Modulation of the electrostatic charge at the active site of foot-and-mouth-disease-virus leader proteinase, an unusual papain-like enzyme

Petra SCHLICK, Jakub KRONOVETR, Bernhard HAMPOELZ\(^1\) and Tim SKERN\(^2\)

Institute of Medical Biochemistry, Division of Biochemistry, University of Vienna, Dr. Bohr-Gasse 9/3, A-1030 Vienna, Austria

INTRODUCTION

Papain, a proteinase with broad specificity from the papaya plant (*Carica papaya*), is the prototype of the cysteine-proteinase superfamily [1]. Its structure and catalytic mechanism have been intensively studied [2,3], as the findings can be applied to other cysteine proteinases of medical importance. Examples of such proteinases include the caspases and cathepsins, as well as proteinases from viral and bacterial pathogens.

A viral representative of the papain-like cysteine proteinase family is the leader proteinase (*L*\(^\text{pro}\)) of foot-and-mouth-disease virus (FMDV) [4,5]. This virus possesses a single-stranded RNA genome of positive polarity; the genetic information is expressed via an internal ribosomal entry site (IRES) [12]. Translation of viral mRNA is unaffected, as it initiates internally via an internal ribosomal entry site (IRES) [12].

The low overall amino acid identity (around 15%) between *L*\(^\text{pro}\) and papain indicated a distant relationship between the enzymes [4]; nevertheless, recent three-dimensional structure analysis of the *Lb*\(^\text{pro}\) form has indeed confirmed that it possesses a papain-like fold, but with an extended C-terminal domain, with the active-site residues positioned on opposite sides of a cleft separating the two domains [14].

The active-site residues are a nucleophilic cysteine (Cys\(^\text{pro}\) in *L*\(^\text{pro}\), Pap-Cys\(^\text{pap}\) in papain) and a histidine (His\(^\text{pro}\), Pap-His\(^\text{pap}\)). The generation of a thiolate–imidazolium ion-pair between these two residues was thought to be sufficient for papain-like enzymes to catalyse proteolysis. Recently, however, evidence has accumulated that this ion-pair can exist at pH values at which the enzyme is not active [15–18] and that deprotonation of another histidine residue is required for papain-like enzymes to become catalytically competent. Several groups have investigated, by site-directed mutagenesis, residues in papain and related enzymes such as caricina (another proteinase from papaya) and ananain [from *Ananas comosus* (pineapple)] in an attempt to understand the importance of the electrostatic environment to catalysis and to pinpoint single residues which can confer catalytic competence [18–21].

To date, however, such residues have not been un-

Abbreviations used: AMPSO, 3-[(1,1-dimethyl-2-hydroxyethyl)amino]-2-hydroxypropanesulphonic acid; Caps, 3-(cyclohexylamino)propan-1-sulphonic acid; AMC, 7-amino-4-methylcoumarin; eIF, eukaryotic initiation factor; FMDV, foot-and-mouth-disease virus; IRES, internal ribosomal entry site; *L*\(^\text{pro}\), leader proteinase; Pap-Cys (etc.), papain residue Cys (etc.); RRL, rabbit reticulocyte lysate; D163N (etc.), Asp\(^\text{pro}\) substituted with asparagine and lysine. The double mutant protein in which both aspartate residues were replaced by asparagine was most severely affected; it failed to complete either self-processing or eIF4GI cleavage within 3 h, compared with the 8 min required by the wild-type enzyme. Hence, we propose that the electrostatic charge of Asp\(^\text{pro}\)\(163\), and to a lesser extent that of Asp\(^\text{pro}\)\(164\), is extremely important for *L*\(^\text{pro}\) to attain full activity upon synthesis.

Key words: enzyme mechanism, cysteine proteinase, ion-pair, RNA virus, translation initiation.
ambiguously identified and the importance of the electrostatic environment has not been clarified [20,21].

Significant differences in the electrostatic environments of the active sites of Lbpro and papain were suggested on comparison of their pH profiles [22]. When measured on the same hexapeptide substrate, papain becomes active above pH 4, whereas the Lbpro remained inactive until pH 7. In contrast, the Lbpro still possessed 50\% activity at pH 10, whereas papain retained 50\% activity at pH 9 and about 20\% activity at pH 10 [22]. Close scrutiny of the active sites of Lbpro and papain did indeed reveal significant differences [13]. Thus Lbpro has two acidic residues, Asp54 and Asp44, close to the active site; their carboxylate groups are within 6 Å and 4 Å respectively of the C6 atom of the active nucleophile [22] (note: 1 Å = 0.1 nm). The equivalent residues in papain are Pap-Asn175 and Pap-Ser174 and are conserved in almost all papain-like enzymes [23]; therefore the environment of the thiolate–imidazolium ion-pair is much more negatively charged in the Lbpro than in papain and its close relatives caracain and ananain.

This difference made the Lbpro an interesting target for investigating the electrostatic environment in a papain-like enzyme. In addition, there were several other reasons justifying a mutational analysis of Asp163 and Asp164 and a determination of their influence on Lbpro activity. First, Asp163 and Pap-Asn175 are the residues orienting the catalytic histidine residue in Lbpro and papain; this raises the question why Lbpro is the only papain-like enzyme to require an aspartate residue for this task. Secondly, both Asp163 and Asp164 are involved in networks of hydrogen bonds which are not found in papain ([13]; Figure 1). Finally, Asp164 has also been proposed to play a role in binding the arginine residue of the P1\textdagger position of the eIF4GI substrate [13].

The present study investigated the effect of replacing the key residues, Asp163 and Asp164, on the activity of the Lbpro form of FMDV VP4\textsubscript{pro}; activity was monitored using two native polypeptide substrates as well as a synthetic oligopeptide.

Figure 1 A stereo view of the network of hydrogen bonds around Asp164

To ensure that all hydrogen bonds are clearly seen, the drawing is rotated compared with that in [13] along the axis of the main \alpha-helix so that Asp164 is at the bottom. Drawings were generated using MOLSCRIPT [32,33] and were rendered using raster3D [34]. Hydrogen bonds are shown by dotted lines and water molecules by small spheres.

MATERIALS AND METHODS

Plasmids

The plasmid pET11d Lbpro contains the FMDV nts 892–1411 of the FMDV serotype O1\textsubscript{x} cDNA followed by two stop codons, cloned into the NcoI and BamHI restriction sites of the T7 polymerase expression vector pET11d (Novagen). Upon induction, the mature Lbpro (FMDV amino acids 29–201) is expressed. The plasmid pCITE FMDV LbproVP4VP2 (encoding the mature Lbpro, all 85 amino acids of VP4 and 78 amino acids of VP2) was described in [24].

DNA manipulations

DNA fragments containing the desired mutations were generated using standard PCR techniques. The mutated fragments were then cleaved with the appropriate restriction enzymes and used to replace the wild-type fragments in the bacterial expression vector pET11d Lbpro. The correctness of the constructions was confirmed by DNA sequencing. The mutated fragments were introduced as required by subcloning into the plasmid pCITE FMDV LbproVP4VP2.

Protein expression and enzymic assays

Lbpro wild-type and mutants were expressed in Escherichia coli BL21(DE3) LysS and purified to homogeneity as described in [9]. Enzymic assays using the fluorescent hexapeptide VQRKLK-7-amino-4-methylcoumarin (VQRKLK-AMC), which corresponds to the six C-terminal residues of Lbpro coupled to the carboxy group of AMC, to determine the specificity constant \(k_{cat}/K_{m}\) and pH profiles were performed exactly as described in [22,25]. Briefly, measurements were performed on a Kontron SF-25 fluorimeter by monitoring the fluorescence of AMC (\(\lambda_{ex}=380\) nm; \(\lambda_{em}=460\) nm) released during hydrolysis of the substrate. Prior to the enzymic reaction, the response of the fluorimeter was calibrated by using AMC at the indicated substrate concentration. For standard assays (1 ml) used to determine the specificity constant and pH profiles, reaction mixtures consisted of 0.05 M buffer (unless otherwise stated, AMPSO \(3\left\{1,1\text{-dimethyl}-2\text{-hydroxyethyl}\right\}\text{aminol}-2\text{-hydroxypropanesulphonic acid} \left\{\Sigma\text{ammonia}\right\}\text{at pH 9.1}\right\}, 1\text{mM cysteine, 1 mM EDTA and purified wild-type or mutant Lb}^{\text{pro}}\text{ at a final concentration of 2 \mu g/ml. After a 2 min equilibration period,
reactions were started by addition of the hexapeptide substrate VQRKLK-AMC to 10 \mu{M}. The dependency of activity on pH was measured using the following buffers: sodium citrate, pH 3.2 and 4.76; Mes, pH 6.0; sodium phosphate, pH 6.86; Bis, pH 7.1; Hepes, pH 7.53; Tricine, pH 8.1; Taps, pH 8.4; AMPSO, pH 9.1; glycine/NaOH, pH 9.75; 3-(cyclohexylamino)propane-1-sulphonic acid (Caps), pH 10.4, 10.8 and 11.6. As each buffer was only used at its pK value, the effect of changes in the univalent-cation concentration could be minimized. The pH of each reaction was verified immediately after measurement.

In vitro transcription and translation

Plasmids were linearized with SalI. In vitro transcription with T7 RNA polymerase and in vitro translation in rabbit reticulocyte lysates (RRLs) were as described in [24,26], using [35S]methionine as the only radiolabelled amino acid. In vitro translation reactions (typically 50 \mu{l}) contained 70 \% RRL (Promega), 20 \mu{Ci} of [35S]methionine (1000 Ci/mmol; obtained from the American Research Company through Humos Diagnostika G.m.b.H., Salzburg, Austria) and amino acids (except methionine) at 20 \mu{M}. After preincubation for 2 min at 30°C, translation was started by addition of RNA to a typical concentration of 10 ng/\mu{l}. Aliquots (10 \mu{l}) were removed at the designated time points and the reaction was stopped by immediate transfer to ice, the addition of unlabelled methionine and cysteine to a final concentration of 2 mM and Laemmli sample buffer.

Electrophoresis and immunoblotting

PAGE was used to separate translation products (gels contained 15 \% acrylamide) and to monitor the state of eIF4GI (gels contained 6 \% acrylamide). Translation products were detected by fluorography (exposure to film was for 15 h unless otherwise stated); the state of eIF4GI was determined by immunoblotting using the anti-(eIF4GI peptide 7) antiserum as described in [24,26].

Quantification of protein synthesis

Quantification of protein synthesis using an Instant Imager (Canberra-Packard G.m.b.H., Dreieich, Germany) was as described previously, except that calculations were adjusted for the use of [35S]methionine alone [24,26]. Briefly, radioactivity in a particular band in the dried polyacrylamide gel was counted. By taking into account the counting efficiency (0.8 \%), the specific radioactivity of the methionine in the assay (163 d.p.m./fmol), the number of methionine residues in Lbpro (19.8 kDa), the amount of protein present in a particular band can be estimated.

RESULTS

Mutagenesis of Asp163 and its hydrogen-bonding partners Tyr168 and Lys144

To investigate the contribution of the electrostatic charge of Asp163 on Lbpro activity, site-directed mutagenesis was employed to replace Asp163 with asparagine (D163N). Asparagine was chosen as it not only removes the electrostatic charge, but is also the residue found in almost all other papain-like enzymes except Lbpro at this position. In addition, two residues which form a hydrogen-bond network with Asp163 were also mutated [13]; Tyr168 was replaced with phenylalanine (Y168F), and Lys144 with glutamine (K144Q). Phenylalanine was selected to remove the hydrogen-bonding capability of Tyr168 and glutamine to remove the charge on Lys144. As the equivalent residues in other papain-like enzymes are both hydrophobic (Pap-Ile188 and Pap-Leu134), this network appears to be unique to the Lbpro.

The mutations were initially introduced into the bacterial expression vector for mature Lbpro, pET11d Lbpro. Following induction by the addition of isopropyl \-
1-thiogalactoside, the Lbpro molecules were purified to homogeneity as described in the Materials and methods section. The activity of the mutant proteins was then measured using the fluorescent hexapeptide VQRKLK-AMC as substrate, as described in [22]. As it was not possible to carry out an active-site titration using trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (‘E-64’), a characteristic inhibitor of papain-like enzymes, the values must, however, be treated with caution, as they may be influenced by differences in the amount of active protein. The greatest reduction is a five-fold one with the D163N mutant protein.

Table 1

<table>
<thead>
<tr>
<th>Lbpro mutants</th>
<th>10 (\times) Specificity constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lbpro wild-type</td>
<td>2.16, 2.65*</td>
</tr>
<tr>
<td>Lbpro K144Q</td>
<td>2.59</td>
</tr>
<tr>
<td>Lbpro D163N</td>
<td>0.55</td>
</tr>
<tr>
<td>Lbpro Y168F</td>
<td>1.38</td>
</tr>
</tbody>
</table>

* Values for the wild-type are from two different preparations.

1 Specificity constants of Lbpro mutants

Lbpro activity was determined using the fluorescent hexapeptide VQRKLK-AMC as substrate, as described in the Materials and methods section. Values represent an average of three independent measurements for the wild-type (wt; ○) and the D163N mutant protein (□) and of two for the Y168F (■) and K144Q (△) mutant proteins. For comparison, the pH profile of papain measured on the same substrate [22] is shown (●). Abbreviation: rel., relative.
activity of Lbpro was reduced by about 50\% upon increasing the concentration of NaCl from 0 to 25 mM. Examination of the three mutant proteins with respect to the concentrations of uni- or bi-valent cations revealed no differences in behaviour compared with that of the wild-type enzyme (results not shown).

To confirm that the electrostatic charge on Asp163 was not essential for Lbpro activity, we decided to investigate the effect of the mutations on self-processing and the cleavage of eIF4GI, which is naturally present in the RRLs [24,26]. To this end, the mutated cDNA fragments were introduced into pCITE LbproVP4VP2 and the corresponding RNAs transcribed. Following in vitro protein synthesis in RRLs, 35S-labelled proteins were detected by fluorography (Figure 3A) and the state of endogenous eIF4GI in the RRL by immunoblotting (Figure 3B).

Upon translation of the pCITE LbproVP4VP2 RNA, three labelled proteins are visible. These are the unprocessed LbproVP4VP2 and the products of self-processing, Lbpro and VP4VP2. As self-processing is highly efficient in this system, the amount of unprocessed LbproVP4VP2 is low. The intensity of the processed products differs because the Lbpro moiety contains four methionine residues, whereas the VP4VP2 moiety has only two.

The presence of the mutations D163N and Y168F both slowed the self-processing activity of the Lbpro (Figures 3A and 3C), whereas the level of self-processing with the mutant K144Q was indistinguishable from that of the wild-type. As with the assay of the purified protein mutants using the hexapeptide substrate, the presence of the D163N mutation leads to a small, but significant, reduction in activity.

The effect of the mutations on the cleavage of eIF4GI is shown in Figure 3(B). eIF4GI is a molecule which migrates on SDS PAGE as a series of bands of molecular mass about 220 kDa. Upon cleavage by Lbpro, the molecule is split into the N-terminal...
Mutagenesis of foot-and-mouth-disease-virus leader proteinase

Figure 4 Detailed comparison of the self-processing and eIF4GI cleavage kinetics of Lbpro wild-type and D163N mutant protein

RRLs were incubated with or without the indicated mRNAs (7 ng/μl). Analysis of protein synthesis (A) and the state of eIF4GI (B) was as described in Figure 3. Note that the fluorogram in (A) was overexposed [22] to enable the unprocessed bands to be clearly seen.

(cp\textsubscript{N}, a series of fragments from 100 to 130 kDa) and C-terminal (cp\textsubscript{C}, a single fragment of 100 kDa) cleavage products [27]. In these experiments, detection was performed with an antiserum raised against an oligopeptide from the N-terminal portion of eIF4GI, so that only the uncleaved protein and the N-terminal cleavage products are observed.

With the wild-type Lbpro, cleavage of eIF4GI takes place between 4 and 8 min. Almost identical kinetics of eIF4GI cleavage are observed with all three mutant enzymes, even though self-processing had been impaired in two of them (Figure 3B).

To further investigate these effects, a translation experiment was performed with a lower RNA concentration over a longer time scale (Figure 4). Under these conditions, the impairment of self-processing with the D163N mutant protein is clearly visible; at the 8 min time point, uncleaved precursor represents over 50\% of the synthesized material, in marked contrast with the wild-type (Figure 4A). In contrast, cleavage of the eIF4GI substrate is almost identical for wild-type and mutant (Figure 4B). The results of such an experiment with the other mutant proteins confirmed the wild-type behaviour of K144Q and a slight reduction in self-processing in Y168F (results not shown).

Importance of the residue Asp164 for the activity of the Lbpro

To investigate and define the role(s) of Asp164, we carried out site-directed mutagenesis to replace it with alanine, asparagine, and lysine respectively. The double mutant D163N/D164N was also engineered to investigate the effect of removing both negative charges from the active site. The mutations were introduced into both the bacterial (pET) and RRL (pCITE) expression vectors.

The mutant proteins were first expressed in bacteria and purified to homogeneity. During expression of the active Lbpro, bacterial growth is normally slowed. However, during the expression of all four mutant proteins, the bacteria grew much more rapidly than those expressing the wild-type Lbpro or those containing the single changes at position Asp162, Tyr165 or Lys164 (results not shown). This suggested that the Asp164 mutant proteins had a much reduced activity compared with that of the wild-type. This was confirmed by the peptide assays, as no activity could be found for any of the mutants, even though experiments were performed in which as much as ten times more protein was included in the assays than in those with the wild-type (results not shown).

The effect of the mutations on self-processing and eIF4GI cleavage was then assayed using the RRL system (Figure 5 and Table 2). The presence of each of the mutations dramatically delayed the onset and rate of both self-processing and eIF4GI cleavage when compared with the wild-type enzyme (compare Figures 4 and 5). After 8 and 12 min, self-processing of the wild-type Lbpro had reached 76 and 89\% respectively (Figure 3A and Table 1); eIF4GI cleavage started at 4 min and was complete by 8 min. In contrast, for each of the D164 mutant proteins, uncleaved precursor constituted the major translation product until 12 min (D164A) or even later for the other mutant proteins (Figures 5A and 5C); eIF4GI cleavage began at 8 min with the D164A and D164N mutant proteins and at 20 min with the D164K mutant protein (Figures 5B and 5D). With the double mutant, cleavage of eIF4GI did not commence until 60 min. Once initiated, however, the rates of cleavage of both substrates by the mutant enzymes did not reach those of the wild-type (Figure 5 and Table 2). Thus, even in the least affected D164A mutant protein, 50\% self-processing was not achieved until 20 min after the reaction had begun. More dramatically, self-
Figure 5 Effect of mutations D164A, D164N, D164K and D163N/D164N on self-processing and eIF4GI cleavage activities of Lbpro

RRLs were incubated with or without the indicated mRNAs (10 ng/μl). Analysis of protein synthesis (A and C) and the state of eIF4GI (B and D) was as described in Figure 3.

Processing of the double mutant had not reached 50% 2 h after the reaction had been initiated. The cleavage rates of the mutant proteins on eIF4GI essentially mirrored those found in self-processing.

To confirm that the cleavage of eIF4GI was not being delayed by the inhibition of self-processing, RNAs encoding the mutant proteins were transcribed using constructions lacking the VP4/VP2 protein, generating the mature proteins upon translation.
Table 2 Effect of amino acid substitutions at D164 on Lbpro self-processing and eIF4GI cleavage

Percentage self-cleavage at the time point indicated was measured as the percentage of the amount of mature Lbpro present divided by the sum of the amounts of mature Lbpro and uncleaved LbproVP4VP2. The respective bands from the fluorograms in Figure 5 were counted for radioactivity in an Instant Imager and the amounts of proteins calculated using the specific radioactivity as described in the Materials and methods section.

<table>
<thead>
<tr>
<th></th>
<th>Time of onset (min)</th>
<th>Time for 50% cleavage (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Self-processing</td>
<td>eIF4GI cleavage</td>
</tr>
<tr>
<td>LbproVP4VP2</td>
<td>< 8</td>
<td>4</td>
</tr>
<tr>
<td>LbproVP4VP2(D164A)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>LbproVP4VP2(D164N)</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>LbproVP4VP2(D164K)</td>
<td>20</td>
<td>12–20</td>
</tr>
<tr>
<td>LbproVP4VP2(D163N/D164N)</td>
<td>60</td>
<td>60–120</td>
</tr>
</tbody>
</table>

Figure 6 Effect of the second-site mutation G202E on self-processing and eIF4GI cleavage activities of Lbpro D164N

RRLs were incubated with or without the indicated mRNAs (10 ng/μl). Analysis of protein synthesis (A) and the state of eIF4GI (B) was as described in Figure 3.

The kinetics of eIF4GI cleavage were essentially identical with those observed when processing took place (results not shown).

Can the Asp164 mutant proteins be rescued by second-site mutations?

The above mutagenesis experiments clearly indicate an important role for Asp164. To investigate the role of Asp164 further, we introduced additional mutations to see whether the activity of the proteinase could be rescued. The mutations were inspired by the three-dimensional structure, which indicated that Asp164 may play a role in the recognition of a basic residue at the P1′ position of a substrate or in the maintenance of an extensive hydrogen-bond network consisting of Asp164, Asn16, Asn44 and Asn50 (Figure 1; [13,22]).

Firstly, we reasoned that if Asp164 were involved in recognizing a basic residue at the P1′ site of the eIF4GI substrate, it might be possible to improve the activity of the D164K mutant protein by presenting an acidic residue at P1′ in a substrate. As this is not feasible in the endogenous eIF4GI, we decided to perform this experiment by examining the self-processing reaction. In the wild-type, the self-processing occurs between Lys98 and Gly99, the first amino acid of VP4 in the construction LbproVP4VP2. In previous work, we have shown that replacement of Lys98 with glycine reduces self-processing by about 50% compared with the wild-type enzyme; subsequent replacement of Gly99 with arginine in this mutant restored self-cleavage to wild-type levels [24]. This indicates that a basic residue can be recognized at the P1′ position in self-processing as well as in eIF4GI. To examine whether residue 164 is responsible for recognizing the charge on the P1′ residue, Gly99 was replaced with a glutamate residue in the D164K mutant, resulting in Lbpro(D164K/G202E)VP4VP2, and the activity of this mutant protein in self-processing (Figure 6A) and eIF4GI cleavage (Figure 6B) examined. However, this mutant was less able than the single mutant (compare Figures 5C and 5D with Figure 6) to carry out these reactions.

The involvement of Asp164 in the hydrogen-bond network shown in Figure 1 was then investigated in a similar manner, except that the mutant D164N was employed. The presence of the amide group prevents residue 164 from simultaneously accepting hydrogen bonds from both Asn16 and Asn44. This interaction might be restored, however, by mutating either Asn16 or Asn44 to aspartate, so that the hydrogen-bond network can be re-established. The ability of the double mutant (D164N/N54D) to carry out self-processing and eIF4GI cleavage is shown in Figure 7; both activities were delayed compared with the single mutant D164N (compare Figures 5A and 5B and Figure 7). Similar results were obtained with the double mutant (D164N/N46D; results not shown). This argues against the interruption

© 2002 Biochemical Society
of the hydrogen-bond network outlined in Figure 1 being the reason for the impairment of the activity of the Asp164 mutant proteins.

DISCUSSION

The experiments described here were designed to investigate the roles of the residues Asp163 and Asp164 in the specific proteolysis catalysed by FMDV LbV. Initially, the importance of the electrostatic charge of Asp163 and the hydrogen-bond network linking it to Tyr166 and Lys144 were examined. Substitution of Asp163 with asparagine led to a reduction in LbV self-processing, but did not inhibit it completely; however, the cleavage of eIF4GI by this mutant protein was not affected. We have shown previously [24] that an LbV protein bearing mutations at the C-terminus was, as a consequence, inhibited in respect of self-processing; nevertheless, this mutant cleaved eIF4GI at wild-type rates. The lack of a concomitant reduction in eIF4GI cleavage by the D163N mutant is thus not unusual; it does, however, suggest that self-processing places stricter constraints on the enzyme structure than does eIF4GI cleavage.

The results with the D163N mutant protein show that, in the self-processing reaction, LbV is able to accept a residue containing either a carboxy or amide group as the residue orienting the catalytic histidine residue. In contrast, papain is inactivated in self-processing when Pap-Asn173 is replaced by aspartate [28]. Possibly the inability of papain to accept the negatively charged aspartate group results from the unfavourable environment generated by the conserved tryptophan residues Pap-Trp267 [13] and Pap-Trp358, a second conserved tryptophan residue lying perpendicular to Pap-Trp267. It is possible that the third residue of the catalytic triad in all LbV sequences so far examined [30] when asparagine can be well accepted? Presumably even such a small reduction as that observed here would give the virus a distinct disadvantage in evolutionary terms, so that any viruses with aspartate at this position would be fitter.

No significant effect on the pH profile of the LbV was observed on substituting Asp163 with asparagine, Tyr166 with phenylalanine or Lys144 with glutamine, thus implying that these residues are not responsible for the differences between the pH profiles of papain and LbV [22]. In addition, the effects on LbV activity of the Y168F and K144Q mutations were modest and not detectable respectively. Taken together, these results suggest that the electrostatic charge of Asp163 and the hydrogen-bond network around it do not play a significant role in the catalytic mechanism of the LbV.

In contrast, the effect on the activity of the enzyme caused by removal of the electrostatic charge provided by Asp164 was dramatic. Firstly, none of the Asp164 mutant proteins were active on the hexapeptide substrate. Secondly, in all cases, both the rates of self-processing and cleavage of eIF4GI were considerably delayed in the D164 mutant proteins, in contrast with the results with the D163N mutant. The substitution causing the least effect was, somewhat surprisingly, alanine and not asparagine. It seems possible that the ability of an asparagine residue present at position 164 to form only one of the hydrogen bonds which can be made with aspartate may be more detrimental to the activity of the enzyme than the presence of alanine, whose methyl side chain is incapable of establishing any hydrogen bonds. An alternative explanation could be that a water molecule is present in the alanine mutant which can mimic the carboxylate more efficiently than the amide group in the asparagine mutant protein.

Given that all the Asp164 mutant proteins did show some activity in self-processing and eIF4GI cleavage activity, this residue cannot be considered as acting as an electrostatic switch. However, the loss of activity of the Asp164 mutants is in contrast with the behaviour of a papain mutant in which the equivalent Pap-Ser176 residue had been mutated to alanine [31]. This mutant essentially retained wild-type activity, despite the importance of Pap-Ser176 in orienting Pap-Gln19, which stabilizes the oxyanion hole. Although Asp164 also appears to orient the LbV residue (Asn49) stabilizing the oxyanion hole [13], it must be performing at least one more role than Pap-Ser176.

Two experiments were performed in an attempt to determine this additional role of Asp164. Firstly, we examined whether Asp164 might be involved in the recognition of the P1′ arginine residue of the eIF4GI substrate at Leu-Gly-()-Arg-Thr. As it is not possible to modify the endogenous eIF4GI in the RRLs, this notion was examined using the self-processing reaction. Glycine at the P1′ position of the cleavage site between LbV and VP4 was replaced with a negatively charged glutamate residue. If Asp164 can recognize a basic P1′ residue, it might be expected that the D164K mutant might recognize an acidic residue at this position. However, self-processing was in fact delayed in this double-mutant protein compared with the single-mutant protein, casting doubt on the role of Asp164 in binding eIF4GI and reopening the question as to how LbV in fact recognizes a basic residue at P1′.

The second experiment examined the involvement of Asp164 in an extensive hydrogen-bond network which was interrupted by all of the three amino acids with which Asp164 was replaced. To investigate the importance of this network, we attempted to reconstitute it in the D164N mutant by replacing either Asn49 or Asn146 with aspartate. Neither of the double mutants showed any increase in activity compared with the single D164N mutant, indicating that the hydrogen-bond network is not essential or that it can not be reassembled in this way.

As the above ideas were not supported by experimental evidence, another hypothesis is required to explain why the replacement of Asp164 affects both onset and rate of the catalytic activity (Figure 5 and Table 2). It should be remembered that LbV, in contrast with papain, is synthesized without a pro region. It is thus clear that LbV has developed an extremely efficient mechanism for attaining an active conformation as it commences to cleave its two substrates immediately after synthesis. Indeed, cleavage of eIF4GI just 15 min after infection of BHK cells *in vitro* has been reported [9]. Replacement of Asp164 obviously impairs this mechanism, as all Asp164 mutant proteins were initially severely retarded in their enzymic activity. This suggests an important role for this residue in folding and stability. Furthermore, it is noteworthy that the two mutants which require the longest time to gain a detectable amount of activity are the D164K single mutant and the D163N/D164N double mutant. This would indicate that the repulsion of the negative charges of the two aspartate residues is indeed critical. Indeed, Asp164 is itself involved in a tight type II′ β-turn of unfavourable geometry; possibly it is the repulsion between Asp164, Asp163 and other as-yet-undefined residues which is required to maintain Asp164 in this state.

The above interpretation implies that the role of Asp164 is to ensure correct folding, and that its role in catalysis of proteolysis is less important. That the presence of the methyl side chain of alanine at residue 164 least affected catalysis also supports the interpretation that Asp164 is not involved in catalysis. Further evidence can be derived from the above-mentioned differences in kinetics of cleavage of eIF4GI by the respective D163N and D164N mutant proteins. Thus, although the D163N mutant protein is delayed in self-processing, cleavage of eIF4GI is not affected. In contrast, in the D164N mutant both cleavages are delayed [compare the 12 min time points of Figures 4A and 4B.
(D163N) with Figures 5A and 5B (D164N)]. This would suggest that the D164N mutant protein is initially in an inactive form and requires a certain period to become active. This implies, therefore, that Asp164 plays an important role in gain of catalytic competence, whereas the task of Asp163 is more limited to catalysis. Structural studies on selected Asp164 mutant proteins are in progress in an attempt to answer this question.

In summary, the experiments shown here reveal that the Lb9080 has evolved a different mechanism for stabilizing and orienting its active site from that found in the majority of the papain-like proteinases, and suggest a key role for the electrostatic charge on Asp164. Once again, however, it is clear that the mechanism as to how cysteine proteinases achieve full catalytic competence still requires further investigation to be understood completely.

This work was supported by the Austrian Science Foundation (P-13667 to T.S.). We thank Walter Glaser for help with the RRL experiments, Wendy Ochoa, Karin Glatz and Eva Schmid for performing mutagenesis experiments, and Dieter Blas and Joachim Seipel for critical reading of the manuscript before its submission.

REFERENCES

8 Devaney, M. A., Vakharia, V. N., Lloyd, R. E., Ehrenfeld, E. and Grubman, M. J. (1988) Leader protein of foot-and-mouth disease virus leader protein, expressed individually, expressed