Mycolic acid biosynthesis and enzymic characterization of the β-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis

Laurent CREMER*1, Lynn G. DOVER*, Séverine CARRÈRE†, K. Madhavan NAMPOOTHIRI*, Sarah LESJEAN‡, Alistair K. BROWN*, Patrick J. BRENNAVIN, David E. MINNIKIN§, Camille LOCHT‡ and Gurdyal S. BESRA*3

INTRODUCTION

Tuberculosis is regarded as one of the world’s most deadly infectious diseases [1]. The recent emergence of multidrug-resistant strains of Mycobacterium tuberculosis poses a serious threat to tuberculosis control programmes worldwide. Understanding the mechanisms of resistance to the anti-mycobacterial drugs currently available [2] and the discovery of new drug targets are necessary for the treatment of tuberculosis.

Mycolic acids are long-chain α-alkyl-β-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a β-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensation assay using purified recombinant KasA, palmitoyl-ACP and malonyl-ACP, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys77, His311, Lys330 and His343 to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulinen, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA.

Key words: acyl-carrier protein, cerulinen, fatty acid, type II fatty acid synthase.

MATERIALS AND METHODS

Strains, plasmids and media

Strains and plasmids used in the present study are shown in Table 1. Luria broth (Difco) and Luria agar containing 25 μg/ml kanamycin (Sigma) were used for the growth of Mycobacterium tuberculosis [6]. In addition, cerulinen, which possesses potent inhibitory properties when compared with in vitro KasA condensation activity. Thus KasA represents a prospective drug target yet to be examined in drug discovery programmes with the possibility of leading to novel chemotherapeutic agents targeting M. tuberculosis.

Abbreviations used: ACP, acyl-carrier protein; AcpM, ACP mycobacteria; C12, lauroyl; C14, myristoyl; C16, palmitoyl; DIG, digoxigenin; mtFabD, malonyl-ACP synthase I; FabH, β-ketoacyl-ACP synthase III; FAME, fatty acid methyl ester; FAS, fatty acid synthase; INH, isoniazid; Kas, β-ketoacyl-ACP synthase; MAME, mycolic acid methyl ester; MSG, Mycobacterium smegmatis; MTB, Mycobacterium tuberculosis.

1 The two authors contributed equally to this work.
2 Present address: INSERM U447, Institut Pasteur de Lille/IBL, Lille, France.
3 To whom correspondence should be addressed, at the present address: School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K. (g.besra@bham.ac.uk).

© 2002 Biochemical Society
37 °C. Recombinant Mycobacterium chelonae strains were grown under gentle shaking in a Sauton medium containing 120 µg/ml kanamycin at 30 °C. Middlebrook 7H10 agar supplemented with 10% (v/v) oleic acid/albumin/dextrose/catalase enrichment (Difco) was used for growth on solid media and plating transformations of mycobacteria. Selections for mycobacteria were performed using a solid medium containing kanamycin [25 µg/ml for M. smegmatis (3–4 days at 37 °C) or 120 µg/ml for M. chelonae (5–7 days at 30 °C)].

DNA manipulation, cloning and sequencing

Restriction enzymes and T4 DNA ligase were purchased from Boehringer Mannheim and Vent-DNA polymerase was purchased from New England Biolabs. All DNA manipulations were performed using standard protocols, as described by Sambrook et al. [11]. Analysis of plasmids from mycobacteria was achieved by electrodraction in E. coli [30]. The original M. tuberculosis kasA and kasB were isolated from M. tuberculosis H37Rv genomic DNA [10]. Analogous M. smegmatis genes were obtained by screening a genomic library of this organism consisting of a partial SallA library in pSK (a gift from K. Duncan, GlaxoSmithKline). The library was probed independently with M. tuberculosis kasA and kasB, labelled with digoxigenin (DIG)–dUTP. The PCR DIG Probe Synthesis Kit (Boehringer Mannheim) was used to label probes with the following specific primers. PCR amplification of M. tuberculosis kasA was performed using M. tuberculosis kasA in the presence of the upstream primer 5′-GTC AGC CCT CCA CCG CTA ATG-3′ and the downstream primer 5′-GGG AAT TCG TGC TTC AGT AAC G-3′, whereas amplification of kasB used the upstream primer 5′-GGG TAC CAC CAC TGG CGG GGA GTA GTG-3′ and the downstream primer 5′-GGG CGC CAA GCT TGT CAT CGC AGG TCT-3′. Prehybridization and hybridization were performed at 42 and 50 °C respectively using the DIG Easy Hyb buffer and detected using a DIG luminescence detection kit (Boehringer Mannheim) according to the manufacturer’s recommendations. DNA sequencing was performed using the T7 and T3 primers and overlapping clones chosen to reconstitute the entire M. smegmatis kasA-kasB sequence.

Cloning of M. smegmatis kasA and expression in M. smegmatis

PCR amplification of kasA was performed using M. smegmatis genomic DNA in the presence of the upstream primer P1 5′-TGA CCA GGC CCT TCC CTA CCG GGC GGT ACG-3′ and the downstream primer P2 5′-GGA ATT CCG TCC TGG CGG TAC AGC AGC TTC TGC-3′. P2 contains an EcoRI restriction site (underlined). The 1407 bp fragment corresponding to the kasA coding sequence was then digested by EcoRI and ligated into the previously MluI/EcoRI-restricted pMV261. The resulting plasmid, designated pMV261::kasA_MSG, was used to transform M. smegmatis.

Effect of KasA overexpression in relation to mycolic acid and fatty acid profiles in mycobacteria

[1,2,4]C]Acetate (1 µCi/ml, 50–62 mCi/mmol; Amersham, U.K.) was added to mid-log phase mycobacterial cultures, followed by a further 4–6 h incubation at 37 °C for M. smegmatis, or an additional 8 h incubation at 30 °C for M. chelonae. The [3H]-labelled cells were harvested by centrifugation at 2000 g and washed twice with PBS. The washed cells were then subjected to alkaline hydrolysis and methylation and the resulting mixture of fatty acid methyl esters (FAMES) and mycolic acid methyl esters (MAMEs) was further subjected to TLC/autoradiography as described previously [10].

Preparation of cytosolic enzyme fraction: FAS-I and FAS-II assays

The 40–80%, saturated ammonium sulphate precipitate, containing FAS-I and FAS-II activities, was collected after centrifugation and dissolved in 3 ml of buffer (100 mM potassium phosphate, pH 7.0/1 mM EDTA/1 mM dithiothreitol/5 mM MgCl2) and dialysed overnight as described previously [13]. FAS-I and FAS-II assays were performed as described previously [13].

Expression and purification of M. tuberculosis His-tagged KasA

KasA was amplified from genomic DNA isolated from M. tuberculosis H37Rv as described previously [10]. The 1260 bp PCR product was ligated into pET28a (Novagen) restricted with NdeI and filled-in with the Klno enzyme previously to create blunt ends. The DNA insert was sequenced to verify the absence of PCR artifacts. The resulting plasmid, designated as pET28a::kasA, was used to transform E. coli C41(DE3) [14]. An overnight pre-culture of C41(DE3) pET28a::kasA was used to inoculate 1 litre of Terrific Broth, which was incubated at 37 °C to an A600 = 1.2 and then induced with 1 mM isopropyl-β-D-thiogalactoside. Growth was continued for 12–16 h at 16 °C and the cells were harvested by centrifugation. The cell pellet was resuspended in a buffer (20 mM phosphate buffer, pH 7.4/0.5 M NaCl/100 mM imidazole) containing DNAse, RNAse, complete protease inhibitor-cocktail tablets (Roche) and 0.1 mg/ml of lysozyme (Sigma). Bacteria were disrupted and the resulting extract centrifuged at 27000 g for 60 min at 4 °C. The supernatant was collected and applied on to a Ni2+-charged His-Trap column (1 ml; Pharmacia). The column was washed extensively with 20 mM phosphate buffer, pH 7.4/0.5 M NaCl/100 mM imidazole and eluted with a stepwise gradient of imidazole (150, 200, 300 and 500 mM). Fractions (1 ml) were collected and the presence of KasA detected by SDS/PAGE [10 %, (w/v) gel]. Fractions containing pure KasA were pooled, dialysed against...
Expression and purification of *M. tuberculosis* AcpM and mtFabD (malonyl-CoA:ACP transacylase) in *E. coli*

Both acpM and mtFabD were cloned into pET28a, generating pET28a::acpM and pET28a::mtFabD respectively [15]. For overproduction of the recombinant proteins, vectors were then transformed into *E. coli* C41(DE3) and purification of recombinant holo-AcpM, C₁₆-AcpM and mtFabD was achieved using conditions described previously [15].

Site-directed mutagenesis of KasA

A series of site-directed mutants were obtained using pET28a::kasA as template for the QuickChange Site-Directed Mutagenesis Kit (Stratagene, Cambridge, U.K.) with the following primers: Cys¹⁷¹ mutated to Ala, 5'-GCC TGC AAC GCG GCC GGC ACG GCG ACG CCG GCC CGG CCT CGT CGG GCT CGG 3' and 5'-CCG AGC CCG ACG AAG CGG CCG ACA CCC GGG GGG 3'; His³⁷¹ mutated to Ala, 5'-GAC CAC TAC AAC GCG GCC GCC ACG ACC GCG ACG CCG and 5'-CGT CGC GGC GCC GCC GGT GCC GTT GAC GTG GTC 3'; Lys³⁷⁰ mutated to Ala, 5'-GCC GTG TAC GCC CCG CGG TCT CGG CGC GCC CAC CCG CAC-3' and 5'-GTC GCC GGC CAC-3'; His³⁷⁵ mutated to Ala, 5'-GAA GTG TGC GCC GGC CGC CTC GAT CGG CGC G-3' and 5'-CGC GCC GAT CGA GGC GCC CAG CGC AGA CT-3'. All mutant clones used for enzyme purification were verified by automated DNA sequencing.

Kas assay

Mycobacterial Kas assay was performed according to the condensation assays developed for *E. coli* Kas [16,17]. Initially, assay components were mixed together in a batch fashion. The amounts stated correspond to those of a single reaction, which was scaled up proportionately to the number of assays performed. Holo-AcpM (40 μg) was incubated on ice for 30 min with β-mercaptoethanol (0.5 μmol) in a total volume of 40 μl. [2-¹⁴C]Malonyl-CoA (6.78 nmol, 1.66 kBq; Amersham), mtFabD (40 ng) and 25 μl of 1 M potassium phosphate buffer, pH 7.0, were added. The reaction mixture was allowed to stand at 37 °C for 20 min to allow the mtFabD-catalysed transacylation of KasA alone, was added. A 10 μl aliquot of KasA (0.25 μg) was then added and the mixture kept at 37 °C for 1 h. The reaction mixture was quenched by the addition of 2 ml NaBH₄ reducing solution converting the β-keto-C₁₆-AcpM product into a C₁₆ keto compound. The reaction solution, which was prepared afresh, comprised 5 mg/ml NaBH₄ in 0.1 M K₂HPO₄, 0.4 M KCl and 30% (v/v) tetrahydrofuran [16,17]. The reaction was left at 37 °C for at least 1 h. The completely reduced β-ketoacetyl product was extracted two times with 2 ml of water-saturated toluene. The combined organic phases from both extractions were pooled and washed with 2 ml of toluene-saturated water. The organic layer was removed and dried under a stream of nitrogen in a scintillation vial. The reduced product was then quantified by liquid scintillation counting using 5 ml of EcoScintA (National Diagnostics, Hull, U.K.).

RESULTS

Overexpression of KasA from *M. tuberculosis* is associated with a decrease in α'-mycolate production

To address the question whether KasA participates in mycolate elongation, *M. smegmatis* was transformed with kasA from *M. tuberculosis* H37Rv. The effect of KasA overproduction on mycolic acid composition was then analysed by TLC after *in vivo* labelling of mycobacterial FAMEs and MAMEs with [1,2-¹⁴C]acetate. TLC analysis revealed a significant reduction of the α'-subclass in *M. smegmatis* overexpressing KasA (pMV261::kasA_A-MTB; MTB, *M. tuberculosis*) when compared with the control strain carrying the empty pMV261 (Figure 1A). In a compensatory fashion, overexpression of KasA led to an increase of α- and epoxymycolates (Figure 1A). To determine whether this effect was restricted only to *M. smegmatis* as a host or extended to other mycobacterial species, *M. chelonae* was transformed either with the control plasmid pMV261 or with pMV261::kasA_A-MTB.

As shown in Figure 1(B), overexpression of KasA in *M. chelonae* resulted in an increase of the α'/α- ratio. Similar results were also obtained when pMV261::kasA_A-MTB was used to transform *M. fortuitum* (results not shown), another fast-growing pathogenic mycobacterial species. These results suggest that overexpression of the *M. tuberculosis* KasA protein consistently increases the α'/α- ratio in different mycobacterial species, suggesting that KasA participates in the *in vivo* elongation process of the mycolytic chain. Although, α′-mycolic acids can be considered as precursors of the α-mycolic acids, it is not known why these precursors accumulate in some mycobacterial species, such as *M. smegmatis*. Possible explanations could be that KasA activity may be deficient in these species due to the absence of kasA, which seems unlikely, or possibly due to a defect in KasA expression or regulation. Therefore we cloned and sequenced the genetic locus surrounding the kasA gene from *M. smegmatis*.

Cloning of kasA and kasB from *M. smegmatis*

Recently, it has been demonstrated that two other genes, mabA (*β*-ketoacyl-ACP reductase) and inhA (enoyl-ACP reductase) are involved in mycolic acid biosynthesis and constitute a single operon in *M. tuberculosis* and *M. bovis* BCG [18]. In contrast, in *M. smegmatis*, mabA and inhA are transcribed independently [18]. In *M. tuberculosis*, kasA and kasB belong to the same operon, as depicted in Figure 2(A). However, whether kasA and kasB belong to the same operon or to separate transcription units in *M. smegmatis* is not known. This was investigated by probing a *M. smegmatis* genomic library with *M. tuberculosis* kasA and kasB. Overlapping plasmids were analysed by restriction analysis and DNA sequencing, allowing us to determine the sequences of kasA and kasB as well as partial DNA regions of the adjacent genes. Interestingly, the kasA open-reading frame from *M. tuberculosis* and *M. smegmatis* display exactly the same length (1248 bp, 416 amino acids), whereas the kasB open-reading frame from *M. smegmatis* is shorter (1251 bp, 417 amino acids) than its *M. tuberculosis* counterpart (1314 bp, 438 amino acids). The DNA region between the end of kasA and the beginning of kasB from *M. smegmatis* (29 bp) was similar to that of *M. tuberculosis* (30 bp). This indicates that, in contrast with mabA and inhA, kasA and kasB are adjacent genes that belong to the same transcriptional unit in both *M. tuberculosis* and *M. smegmatis*. Moreover, sequence analysis revealed that kasA was located directly downstream of the ACP gene (acpM), whereas kasB was found directly upstream of accD encoding an

© 2002 Biochemical Society
acetyl-/propionyl-CoA carboxylase. Except for mtfabD (the first gene of the operon in \textit{M. tuberculosis}, encoding a malonyl-CoA-AcpM transacylase [15]), which has not been sequenced in the present study, our results (not shown) suggest a full conservation of the operon organization in \textit{M. smegmatis}. Further, we investigated whether the \textit{M. smegmatis} KasA protein was active \textit{in vivo} in elongating \(\alpha\)-mycolic acids to \(\alpha\)-mycolic acids.

Alteration of the mycolic acid profile in mycobacteria overexpressing KasA from \textit{M. smegmatis}

Given the well-conserved genomic organization of the operon in \textit{M. tuberculosis} and \textit{M. smegmatis} and the high homology of KasA in both species, overexpression of KasA from \textit{M. smegmatis} would probably have the same effect as overexpression of the \textit{M. tuberculosis} KasA. Indeed, as shown by TLC analysis in Figure 1(C), \textit{M. smegmatis} overexpressing its homologous gene (pMV261::\textit{kasA}_\textit{MSG}) presents a significant reduction of the \(\alpha\)-subclass when compared with the control strain (pMV261). This indicates that KasA produced in \textit{M. smegmatis} exhibits the same activity as its \textit{M. tuberculosis} counterpart. Thus KasA participates in \textit{in vitro} meromycolate chain extension.

FAS-II activity in a KasA-enriched cytosolic fraction

We have shown previously that KasA was present in the 40–80 \%\)-saturated ammonium sulphate fraction isolated from \textit{M. bovis} BCG overexpressing KasA [10]. When the enriched fraction derived from \textit{M. smegmatis} pMV261 was assayed for fatty acid elongation under conditions that were physiologically relevant, the optimum reaction conditions were obtained in the presence of \(C_{14}\)-CoA and \(C_{16}\)-CoA, presumably following transacylation to AcpM. This is consistent with the fact that KasIII (mtFabH), which is the pivotal link between the FAS-I and FAS-II in mycobacteria [7], possesses a clear preference for \(C_{15}\)-CoA and \(C_{16}\)-CoA. The former substrates are converted by mtFabH followed by a complete cycle of FAS-II into \(C_{16}\)-ACP and \(C_{16}\)-ACP respectively, the preferred substrates for further elongation via KasA and FAS-II. It is clear that FAS-II has a diminished preference for long-chain acyl-ACP substrates (\(C_{18}\) or \(C_{16}\)), and almost no specificity for short-chain acyl-ACPs (Figure 3) following \textit{in vitro} transacylation to AcpM. The FAS-II elongation activity was also assessed with the enriched cytosolic fraction isolated from \textit{M. smegmatis} (pMV261::\textit{kasA}_\textit{MTB}) under conditions that were physiologically relevant. As shown in Figure 3, although the substrate specificity was conserved, the specific activity was enhanced significantly regardless of the primer used. This indicates that KasA produced in \textit{M. smegmatis} is active enzymically and represents a key enzyme within FAS-II. To characterize the compounds synthesized by FAS-II, FAMEs were analysed by \(C_{18}\) reversed-phase TLC. The inset (Figure 3) illustrates the chain-length distribution of the FAMEs produced for primers \(C_{15}\)-CoA/ACP and \(C_{14}\)-CoA/ACP and shows that the yield decreases sharply with increasing chain length, an observation also made by others [19].

Evidence that kasA encodes a Kas sensitive to cerulenin

The first step of chain elongation in fatty acid biosynthesis is the condensation of an acyl group, bound to ACP, with malonyl-ACP catalysed by a Kas. To determine directly the nature of the enzyme activity encoded by \textit{kasA}, we have produced the key recombinant proteins, holo-AcpM, \(C_{15}\)-AcpM, mtFabD and KasA, in \textit{E. coli} to develop an \textit{in vitro} elongation-condensation assay. We were able to obtain the pure enzyme by loading the clarified soluble lysate on to a Ni\(^{2+}\)-charged His-Trap column. KasA was obtained as a pure protein migrating at approx.
Mycobacterial \(\beta\)-ketoacyl-acyl-carrier protein synthase A

45 kDa, which is in agreement with the theoretical molecular mass.

When incubated together with other key components, KasA elongated C\(_{16}\)-AcpM via a condensation reaction with [\(^{2-13}\)C]-malonyl-AcpM, which was generated by the action of mtFabD on holo-AcpM and [\(^{2-13}\)C]malonyl-CoA. Within the linear range of a KasA dose–response curve, we observed a specific activity of 96 nmol/min\(^{-1}\) mg\(^{-1}\) for the elongation–condensation reaction (Figure 4A). To test the specificity of KasA with regard to acylated primers (CoA versus AcpM), we compared its activity

© 2002 Biochemical Society
against cerulenin, it was suggested that the KasA in M. tuberculosis may be a target for cerulenin. It was thus reasonable to assume that cerulenin may also inhibit FabB and FabF, has also been well documented for cerulenin [4].

In this regard, we report in the present study an Elongation activity of the KasA mutants

We have shown previously that cerulenin exhibits potent in vivo anti-mycobacterial action [10]. Although overexpression of KasA in M. bovis BCG did not generate an increased resistance against cerulenin, it was suggested that the in vivo anti-mycobacterial activity of cerulenin was primarily via inhibition of earlier events catalysed by de novo FAS-I, thus masking inhibition of FAS-II. In this regard, we report in the present study an in vitro IC₅₀ value of 20 μg/ml (results not shown), for crude cytosolic M. smegmatis FAS-I preparations. Earlier studies have shown that cerulenin is a potent inhibitor of both FAS-I and FAS-II systems [20]. In addition, the in vitro inhibition of the E. coli Kas, FabB and FabF, has also been well documented for cerulenin [4]. It was thus reasonable to assume that cerulenin may also inhibit the β-ketoacyl-AcpM synthase activity of KasA. Increasing concentrations of cerulenin were added to the in vitro condensation assay. As shown in Figure 4(B), a marked dose-response inhibition of KasA activity was observed with cerulenin providing an IC₅₀ value of 0.15 μg/ml (0.67 μM). The IC₅₀ values of the purified E. coli Kas proteins were reported as 3 and 20 μM for FabB and FabF respectively [21], suggesting that the mycobacterial condensing enzyme is more susceptible to cerulenin inhibition in vitro than the related E. coli enzymes.

Elongation activity of the KasA mutants

Sigggaard-Anderson has identified a number of conserved amino acid residues in the E. coli FabB protein [22]. For instance, Cys¹⁶⁵ constitutes the active-site residue. Other residues, such as His²⁹⁹, Lys³²⁸ and His³³² were also identified and when replaced by Ala, decarboxylation and the overall elongation activity were abolished completely, suggesting the importance of these amino acids in catalysis of Kas-related proteins. The alignment presented in Figure 2(B) shows that these residues are also highly conserved in the KasA and KasB proteins, in both M. smegmatis and M. tuberculosis. In addition, we recently presented a structural model of the M. tuberculosis KasA generated by computing analysis based on the determined X-ray structure of the E. coli FabB protein by Huang et al. [23]. The three-dimensional structural model showed Cys¹⁷¹, His³¹¹, Lys³¹⁰ and
His345 as part of the active site of KasA [10]. Site-directed mutagenesis was used to determine the role of these four residues in KasA activity by replacing them individually by alanine. The mutated KasA proteins were purified and CD-spectral analysis was performed, which is comparable with wild-type KasA (results not shown). KasA activity of all the mutant proteins (mutated at Cys171, His311, Lys310 and His345 to Ala) was abolished (Figure 4A), confirming the importance of these amino acids in KasA activity.

DISCUSSION

Kas of the type II system belongs to an important family of condensing enzymes that are related both structurally and functionally. They play key roles in the biosynthesis of fatty acids, polyketides and mycolic acids in mycobacteria [10,24]. In *E. coli*, KasIII (FabH) catalyses the elongation of an acetyl-CoA primer by malonyl-ACP [4,25]. In contrast, KasI (FabB) and KasII (FabF) only utilize acyl-ACP primers for elongation by malonyl-ACP [4,26]. Analysis of the *M. tuberculosis* genome database shows that there are only three potential Kas enzymes [24]. We have shown previously that FabH from *M. tuberculosis* corresponds to the *E. coli* KasIII enzyme (FabH), although it shows high-substrate specificity for C\textsubscript{11}-CoA and C\textsubscript{14}-CoA but not acetyl-CoA, and has been proposed as the critical enzyme that produces the primers following a complete cycle of elongation catalysed by FAS-II, presumably for KasA [7].

Mdluli et al. [6] have shown that isoniazid (INH) treatment of *M. tuberculosis* inhibits mycolic acid synthesis and is accompanied by a marked up-regulation of both AcpM and KasA, which are linked genetically. They also proposed KasA to be an INH target in *M. tuberculosis*, on the basis of the detection of an interaction between INH and AcpM. A recent study [10] suggests that KasA belongs to FAS-II and participates in mycolic acid biosynthesis. Therefore due to the importance of the FAS-II elongation process and the possible participation of KasA in relation to INH inhibition [6], we have initiated a number of studies to determine the role of KasA in mycolic acid biosynthesis. First, we examined the *in vivo* influence of KasA on mycolate production (\(\alpha\) versus \(\alpha'\)). Secondly, we analysed *in vitro* its overall effect on FAS-II activity within an enriched cytosolic protein fraction. Furthermore, we have defined its precise enzymic activity in a classical condensation assay using highly purified recombinant KasA, as well as its sensitivity to cerulenin, a well-known Kas inhibitor [4].

Overexpression of KasA from *M. tuberculosis* was associated *in vivo* with a decrease in \(\alpha'\)-mycolate production and a concomitant increase in \(\alpha\)-mycolates, both in *M. smegmatis* and in *M. chelonae*, suggesting that KasA is able to elongate the short \(\alpha'\)-chain into full-length meromycolates. To investigate whether the presence of \(\alpha'\)-mycolates in *M. smegmatis* was due to either the absence of the kasA-coding sequence, or the presence of an enzyme probably with reduced elongation activity, via aberrant mutations, we subsequently identified, cloned and expressed *kasA* from *M. smegmatis*. Overproduction of KasA-MSG in *M. smegmatis* resulted in similar changes in the \(\alpha/\alpha'\) ratio. The presence of \(\alpha'\)-mycolates in some mycobacterial species cannot be inferred by the absence of kasA, or by an alternation of KasA activity via point mutations, since it was very similar to KasA-MTB. The \(\alpha'\) composition may be simply due to different regulation levels of kasA expression and/or of other genes involved in the mycolic acid biosynthetic pathway in *M. smegmatis*. Furthermore, by analysis of the FAS-II activity of the cytosolic fraction of *M. smegmatis* using a set of acyl primers ranging from C\textsubscript{2} to C\textsubscript{20}-CoA, we observed (following transacylation to AcpM) that FAS-II activity was optimal with C\textsubscript{11}/C\textsubscript{14}-acyl-CoA/AcpM precursors. Interestingly, these substrates are the major products produced by mtFabH [7]. By comparing the FAS-II activity with a recombinant strain overproducing KasA, we found that although the same substrate preference was followed, the specific activity was enhanced significantly. This suggests that KasA is part of the mycobacterial FAS-II system.

Although KasA was produced in large amounts in different expression systems, it was always found to be highly insoluble (results not shown). We describe an expression system and culture conditions that allow the generation of soluble KasA in the present study. Recombinant KasA purified under non-denaturing conditions was assayed and found to catalyse the transfer of a two-carbon unit from \(^{14}\)C-malonyl-ACP to C\textsubscript{14}-AcpM, thus confirming KasA as a condensing enzyme involved in FAS-II and meromycolate extension. To improve our understanding of the catalytic site of KasA, Cys\textsubscript{171}, His\textsubscript{311}, Lys\textsubscript{310} and His\textsubscript{345} were mutated. All mutations abrogated the enzymic activity, suggesting that these residues play a critical role in condensation activity mediated by KasA. Mutations in KasA (mutated at Asp394 to Asn, Gly398 to Ser, Gly311 to Ser and Phe313 to Leu), which also correlate with low levels of INH resistance, are supposed to inhibit the formation of a trimolecular complex consisting of KasA, INH and AcpM [6]. Interestingly, these mutations do not reside within the catalytic site [10], suggesting that, when compared with INH susceptibility/resistance, these mutations may rather influence the degree of binding of the acyl-AcpM or the stability of the KasA dimer. Clearly, the generation of substrates, such as C\textsubscript{14}-AcpM and purified KasA, now allows the possibility to study key interactions between KasA and long-chain acyl-ACP\'s, in addition to how these mutations affect the KasA-INH-AcpM complex [10].

The type II Kas enzymes are commonly separated into two classes based on their sensitivity to cerulenin. In *E. coli*, cerulenin binds irreversibly to Kas proteins [4]. The mechanism of inhibition involves covalent cross-linking of the Kas active-site cysteine to cerulenin. The crystal structures of the FabB and FabF active sites [21,23,27,28] show that a hydrophobic binding pocket is present and occupied by the inhibitor. Structural analyses of Kas-cerulenin complexes suggest that cerulenin mimics the transition state of the condensation reaction effectively [21]. Cerulenin-sensitive Kas enzymes have a catalytic triad, which in FabB consists of Cys393, His398 and His315 [21]. Protein alignments among FabB, FabF and KasA reveal a full conservation of these three residues [10], which may explain the sensitivity of KasA to cerulenin. In contrast, mtFabH, another Kas, has been shown to be resistant to cerulenin [7]. Altogether, this work and the recent studies by Schaeffer et al. [29] contribute to the understanding of the condensation-reaction mechanism mediated by KasA leading to mycolic acids via the cascade of FAS-II and now allows us to explore the development of new anti-mycobacterial agents that target this key condensation step in *M. tuberculosis*.

This work was supported by The Medical Research Council (G9901077 and G9901075), the National Cooperative Drug Discovery Groups (for the Treatment of Opportunistic Infections (NCDDG-OI), NIAID, NIH (AI-38087). G.S.B. is currently a Lister Institute Jenner Research Fellow.

REFERENCES

© 2002 Biochemical Society
Escherichia coli
Kremer, L., Nampoothiri, K. M., Lesjeans, S., Dover, L. G., Graham, S., Belts, J.,
Biochem. 64, 29–63
Bloch, K. (1977) Control mechanisms for fatty acid synthesis in
McGill, K., Slayden, R. A., Zhu, Y. D., Ramaswamy, S., Pan, X., Mead, D., Crane,
tuberculosis β-ketoacyl ACP synthase by isoniazid. Science 280, 1607–1610
substrate specificity of β-ketoacyl (acyl carrier protein) synthase III (mtFabIII) from
Mycobacterium tuberculosis. J. Biol. Chem. 275, 28201–28207
Biosynthesis. In Molecular Genetics of Mycobacteria (Hatfull, G. F. and Jacobs,
Mycobacteria. A Source Book (Kubic, G. P. and Wayne, L. G., eds.), pp. 315–344,
Marcel Dekker, New York
Kremer, L., Douglas, J. D., Baulard, A. R., Morehouse, C., Guy, M., Alland, D., Dover,
related analogues as novel anti-mycobacterial agents targeting KasA and KasB
condensing enzymes in Mycobacterium tuberculosis. J. Biol. Chem. 275, 16857–16866
Laboratory Manual, 2nd edn, Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York
plasmid analysis by electrduction between Mycobacterium spp. and
Escherichia coli K-12. J. Biol. Chem. 267, 6807–6814
Crystal structure of the β-ketoacyl-acyl carrier protein synthase II from E. coli reveals
the molecular architecture of condensing enzymes. EMBO J. 7, 1183–1191
Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon,
S. V., Emlgermeier, K., Gas, S., Barry, III, C. E. et al. (1998) Deciphering the biology of
Mycobacterium tuberculosis from the complete genome sequence. Nature (London)
393, 537–544
Tsai, J. T., Oh, W., Larson, T. J., Jackowski, S. and Rock, C. O. (1992) Isolation and
characterization of the β-ketoacyl-acyl carrier protein synthase III gene (fabH) from
Escherichia coli K-12. J. Biol. Chem. 267, 6807–6814
Olsen, J. G., Kadziola, A., von Wettstein-Knowles, P., Siggaard-Anderson, M.,
of the complex between the antibiotic cerulenin and its target, β-ketoacyl-acyl
carrier protein synthase. J. Biol. Chem. 274, 6031–6034
Schaeffer, M. L., Agnihotri, G., Volker, C., Kallender, H., Brennan, P. J. and Lonsdale,
276, 47029–47037
Isolation and characterization of efficient plasmid transformation mutants of
Slover, C. K., de la Cruz, V. F., Fuerst, T. R., Burlein, J. E., Benson, L. A., Bansal,

Received 6 November 2001/30 January 2002; accepted 26 March 2002