trace b), whereas the first Ca2+ transient was not much affected. Moreover, pretreatment of cells with thapsigargin (1 \mu M) in the presence of EGTA to deplete the internal Ca2+ stores also blocked [Ca2+], increase caused by 50 \mu M celecoxib (Figure 2C). These data suggest that the transient elevation in [Ca2+], was attributable to Ca2+ release from internal Ca2+ stores, whereas the second Ca2+ signal was due to Ca2+ influx from the medium. This premise is in line with the capacitative Ca2+ entry theory that the depletion of intracellular Ca2+ stores signals an influx of Ca2+, across plasma membranes through Ca2+-release-activated Ca2+ (CRAC) channels (or store-operated Ca2+ channels) [35,56].

Consequently, an important question arose as to how celecoxib induced Ca2+ release from internal stores. In principle, internal Ca2+ release might be mediated via one of the following Ca2+-transporting mechanisms on ER membranes: (a) IP\textsubscript{3} receptors, (b) ryanodine receptors and (c) ER Ca2+-ATPase (or SERCA) pumps [37,38]. Activation of IP\textsubscript{3} receptors or ryanodine receptors gives rise to Ca2+ release from the respective Ca2+ stores. With regard to the third mechanism, inhibition of the ATP-dependent Ca2+ pump by specific inhibitors such as thapsigargin results in rapid release of ER Ca2+ into the cytosol via ER Ca2+ leak channels [39]. To test the first and second possibilities, we examined the effect of pharmacological inhibitors specific for IP\textsubscript{3} receptors or ryanodine receptors on celecoxib-induced Ca2+ release from microsomes or permeabilized cells.

Celecoxib does not affect IP\textsubscript{3} or ryanodine-sensitive Ca2+ stores

To test the effect of celecoxib on IP\textsubscript{3}-sensitive Ca2+ stores, the microsomal fraction of PC-3 cells was prepared, suspended in an
Celecoxib inhibits endoplasmic reticulum Ca2+-ATPases

Figure 3 Evidence that celecoxib does not affect IP\textsubscript{3}-sensitive and ryanodine-sensitive Ca2+ stores

(A) Effect of heparin (200 \(\mu \)g/ml) on Ca2+ release elicited by IP\textsubscript{3} (10 \(\mu \)M) and celecoxib (50 \(\mu \)M) from Ca2+-loaded microsomes prepared from PC-3 cells. Panel a, untreated microsomes; panel b, heparin-treated microsomes. The traces are representative of three independent experiments. (B) Effect of Ruthenium Red (10 \(\mu \)M) on celecoxib-induced Ca2+ signal in permeabilized PC-3 cells. Panels a and b depict the Ca2+ responses elicited by celecoxib (50 \(\mu \)M) and ryanodine (50 \(\mu \)M) in untreated cells and cells pretreated with Ruthenium Red. Cell permeabilization was carried out by treating with saponin (30 \(\mu \)g/ml) for 30 min. The traces are representative of three independent experiments.

Figure 4 Dose–response curves for the inhibition of ER Ca2+-ATPases by thapsigargin and celecoxib

Inset, dose-dependent effect of celecoxib (0–100 \(\mu \)M) on ATP-dependent Ca2+ uptake in PC-3 microsomes. Each data point represents the mean\(\pm \)S.D. (\(n = 3 \)).

Celecoxib selectively inhibits ER Ca2+-ATPases

In view of these data, we turned our attention to the effect of celecoxib on ER Ca2+-ATPases and ATP-dependent Ca2+ uptake. The inhibitory profiles of celecoxib on the Ca2+-ATPase activity and Ca2+ uptake (inset) were consistent (Figure 4).

These dose–response curves indicate that celecoxib was a modest inhibitor of ER Ca2+-ATPases compared with thapsigargin, with IC\textsubscript{50} values of 35 \(\mu \)M and 29 nM, respectively, while the IC\textsubscript{50} for the inhibition of Ca2+ uptake was approx. 32 \(\mu \)M. The determined IC\textsubscript{50} value for thapsigargin was consistent with that reported in the literature [39]. Meanwhile, the effect of celecoxib on ER Ca2+-ATPases was highly specific. Our data assay buffer containing fluo-3, and treated with ATP (2 mM) for Ca2+ loading. Addition of IP\textsubscript{3} (10 \(\mu \)M) and subsequent exposure to celecoxib (50 \(\mu \)M) each resulted in immediate Ca2+ release into medium (Figure 3A, upper panel). The amplitude of the Ca2+ response elicited by celecoxib was greater than that of IP\textsubscript{3}, indicating that IP\textsubscript{3} did not desensitize the Ca2+-release mechanism mediated by celecoxib. Treatment of the microsomes with heparin (200 \(\mu \)g/ml), an antagonist of IP\textsubscript{3} receptors [40,41], abolished IP\textsubscript{3}-induced Ca2+ release, but imposed no effect on celecoxib-mediated Ca2+ increase (Figure 3A, lower panel). Taken together, these data suggest that celecoxib did not affect IP\textsubscript{3}-sensitive Ca2+ stores.

To test the possibility of whether ryanodine receptors contributed to celecoxib-mediated Ca2+ response, we examined the effect of Ruthenium Red, an antagonist of ryanodine receptors [42], in permeabilized PC-3 cells (Figure 3B). Fluo-3-loaded PC-3 cells were permeabilized by treatment with saponin (30 \(\mu \)g/ml), followed by celecoxib (50 \(\mu \)M) and ryanodine (50 \(\mu \)M), in tandem. Both celecoxib and ryanodine gave rise to a robust Ca2+ increase (Figure 3B, upper panel). The amplitude of the Ca2+ signal elicited by ryanodine remained unchanged with or without celecoxib (results not shown). Pretreatment of the permeabilized cells with Ruthenium Red (10 \(\mu \)M) had no appreciable effect on celecoxib-induced Ca2+ increase, while dramatically attenuating the Ca2+ response elicited by ryanodine (Figure 3B, lower panel). These data indicated that celecoxib did not activate ryanodine-sensitive Ca2+ stores.
indicate that the drug exerted no inhibition on the plasma membrane Ca\(^{2+}\)-ATPase while vanadate completely blocked the enzyme activity (results not shown).

DISCUSSION

The present study demonstrates that the COX-2 inhibitor celecoxib affects intracellular calcium homeostasis by selectively inhibiting ER Ca\(^{2+}\)-ATPases. Together with our previous reports [16,17], these data suggest that celecoxib mediates rapid apoptotic death in prostate cancer cells via an intricate mechanism involving multiple signalling targets, including Akt, ERK2 and Ca\(^{2+}\). The role of Akt and ERK2 in the regulation of cell survival is well understood. In addition, disruption of ER Ca\(^{2+}\) regulation may induce apoptosis through several plausible mechanisms. A sustained, modest increase of [Ca\(^{2+}\)]\(_i\) for a sufficient time (minutes to hours) leads to the activation of a series of apoptosis-regulating enzymes including Ca\(^{2+}\)-sensitive proteases [43,44], Ca\(^{2+}\)/Mg\(^{2+}\)-dependent endonuclease [45–47], caspases [48] and calcineurin [49,50]. Moreover, sustained [Ca\(^{2+}\)]\(_i\) elevations impose an adverse effect on mitochondria since some of the Ca\(^{2+}\) released from the ER is rapidly taken up by the organelle [38]. Recent evidence indicates that mitochondrial Ca\(^{2+}\) uptake involves the opening of the mitochondrial permeability transition pore, and yields cytochrome c release, thereby triggering apoptosis via caspase activation [51]. Moreover, this Ca\(^{2+}\)-perturbing effect may account for the effectiveness of celecoxib in sensitizing androgen-independent prostate cancer cells to apoptosis. It has been hypothesized that androgen-insensitive prostate cancer cells are not susceptible to the induction of apoptosis by androgen ablation, in part because such withdrawal did not induce an elevation of Ca\(^{2+}\) in these cells [25,52]. In the literature, a number of distinct Ca\(^{2+}\)-perturbing agents have been demonstrated to have anti-neoplastic activity. In addition, thapsigargin, a unique example that has received much attention is curcumin, a natural product with both anti-inflammatory and anti-carcinogenic activities [53]. Curcumin has been shown to interfere with multiple cellular targets, including COX-2 expression [54], SERCA pumps (IC\(_{50}\) = 7–15 μM) [55,56] and IP\(_3\) receptors (IC\(_{50}\) = 10 μM) [57]. Due to its intricate interactions with two distinct Ca\(^{2+}\) channels on ER, curcumin displays a dual mode of action on ATP-dependent Ca\(^{2+}\) uptake, i.e. stimulation at low concentrations (5–10 μM) and inhibition at high concentrations (>10 μM) [55]. In contrast, celecoxib inhibits both Ca\(^{2+}\)-ATPases and Ca\(^{2+}\) uptake in a consistent manner, indicating the high degree of specificity in the drug action.

It is noteworthy that this calcium-perturbing effect was also noted in smooth muscle cells and many other cell lines examined. This observation might be relevant to the reported side effects of celecoxib, which include elevated blood pressure and leukocyte adherence in a rat model [27], and risk of cardiovascular events like myocardial infarction and stroke [26]. It has been hypothesized that the cardiovascular toxicities of COX-2 inhibitors, in general, may be related to the selective inhibition of prostacyclin (PGL) but not thromboxane A\(_2\) [58]. However, it warrants investigation whether the Ca\(^{2+}\)-perturbing activity of celecoxib also plays a role in these adverse effects. Our data show that celecoxib as low as 10 μM may cause a rise in [Ca\(^{2+}\)]\(_i\). The peak plasma concentration (C\(_{\text{max}}\)) in normal individuals after taking therapeutic doses of celecoxib ranges between 2 and 8 μM [59]. Conceivably, the C\(_{\text{max}}\) value may be substantially higher in patients with compromised metabolic function or deficiency in CYP2C9, the major enzyme for celecoxib metabolism.

In summary, the present study proposes a unique pharmacological activity of celecoxib in interfering with intracellular calcium homeostasis. This Ca\(^{2+}\)-perturbing effect may play a role in the apoptotic effect of celecoxib in androgen-independent prostate cancer cells, and provides a plausible link with the reported cardiovascular risk associated with the long-term use of celecoxib.

This investigation was supported by Public Health Service grants GM53448 and CA94829 to C.-S.C., National Institutes of Health, Department of Health and Human Services, U.S.A.

REFERENCES
