5-Lipoxygenase (5-LO) metabolizes arachidonic acid to leukotriene A₄, a key intermediate in leukotriene biosynthesis. To explore the molecular mechanisms of its cell-specific localization, a fusion protein between green fluorescent protein (GFP) and human 5-LO (GFP–5LO) was expressed in various cells. GFP–5LO was localized in the cytosol in HL-60 cells and in both the nucleus and the cytosol in RBL (rat basophilic leukaemia) cells, similarly to the native enzyme in these cells. The localization of GFP fusion proteins for mutant 5-LOs in a putative bipartite nuclear localization signal (NLS), amino acids 638–655, in Chinese hamster ovary (CHO)-K1 and Swiss3T3 cells revealed that this motif is important for the nuclear localization of 5-LO.

A GFP fusion protein of this short peptide localized consistently in the nucleus. Leptomycin B, a specific inhibitor of nuclear export signal (NES)-dependent transport, diminished the cytoplasmic localization of 5-LO in HL-60 cells and that of GFP–5LO in CHO-K1 cells, suggesting that an NES-system might also function in determining 5-LO localization. Analysis of the localization of 5-LO during the cell cycle points to a controlled movement of this enzyme. Thus we conclude that a balance of NLS- and NES-dependent mechanisms determines the cell-type-specific localization of 5-LO, suggesting a nuclear function for this enzyme.

Key words: enzyme transport, laser scanning cytometry, leptomycin B, leukotriene.

INTRODUCTION

5-Lipoxygenase (5-LO) is the initial enzyme in the biosynthesis of leukotrienes (LTs) from arachidonic acid. LTs are potent lipid mediators involved in normal cell function and occur in excess in pathological processes. 5-LO inhibitors are now in therapeutic use, yet little is known of how 5-LO is regulated inside the cell. 5-LO was first isolated from cytosolic fractions of various cells [1–3]. It was reported that 5-LO translocates from the cytosol to phospholipid membranes when cells are activated [4]. Somewhat surprisingly, however, it was found by immunohistochemical analysis that the subcellular localization of 5-LO differs between cell types. 5-LO is predominantly localized in the cytosol of peripheral blood polymorphonuclear cells [5] and peritoneal macrophages [6], whereas it is found in both the nucleus and the cytosol of alveolar macrophages [7], mast cells [8] and RBL (rat basophilic leukaemia) cells [5]. Recent studies have also shown that most of the enzymes involved in LT biosynthesis seem to be localized to perinuclear regions in the cell [7,9,10]. Further, 5-LO has been reported to translocate primarily to the nuclear membrane rather than the plasma membrane in response to various stimuli [11,12]. The localization and translocation of 5-LO are the determining factors in the production of LTs, and they must therefore be tightly controlled [13–15].

Nuclear localization signal (NLS) and nuclear export signal (NES) have been proved to determine the localization of several important proteins. Proteins entering the nucleus require importin molecules to recognize NLS sequences, allowing nuclear pore docking. Recognition permits transport through the nuclear pore, followed by release inside the nucleus [16,17]. NLS is typically a short basic region or a bipartite basic sequence [18,19]. The existence of NLS-like motifs in 5-LO has been noted [20,21]; after our studies had been initiated a functional bipartite sequence (amino acid residues 638–655) was described [12]. An NES, a short sequence rich in leucine, which is needed to mediate the nuclear export of some proteins, would probably also be present on 5-LO.

To explore the molecular mechanisms of cell-specific localization of 5-LO, green fluorescent proteins (GFPs) fused with wild-type and mutant 5-LOs were expressed in Chinese hamster ovary (CHO)-K1 cells and Swiss3T3 cells, and their intracellular localization was analysed. In addition, a cytometric analysis was performed to determine the localization of 5-LO, which changes during the cell cycle. We describe the role of the bipartite NLS (B-NLS) in 5-LO localization and in enzymic function, and provide evidence for an NES-dependent mechanism in the movement of 5-LO between compartments within the cell.

EXPERIMENTAL

Construction of expression vectors

The cDNA of human 5-LO was cloned by PCR and ligated with EcoRI-cut pEGFP-C1 (Clontech, Palo Alto, CA, U.S.A.). The PCR product was obtained with the primers 5'-CGGAATTCCCTCTCTACACGTCACC-3' (sense) and 5'-CGGAATTCCGGTCAAGTGCCACACTGTTC-3' (anti-sense) by using

Abbreviations used: B-NLS, bipartite NLS; CHO, Chinese hamster ovary; FBS, fetal bovine serum; GFP, green fluorescent protein; 5-HPETE, 5-(S)-hydroxy-6,8,11,14-eicosatetraenoic acid; 5-HETE, 5-(S)-hydroperoxy-6,8,11,14-eicosatetraenoic acid; LMB, leptomycin B; 5-LO, 5-lipoxygenase; LSC, laser scanning cytometry; LT, leukotriene; NES, nuclear export signal; NLS, nuclear localization signal; RBL, rat basophil leukaemia.

1 To whom correspondence should be addressed at the Gunma University School of Medicine (e-mail takizumi@med.gunma-u.ac.jp).
Figure 1 Subcellular localization of 5-LO and GFP–5LO in HL-60 cells and RBL cells

HL-60 cells (A) and RBL cells (B) were treated with an anti-(5-LO) antiserum and an FITC-conjugated second antibody as described in the Experimental section. HL-60 cells (C) and RBL cells (D) on chamber slides were transfected with pEGFP-5LO and the signals were observed 16 h after transfection. Fluorescence was observed with a confocal microscope.

AmpliTaq Gold (Perkin Elmer Biosystems, Foster City, CA, U.S.A.). A cDNA (pEGFP-5LO) encoding 5-LO fused with GFP at the N-terminus of 5-LO was obtained with pEGFP–C1. Mutagenesis was performed in vitro with a QuikChange Site-directed Mutagenesis kit (Stratagene, La Jolla, CA, U.S.A.) or a PCR-based protocol on pEGFP-5LO as a template. Details of the procedures and the sequences of mutagenic primers are available from T. I. upon request. A vector for GFP–B-NLS encoding the B-NLS (R686KNLEAIVSVIAERNKKK702) fused with GFP was constructed. The corresponding cDNA for B-NLS was cloned into EcoRI-cut pEGFP–C1 as a PCR product amplified with the primers 5'-CGGAATTCCCGCAAGACCTCGAGGCC-3' (sense) and 5'-CGGAATTCCCTTCTTGTTGCGCTC-3' (anti-sense). DNA sequencing was performed to verify the correct insertion and the introduced mutations with an ABI 373 sequencer by using a Big Dye Terminator Ready Reaction Kit (Perkin Elmer Biosystems).

Cell culture and transfection

HL-60 cells and RBL cells were grown in RPMI-1640 medium (Nissui, Tokyo, Japan) supplemented with 10% (v/v) FBS (fetal bovine serum) (Sigma, St Louis, MO, U.S.A.). HEK-293 cells and Swiss3T3 cells were grown in Dulbecco's modified Eagle's medium (Nissui) supplemented with 10% (v/v) FBS. CHO cells were cultured in Ham's F-12 medium with 10% (v/v) FBS. Cells growing in 60 mm-diameter tissue culture dishes (Corning Inc., Corning, NY, U.S.A.) were transfected with plasmid DNA species by LIPOFECTAMINE$^{	ext{TM}}$ Plus Reagent (Life Technologies, Rockville, MA, U.S.A.). For microscopic analyses of GFP, the cells were observed 16 h after transfection and the 5-LO activity of the cell lysates was measured 48 h after transfection. In some experiments, cells were treated for 14 h with leptomycin B (LMB) (a gift from Dr M. Yoshida, University of Tokyo, Tokyo, Japan) at 10 ng/ml, and the localization of 5-LO and GFP–5LO was observed.

Laser scanning cytometry (LSC) and cell preparation

pEGFP or pEGFP-5LO was transfected into CHO-K1 cells. From more than 20 clones for each plasmid DNA resistant to geneticin (1 mg/ml), we selected two cell lines for each DNA expressing pEGFP–C1 (CHO-GFP cells) or pEGFP-5LO (CHO-GFP–5LO cells). No apparent difference was observed between two cell lines for each DNA in the following experiments. These cells were maintained in the presence of 0.3 mg/ml geneticin. CHO-GFP–5LO cells were grown on Lab-Tek Chamber slides (Nalge Nunc International, Rochester, NY, U.S.A.). After washes with PBS, cells were fixed in ethanol at −25°C for 15 min, then incubated for 15 min with 200 μg/ml RNase in PBS. Their nuclear DNA species were counterstained with 5 μg/ml propidium iodide (Sigma). Stained cells were examined with an LSC system (Olympus), which provides GFP fluorescence, DNA content and morphological information in individual cells. Thus a chain of GFP–5LO expression profiles

© 2002 Biochemical Society
Nuclear localization signal and nuclear export signal of 5-lipoxygenase

Figure 2 Construction of plasmid DNA for GFP–5LO and representative reverse-phase HPLC chromatograms

(A) A diagram of the GFP–5LO construct. (B, C) Arachidonic acid (160 μM) was incubated with cell lysates of HEK-293 cells transfected with pEGFP (B) or pEGFP-5LO (C) as described in the Experimental section. Products were analysed by HPLC with a mobile phase consisting of acetonitrile/methanol/water/acetic acid (350:150:250:1, by vol.). 13-Hydroxyoctadecadienoic acid (13-HODE) was used as an internal standard. Chromatograms representative of more than three independent experiments are shown.

during the cell cycle was constructed for each cell on the basis of DNA content.

Fluorescence microscopy

RBL cells and HL-60 cells were fixed with methanol for 15 min at −25 °C, then for 15 min with 3 % (w/v) paraformaldehyde in PBS containing 1 % (w/v) BSA at room temperature (25 °C). Cells were incubated with an anti-(human 5-LO) antiserum (dilution 1:200) and then with a goat FITC-conjugated anti-rabbit IgG (Zymed, San Francisco, CA, U.S.A.) (dilution 1:200) for 1 h at 37 °C. After three washes with PBS containing 1 % BSA, cells were treated with SlowFade Antifade Kit (Molecular Probes, Eugene, OR, U.S.A.). The fluorescent signal was observed with an AX-80 analytical microscope system (Olympus, Tokyo, Japan) or with an LSM 510 Laser Scanning Microscope System (Carl Zeiss, Oberkochen-Jena, Germany). Anti-(human 5-LO) antiserum was a gift from Dr J. Evans (Merck Frosst Centre for Therapeutic Research, Pointe Claire-Dorval, Québec, Canada).

Assay of 5-LO

At 48 h after transfection, HEK-293 cells were harvested and cell lysates were obtained by nitrogen cavitation at 2.8 MPa for 10 min at 4 °C. 5-LO activity was measured as reported previously [21], with minor modification. Cell lysates were incubated for 10 min in a buffer containing 1 mM ATP, 2 mM CaCl_2, 160 μM arachidonic acid and 50 mM Tris/HCl, pH 8.0, at 37 °C. The reactions were terminated with 2 vol. of an ice-cold stop solution consisting of acetonitrile/methanol/acetic acid (350:150:3, by vol.) and the mixtures were centrifuged at 10000 g for 10 min. Metabolites of arachidonic acid [5-(S)-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-(S)-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE)] in the supernatants were analysed by reverse-phase HPLC in a mobile phase consisting of acetonitrile/methanol/water/acetic acid (350:150:250:1, by vol.), with UV detection at 235 nm and at a flow rate of 1 ml/min on a Beckman System Gold equipped with a Cosmosil, 5C18-AR packed column (150 mm × 4.6 mm; Nacalai Tesque, Kyoto, Japan). In some cases, two all-trans isomers of LTB_4, non-enzymic products of LTA_4, were measured at 270 nm. However, their amount was always less than 10 % of the combined amount of 5-HPETE and 5-HETE, and was not integrated with the 5-LO activity.

Immunoblot analysis

Cells were dissolved in PBS/1 % (v/v) Triton X-100/1 mM EDTA/4 % (v/v) Complete™ (Boehringer Manheim, Mann-
RESULTS

Cellular localization and enzymic activity of a GFP-tagged 5-LO

Initially, the distribution of 5-LO was examined by immunohistochemistry in HL-60 cells and RBL cells. 5-LO was localized predominantly in the cytosol of HL-60 cells (Figure 1A), whereas it was distributed in both the nucleus and the cytosol of RBL cells (Figure 1B). To observe the localization of 5-LO more precisely in living cells, we developed a construct, pEGFP-5LO, encoding a GFP–5LO fusion protein (Figure 2A) and transfected it into various types of cell. GFP–5LO was distributed similarly to the native protein predominantly in the cytosol of HL-60 cells (Figure 1C) and was localized in both the nucleus and the cytosol of RBL cells (Figure 1D). Whereas the CHO-K1 cells expressing GFP had no 5-LO enzymic activity (Figure 2B), the cells expressing GFP–5LO displayed an enzymic activity (Figure 2C).

Figure 3 Distribution of GFP and GFP–5LO during the cell cycle

(A, B) Cell cycle (A) and distribution of DNA content (B) for each cell were analysed by LSC in CHO-GFP cells stained with propidium iodide (PI). (C, D) GFP fluorescence (top panels), nuclear DNA stain (middle panels) and overlapped images (bottom panels) for each cell are shown for CHO-GFP cells (C) and CHO-GFP–5LO cells (D).
NLS of 5-LO might operate in late G phase. GFP and CHO-GFP–5LO cells. These results indicate that an NLS region, residues 638–655 in 5-LO, which differs to some extent from other cytosolic lipoxygenases, was the focus for mutational analyses. Five mutant GFP–5LO constructs were prepared (Table 2) and transfected into CHO-K1 cells and Swiss3T3 cells. These cell lines were selected for their high presence of a relatively high concentration of arachidonic acid (160 μM), although the precise kinetic properties of GFP–5LO were not analysed. Thus the GFP tag seems not to interfere with the subcellular localization and catalytic activity of 5-LO.

Distribution of GFP–5LO during cell cycle

The intracellular distribution of fluorescent signal in CHO-GFP–5LO cells was varied and depended on the cell cycle. To examine the localization of GFP–5LO in each phase of the cell cycle, we analysed stable transformants of CHO-GFP and CHO-GFP–5LO cells by LSC, which provides information on morphology and cellular properties such as the nuclear DNA content of each cell (Figure 3) [22]. In late G, S and G phase, GFP–5LO was localized mainly in the nucleus (Figure 3D), whereas GFP was localized evenly in both the nucleus and the cytoplasm (Figure 3C). In other phases (M and early G), the GFP signals were excluded from the condensed DNA species in both CHO-GFP and CHO-GFP–5LO cells. These results indicate that an NLS of 5-LO might operate in late G, S and G phase.

Localization of GFP–5LO in cells expressing it transiently

The classical NLS is a short basic region of three or more residues, or a bipartite basic region separated by a variable-length spacer sequence (Table 1) [23]. A likely candidate for a B-NLS region, residues 638–655 in 5-LO, which differs to some extent from other cytosolic lipoxygenases, was the focus for mutational analyses. Five mutant GFP–5LO constructs were prepared (Table 2) and transfected into CHO-K1 cells and Swiss3T3 cells. These cell lines were selected for their high efficiency of expression. GFP alone was distributed throughout the cell (Figures 4A and 4E), whereas GFP–5LO localized predominantly in the nucleus of CHO-K1 cells and Swiss3T3 cells (Figures 4B and 4F).

<table>
<thead>
<tr>
<th>Cargo protein</th>
<th>NLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV40 T antigen</td>
<td>PKKKKK (monopartite NLS)</td>
</tr>
<tr>
<td>c-Myc</td>
<td>PAAKR-KLD</td>
</tr>
<tr>
<td>Nucleoplasmin</td>
<td>KRPAATKKAGQKKKK (bipartite NLS)</td>
</tr>
<tr>
<td>5-LO</td>
<td>R_{509} KILEAVSIAEVRKKK</td>
</tr>
</tbody>
</table>

Table 2 Mutagenesis of the bipartite NLS

The putative NLS is given in the single-letter code (residues 638–655). Dashes (–) represent the amino acids not mutated. The subcellular location of the GFP fusion proteins bearing each mutant sequence is given at the right: N, nucleus; C, cytoplasm. Relative 5-LO activity is indicated by a scale of + + (80–100% activity), + (approx. 10%), ± (trace, less than 5%) and n.d. (no enzyme activity detected), where the activity of wild-type 5-LO is defined as 100%.

<table>
<thead>
<tr>
<th>Mutant</th>
<th>Position</th>
<th>R</th>
<th>K</th>
<th>R</th>
<th>N</th>
<th>K</th>
<th>K</th>
<th>K</th>
<th>Cellular location</th>
<th>5-LO activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Wild-type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N > C</td>
<td>±</td>
</tr>
<tr>
<td>M2</td>
<td></td>
<td>–</td>
<td>N</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>N = C or C</td>
<td>+</td>
</tr>
<tr>
<td>M3</td>
<td></td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>C</td>
<td>±</td>
<td>n.d.</td>
</tr>
<tr>
<td>M4</td>
<td></td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>±</td>
<td>n.d.</td>
</tr>
<tr>
<td>M5</td>
<td></td>
<td>–</td>
<td>–</td>
<td>S</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>±</td>
<td>n.d.</td>
</tr>
<tr>
<td>GFP</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>±</td>
<td>n.d.</td>
</tr>
<tr>
<td>GFP–5LO</td>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>±</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

© 2002 Biochemical Society
Fluorescent signals of GFP and GFP–5LO fusion proteins expressed in CHO-K1 cells (A–D, I–L) and Swiss3T3 cells (E–H, M–P) 16 h after transfection were observed with a fluorescent microscope. M1 to M5 are mutant GFP–5LO proteins in a putative B-NLS, R638KNLEAVSVAERK655. The mutations were as follows: M1, SN … RNKKK; M2, RK … SNNNN; M3, SN … SNNNN; M4, SN … SNKKK; M5, RK … SNKKK. (A, E) GFP; (B, F) GFP–5LO; (C, G) M1; (D, H) M2; (I, M) M3; (J, N) M4; (K, L, O, P) M5.

GFP–5LO cells. LMB is a specific inhibitor of nuclear export [24,25] that interferes with the binding of the leucine-rich Rev-type NES to exportin 1, CRM1 [26–28]. After the addition of LMB for 14 h, the localization of 5-LO in HL-60 cells was increased in the nucleus (Figure 7B), whereas 5-LO stayed in the cytoplasm without LMB (Figure 7A). However, in CHO-GFP–5LO cells the localization of GFP–5LO became exclusively to the nucleus with LMB (Figure 7D), whereas some GFP–5LO stayed in the cytoplasm without LMB (Figure 7C). The profile analyses of fluorescence intensity in the cross-sections clearly showed these effects of LMB. These results suggest the presence of an LMB-sensitive nuclear export of 5-LO, through an NES within 5-LO (but not at the sites that we mutated) or on one or more NES-containing adapter molecules associated with 5-LO.
DISCUSSION

The intracellular localization of 5-LO varies between cell types and might depend on how the nuclear import and export systems work on 5-LO. By using a database search we found that human 5-LO carries a putative monopartite NLS (residues 130–133) and a putative B-NLS (residues 638–655). Two previous studies addressed these motifs. One study on the nuclear import of 5-LO failed to identify a classical NLS [21]; instead, it indicated that an as yet unidentified unconventional signal located in the N-terminus targets 5-LO to the nucleus. In more recent study, the sequence at residues 638–655 was proved to be necessary for targeting 5-LO to the nucleus [12]. In the present study we extended the investigation of this motif at residues 638–655, showing that it acts as an NLS and that it is important for enzymic activity. Our study indicates that the intracellular localization of 5-LO also depends on an LMB-sensitive nuclear export system. Furthermore, the localization and movement of 5-LO during the cell cycle suggest a possible nuclear role for this enzyme.

Generally, NLSs are characterized by basic residues in either one (monoparite) or two (biparite) clusters [29] (Table 1). In a previous study, the putative monoparite NLS (residues 130–133) was studied with the use of a mutant (R131Q/R132Q) that changed the location of 5-LO in NIH-3T3 cells but lost 5-LO activity [21]. In that study it was concluded that this portion might not act as an NLS. We also made a mutant GFP–5LO (R131S/R132S/K133N) in this portion. The localization of this mutant did not change in either CHO-K1 cells or Swiss3T3 cells (results not shown). This apparent discrepancy from the previous work might be due to differences in amino acid substitution or to the use of different cell lines, or both. There have been two previous studies on the putative B-NLS (residues 638–655). In one, a mutant (K653Q/K654Q) was made but its intracellular localization did not change [21]. In contrast, more recently a series of mutants were made in which basic amino acids of this portion were changed to alanine [12]. These authors concluded that this motif might act as an NLS. In the present study we conducted more extensive mutagenesis with substitutions of Arg to Ser and Lys to Asn. Such substitutions might be preferable to Ala substitution, as reported in [19]. In mutagenesis experiments,
M2 (R651S/K653N/K654N/K655N) and M3 (R638S/K639N/R651S/K653N/K654N/K655N) were observed in the cytosol. These results suggest that the second basic cluster (R638NKKK655) of this motif is needed for this putative NLS. Alternatively, this region might be important to the tertiary structure of 5-LO because no enzymic activity was detected in these mutants (Table 2). M1 (R638S/K639N) did not change its localization, whereas that of M4 (R638S/K639N/R651S) changed completely. One amino acid (R651) substitution of M5 (R651S) changed the localization of GFP–5LO but retained some enzymic activity.

Figure 7 Effects of LMB on subcellular distribution of 5-LO

HL-60 cells (A, B) and CHO-GFP–5LO cells (C, D) were cultured on 35 mm-diameter dishes and treated without (A, C) or with (B, D) LMB (10 ng/ml) for 14 h, and they were then observed by confocal microscopy (upper panels). Bottom panels: fluorescent profiles of the cross sections indicated by white lines. Small circles indicate the edge of the nucleus. The experiments were repeated more than three times with essentially identical results.

We also made a fusion protein of GFP and just the B-NLS (GFP–B-NLS) and showed that the motif alone could act as a NLS. Thus the whole motif from Arg638 to Lys655 might act as a B-NLS, with Arg638 having a central role in nuclear localization.

Previous reports have pointed to a role in modulation of the nuclear import of 5-LO by phosphorylation [30,31]. Our study indicates that an NLS-dependent transport might be all that is needed but does not exclude an effect of phosphorylation.

The localization of various proteins is specifically controlled by their NES, including HIV-Rev [32], protein kinase inhibitor
We thank Dr M. Yoshida (Department of Biotechnology, Faculty of Agriculture, University of Tokyo, Tokyo, Japan) for a gift of LMB, Dr J. Evans (Merck Frost Centre for Therapeutic Research, Pointe Claire-Dorval, Quebec, Canada) for an anti-LTB-antibody and Dr D. Wong for critical reading and suggestions. This work was supported in part by Grants-in-aid from the Ministry of Education, Science, Sports, and Culture of Japan, and grants from Ono Medical Research Foundation, Human Science Foundation, and Yamanouchi Foundation.

REFERENCES

Received 21 August 2001/18 October 2001; accepted 12 November 2001

35 Fukuda, M., Gotoh, Y. and Nishida, E. (1997) Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908