Interleukin-10 up-regulates tumour-necrosis-factor-α-related apoptosis-inducing ligand (TRAIL) gene expression in mammary epithelial cells at the involution stage

Bo Hwa SOHN*, Hyung-Bae MOON†, Tae-Yoon KIM‡, Han-Sung KANG§, Yoon Soo BAE||, Kyung-Kwang LEE* and Sun Jung KIM*†

*Animal Developmental Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Taean 335-333, Korea, †Department of Pathology, School of Medicine, Wonkwang University, Iksan 570-749, Korea, ‡Department of Dermatology, College of Medicine, Catholic University, Seoul 137-940, Korea, §Department of Surgery, National Cancer Center, Goyang 411-351, Korea, ||Department of Biological Sciences, Ewha Womans University, Seoul 120-750, Korea, and †Department of Biology, Dongguk University, Seoul 100-715, Korea

Although interleukin-10 (IL-10) is known to contribute to inflammation and pathogenesis in mammalian organs, little is known about its precise role in the mammary gland. We found that IL-10 levels fluctuated during the mouse mammary cycle, showing little expression at the lactation stage and the highest expression at the involution stage. To reveal the effects of IL-10 on involution, expression profiles of apoptosis-related genes were examined in mice transgenic for IL-10 as well as in IL-10−/− mice. Mild inflammatory lesions by lymphocytes were observed in the mammary glands from four of seven transgenic lines at the lactation stage. It was striking that the expression of tumour-necrosis-factor-α-related apoptosis-inducing ligand (TRAIL) among the apoptosis-related genes was elevated approx. 7-fold in the transgenic mice, whereas others were almost unchanged. Furthermore, TRAIL was down-regulated 4-fold in the IL-10−/− mice at the involution stage. Elevated expression of TRAIL and of death receptor 4 (DR4) protein was identified at the involution stage of normal mammary glands as well as at the lactation stage of the IL-10 transgenic mice. These results indicate that the elevated expression of IL-10 at the involution stage recruits lymphocytes and induces the expression of TRAIL and DR4. These phenomena might partly contribute to apoptosis in the mammary epithelial cells for entering involution.

Key words: apoptosis, death receptor, mammary gland.

INTRODUCTION

Interleukin-10 (IL-10) is a homodimeric protein with a wide spectrum of anti-inflammatory and immune activities [1,2]. It inhibits cytokine production and the expression of immune surface molecules by various cell types [3–5]. This cytokine was also shown to enhance MHC class II antigen expression and to induce the proliferation and differentiation of B cells [6]. In addition, IL-10 induces the expression of cell adhesion molecules on endothelial cells and the apoptotic cell death of B-chronic lymphocytic leukaemia cells [7]. These properties of IL-10 indicate that it is a potent immunosuppressant and has great potential therapeutic utility in the treatment of diseases, such as chronic inflammation, autoimmune diseases, transplant rejection, graft-versus-host disease and sepsis [8–10]. Mice carrying a null mutation in both alleles of the gene encoding IL-10 showed normal lymphocyte development and antibody responses but also growth retardation and chronic enterocolitis, demonstrating an essential role for the protein in immunoregulation in the intestinal tract [11].

In the salivary and lacrimal glands, it has recently been found that IL-10 induced apoptosis of the cells via the Fas pathway [12]. Expression of IL-10 induced the expression of Fas-L in CD4+ T-cells, which interact with and kill the Fas-expressing cells. The results suggested that overexpression of IL-10 in the glands might be a causal factor in the development of Sjogren’s syndrome [13].

Being different from other exocrine gland cells, mammary cells cycle through growth, differentiation and involution during mammals’ fertile age. During the growth and differentiation of epithelial cells, a combination of hormones and growth factors including oestradiol and progesterone is important [14,15]. Involution is characterized both by the apoptosis of mammary epithelial cells and by tissue remodelling. During this period, marked changes in gene expression occur after the cessation of milk removal; massive apoptosis begins. Several death-related genes are activated at this stage, and a process of cell shrinkage, DNA fragmentation and nuclear condensation occurs [16–18]. However, compared with growth and differentiation, the pathway by which apoptotic mammary epithelial cells are cleared from the gland is not well understood.

In human milk, various cytokines including tumour necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), IL-1β and IL-6 were expressed at a physiologically significant level [19]. They act as immunoregulators or as developmental modulators. For example, TGF-β1 regulates the development and function of the alveolar structures [20]. Transgenic females that express TGF-β1 in the mammary glands were unable to lactate,

Abbreviations used: DR4, death receptor 4; G3PDH, glyceraldehyde-3-phosphate dehydrogenase; hIL-10, human interleukin-10; mIL-10, mouse interleukin-10; RPA, ribonuclease protection assay; RT–PCR, reverse-transcriptase-mediated PCR; TGF, transforming growth factor; TNF, tumour necrosis factor; TRADD, TNF-receptor-1 associated death domain; TRAIL, TNF-α-related apoptosis-inducing ligand.

1 To whom correspondence should be addressed (e-mail sunjungk@dongguk.edu).
owing to inhibition of the formation of lobuloalveolar structures and suppression of the production of endogenous milk protein. Expression of IL-6 is significantly decreased in invasive ductal carcinoma in comparison with normal mammary tissue and with lesions in situ. Conversely, the expression of IL-6 in invasive lobular carcinoma was enhanced [21]. IL-10 has been also found in human milk at concentrations from 60 to 9300 pg/ml, suggesting that the levels were physiologically significant [19]. However, its precise function in the mammary gland remains elusive. In the present study, to elucidate the function of IL-10 in the mammary gland, we examined its expression profile through the stages of the mammary cycle in mice. Furthermore, the effect of IL-10 on the expression of apoptosis-related genes was investigated in transgenic mice by expressing human IL-10 (hIL-10) in mammary epithelial cells at lactation and also in IL-10−/− mice.

MATERIALS AND METHODS

Mice

ICR and BCF1 mice were purchased from the Genetic Resource Center at Kribb (Taean, Korea), whose animal facility is authorized by the Institute of Laboratory Animal Resources (National Research Council, Washington, DC, U.S.A.). C57BL/6 IL-10−/− mice were purchased from the Jackson Laboratory (Bar Harbor, ME, U.S.A.). In all experiments in vivo, groups consisted of three or more animals.

Semi-quantitative reverse-transcriptase-mediated PCR (RT–PCR)

ICR mice were mated naturally, and the same-site tissues among the eight mammary glands were collected at days 6.5 and 12.5 of pregnancy, at days 2 and 5 of lactation and at days 2, 5 and 8 of involution. RNA was prepared from at least three mice per mammary stage. Reverse transcription was performed for the total RNA of mammary glands or HC11 cells with a reverse transcription kit (Promega). The expression level of mouse IL-10 (mIL-10) was measured by PCR with primers specific for mIL-10 cDNA. The primers were 5′-GCTGAGGGCGCTGTATCGAT-3′ and 5′-GAGCCTGTCAGGAAATTGATC-3′, amplifying a 679 bp fragment of mIL-10 cDNA. Glyceraldehyde-3-phosphate dehydrogenase (G3PDH) primers were used for the normalization of IL-10 expression. The G3PDH primers were 5′-ACCAAGTCCAGTCCACACAC-3′ and 5′-TCCACACCTGGCC-CTGTA-3′, amplifying the 500 bp cDNA fragment. [32P]dCTP (Amersham Pharmacia Biotech) was added to the reaction and the PCR products were detected by autoradiography. PCR reactions were performed for 25 cycles at 94 °C for 45 s, 62 °C for 1 min and 72 °C for 40 s.

Construction of an IL-10 expression vector

The full-length human gene encoding IL-10 was cloned by screening a human genomic library constructed in the EMBL3 vector (ClonTech). The probe DNA was prepared by PCR amplification of the 384 bp DNA fragment spanning the proximal promoter and exon 1 of the gene encoding hIL-10 (GenBank accession no. U61720) using the chromosomal DNA of blood samples. The primers for the PCR were 5′-TGGCAAGATTCATGGTCAAGTCCAGAGTGATCTGCAT-3′ and 5′-TCTGAGGTCATTTACATGACGTTGC-3′. The positive phage DNA insert was subcloned into the SalI site of the pBluescript II SK vector.

An IL-10 expression cassette was constructed by combining the bovine β-casein promoter and the gene encoding hIL-10. In brief, 12 kb of the IL-10-containing SpH1–SalI DNA fragment was subcloned into a pBluescript II SK vector containing 10 kb of the bovine β-casein promoter [22]. An adapter was linked into the SalI site to insert a SacII site. The nucleotide sequence of the adapter was 5′-CCTCCGGGAGGCATG-3′.

Generation of transgenic mice

The DNA for microinjection was prepared by digesting the IL-10-expressing plasmid vector with SacI and SalI; the larger fragment was purified by passing it through a 0.8% agarose gel and an Elutip column (Schleicher and Schuell). Transgenic mice were generated with a standard method described previously [23], with minor modifications. The mice were an F1, hybrid C57BL/6 × CBA strain. Founder mice and/or their offspring were analysed for inheritance, copy number and expression of the transgene.

Northern blot analysis

Total RNA from various organs (mammary gland, brain, heart, lung, kidney, liver, spleen and pancreas) was purified with Trizol RNA purification solution (Gibco BRL). For Northern blot analysis, 30 μg of total RNA was separated on 1.0% (w/v) agarose/formaldehyde gels and transferred to nylon membranes (Roche Molecular Biochemicals). The blots were probed with a 164 bp exon 1 of the IL-10 cDNA that was amplified by RT–PCR with primers 5′-ATGCACAGCTGAGCAGC-3′ and 5′-AAAGAACAACTCTCATACGACCT-3′. The probe was labelled by the random-priming method with a DNA labelling kit (Amersham). Hybridizations were performed for 4 h in Quick Hybridization solution (ClonTech) at 65 °C. The filters were then washed twice at 65 °C in 0.1 × SSC/0.1% SDS for 20 min and exposed to X-ray films for 24–48 h at −70 °C.

Ribonuclease protection assay (RPA)

Total RNA species were extracted from mammary glands of mice with Trizol reagent. Apoptosis-related mRNA species were detected with a RiboQuant Multiprobe RPA system (PharMingen). In brief, riboprobes were labelled with 32P and hybridized overnight with 20 μg of the RNA samples. The hybridized RNA was treated with RNase and purified in accordance with the RiboQuant protocol. The protected fragments were resolved by electrophoresis on a 5% (w/v) polyacrylamide/urea gel; autoradiograms were exposed for 48 h.

Analysis of protein in milk and tissues

Milk was collected at day 10 of lactation as reported previously [24]. For the Western blot analysis, whey was diluted 1:3 to 1:12 and 1 μl was mixed with electrophoresis sample buffer [2% (w/v) SDS/10%, (v/v) glycerol/0.08 M Tris/HCl (pH 6.8)/2 mM EDTA/0.1% dithiothreitol/0.01% Bromophenol Blue] and denatured at 95 °C for 10 min before loading on a 15% (w/v) denaturing polyacrylamide gel. For the preparation of proteins from mammary tissues, the tissues were homogenized with PBS and centrifuged at 4 °C for 10 min at 12000 g. The supernatant was used for the immunoblot analysis. After electrophoresis, proteins were transferred to a nitrocellulose membrane. Polyclonal goat anti-(hIL-10) antiserum (diluted 1:1000 in 1% bovine serum albumin) (Santa Cruz Biotechnology), polyclonal rabbit antibody against TNF-α-related apoptosis-inducing ligand (TRAIL), and monoclonal mouse antibody against death receptor 4 (DR4) (1:5000 dilution) (Santa Cruz Biotechnology Inc.) were used to detect hIL-10, TRAIL and DR4 respectively.

© 2001 Biochemical Society
by Western blot analysis. Bound antibody was detected by
dition of alkaline phosphatase-conjugated goat anti-(goat IgG)
(Bio-Rad) for IL-10 or horseradish-peroxidase-conjugated anti-
body (Amersham Life Science) for TRAIL and DR4. For the
ormalization of protein expression, mouse β-actin or lactoferrin
was examined by using its monoclonal antibody (Sigma). For
ELISA analysis, milk samples were diluted 1:10^5 to 1:10^6 and
the IL-10 expression levels were determined with an hIL-10
ELISA (PharMingen) and a mIL-10 ELISA kit (R & D Systems)
in accordance with the supplier’s protocol.

Measurement of TNF-α in macrophage culture

Peritoneal macrophages from Balb/c mice were isolated by
flushing the peritoneal cavity with 7 ml of RPMI medium with a
22-gauge syringe. Approximately 2 × 10^6 cells were plated on
a well of the 96-well culture dish and incubated at 37 °C for 6 h.
The cultured cells were then stimulated with 2 μg/ml endotoxin
(derived from 055:B5 Escherichia coli; Sigma) in the presence of
mouse milk or recombinant hIL-10 (Sigma). Supernatants
were collected at 18 h after challenge with endotoxin and were
examined for TNF-α content with an ELISA kit (Endogen).

Histological analysis

Mouse tissues were taken at day 10 of lactation by necropsy and
fixed for 24 h in 10% (v/v) formalin; 4 μm paraffin sections were
deparaffinized and hydrated. Sections were stained with haemo-
toxylin and eosin with the standard method [25]. Histological
grading of the inflammatory lesions in the mammary gland was
done as described by White and Casarett [26].

RESULTS

**IL-10 expression is suppressed at lactation and induced at the
involution stage during the mammary cycle in mice**

As a first step towards understanding the potential roles of
IL-10 during the mammary cycle in normal mice, its expression
level during the mammary cycle was monitored by the RT–PCR
analysis in at least three mice for each developmental stage of the
mammary gland. The expression of mIL-10 in the mammary
glands was detected at early pregnancy. Expression continued
until at least pregnancy day 6.5 (Figures 1A and 1B) and then
decreased by pregnancy day 12.5. During lactation days 2 and 5,
almost no expression was detected. As the mammary cells were
induced to enter the involution stage by separating the pups from
their mother, they began to express IL-10 again, and the level
reached a peak at day 5 of involution. The expression of IL-10
protein at involution was confirmed by ELISA analysis. The
results indicated that its level ranged from 140 to 750 pg/mg of
protein at day 5 of involution in the mammary tissue, but
remained at basal levels at day 5 of lactation (Figure 1C). These
results indicate that the IL-10 expression level fluctuates cyclically
during the mammary cycle.

**Ectopic expression of bioactive hIL-10 in the epithelial cells of
mammary glands during lactation**

To explore the possible function of IL-10 in the mammary gland,
IL-10 was expressed ectopically during lactation by developing
transgenic mice. For this purpose we used bovine β-casein
promoter, because it had been shown to be expressed specifically
at the lactation stage in transgenic mice (Figure 2A). Eight
transgenic mice were obtained from 34 mice analysed by PCR.

© 2001 Biochemical Society
endotoxin in the presence of the recombinant hIL-10. Supernatants were collected at 18 h after endotoxin challenge and were examined by ELISA for TNF-α content. The result indicated that the protein properly decreased the TNF-α level in a dose-dependent manner, similarly to the commercial one (Figure 2D).

These results imply that a hybrid transgene comprising 10 kb of the bovine β-casein gene promoter and 12 kb of the gene encoding hIL-10 induced proper levels of the recombinant protein in the milk of transgenic mice in a mammary-specific pattern.

IL-10 induces mild infiltration of lymphocyte into the mammary gland

Tissue sections from 8-week-old transgenic female mice at day 10 of lactation were prepared and stained with haematoxylin/eosin. Histological findings indicated that four of seven transgenic mice had minor inflammatory infiltration in the mammary glands. Two lines also had inflammatory infiltration in the salivary glands; RT-PCR revealed that these mice were expressing the transgene slightly in the salivary gland (results not shown). Figures 3(B) and 3(C) show the histological findings in the mammary glands with inflammatory infiltration from two different transgenic lines. No significant infiltration of mononuclear cells or any histological change was seen in normal (Figures 3A and 3D) and other transgenic tissues, except for the salivary glands (Figures 3E and 3F).

IL-10 induces TRAIL in the mammary gland

To address the role of IL-10 during the mammary cycles of the mammary gland, the effects of IL-10 expression on the involution of the glands were examined by monitoring the apoptosis-related gene expression in transgenic mice overexpressing IL-10 as well as in IL-10−/− mice.

In the transgenic mice, the recombinant hIL-10 was properly expressed in the mammary epithelial cells during the lactation stage. When RPA was performed with the mAPO-3 probe kit, expression of the apoptosis-related genes such as caspase, Fas and FasL was increased at the involution stage in both normal and transgenic mice (results not shown). However, we found no great difference in the expression level of these genes between the two mice at the same stage of the mammary cycle, except for TRAIL and TNF-receptor-I associated death domain (TRADD) protein (Figure 4). In particular, expression of the gene encoding TRAIL, which was identified as a TNF-related apoptosis-...
Inducing ligand [27,28] was increased approx. 4-fold and 7-fold at days 5 and 15 of lactation respectively in the transgenic mice, although its expression was much lower at the lactation stage than at the involution stage, in both normal and transgenic mice. When the mAPO-2 probe kit that included the Bcl-2 family, such as Bax, Bcl-2 and BAD, was used, no specific change in expression for the genes was observed (results not shown).

To characterize the relationship between IL-10 and TRAIL further, the expression of TRAIL was also monitored in C57BL/6 IL-10−/− mice at day 5 of involution. RPA analysis indicated that TRAIL was down-regulated 4-fold in comparison with normal C57BL/6 mice at the involution stage (Figure 5A). These results support the idea that IL-10 expression affects TRAIL expression. In addition to TRAIL, the level of TRADD from mAPO-3 was markedly decreased (Figure 5A). When the Bcl-2 family genes were examined in these mice by using mAPO-2, Bcl-Xs and Bcl-2 showed marked down-regulation (Figure 5B).

We found that TRAIL protein was induced at the involution stage of the mammary gland and that its expression was affected by IL-10 (Figure 6A). TRAIL was induced in IL-10 transgenic mice but down-regulated in the IL-10−/− mice (Figure 6A, lanes 3 and 4). To examine the effect of TRAIL on the apoptosis of mammary cells, the expression of DR4 protein, which is the receptor of TRAIL and mediates cellular apoptosis, was assayed by Western blot analysis. DR4 was induced as the mammary cells entered the involution stage from lactation (Figure 6B, lanes 1 and 2). The induction of DR4 by IL-10 via TRAIL could be explained by the result that the expression level of DR4 was much higher in the IL-10 transgenic mice than in normal mice (Figure 6B, lanes 3 and 4).
DISCUSSION

Although IL-10 has been found in human milk [19], its precise effect on mammary cells has not been characterized yet. As a first step towards explaining the function of IL-10 in the mammary gland, we have chased its expression during the normal mammary cycle of the mouse and in mammary cell culture in vitro. Next, we examined the effect of IL-10 in transgenic mice overexpressing IL-10 as well as in IL-10-null mutant mice by studying changes in histology and in apoptosis-related genes.

It is known that in secretory glands such as the salivary and lacrimal glands, IL-10 induces lymphocyte infiltration and subsequent Fas/FasL-mediated tissue destruction [12]. However, in the mammary gland, which cycles through cell growth, differentiation and involution, the origin of the IL-10 and its role have not been addressed yet, even though human milk contains much more IL-10 (60–9300 pg/ml) than the organ-cultured salivary or lacrimal glands of mice (less than 40 pg/ml). So far, no disease or destruction of mammary tissue caused by IL-10 expression has been reported, and we speculated that IL-10 in the mammary gland could confer its effect by participating in the normal mammary cycle rather than by invoking disease.

IL-10 found in the mammary glands might originate from both the lymphocytes and the epithelial cells. We could not detect IL-10 receptors [29] by RT–PCR analysis on a lymphocyte-free cell culture (HC11) that was originated and established from mouse mammary epithelial cells at mid-pregnancy (results not shown). It is therefore possible that IL-10 synthesized by the epithelial cells cannot act directly on them. Instead, it might induce the infiltration of lymphocytes, as shown in Figure 3, by inducing cell-adhesion molecules on blood vessels [30,31] and acting on their cell-surface receptors. This is reminiscent of the phenomenon in transgenic mice in which IL-10 is targeted to the salivary gland. However, the occurrence of inflammatory lesions in transgenic animals was variable depending on the organs to which IL-10 was targeted. The lesions were milder.

Figure 4 RPA analysis of the mRNA for the apoptosis-related genes in transgenic mice for IL-10

Upper panel: total RNA was isolated from mammary glands of normal and transgenic mice of strain BCF1 at days 5 (L5) and 15 (L15) of lactation, hybridized with 32P-labelled riboprobe with the mAPO-3 probe kit (PharMingen) and developed by autoradiography for 24 h. The expression levels were scanned with a PhosphoImager and compared with control probes (GAPDH and L32). Lower panel: a comparison of the expression levels of a few representative genes, normalized to the L32 housekeeping gene. Levels of TRAIL and TRADD RNA increased approx. 7-fold and 1.6-fold respectively at the lactation stage in the IL-10 transgenic mice.

Figure 5 RPA analysis of the mRNA for apoptosis-related genes in the IL-10−/− mice

Total RNA from mammary glands of normal and IL-10−/− mice of strain C57BL/6 at day 5 of involution was hybridized with 32P-labelled riboprobe with the mAPO-3 kit (A) and the mAPO-2 kit (B) (PharMingen). Bottom panel: a comparison of the expression levels for a few representative genes, normalized to the L32 housekeeping gene. Level of TRAIL and TRADD (A) and Bcl-X$_L$ and Bcl-2 (B) were markedly lower in the IL-10−/− mice than in normal mice for the mAPO-3 and mAPO-2 genes respectively.
when IL-10 was targeted to the mammary gland than when targeted to the salivary gland [12]. In support of this, the salivary glands in our transgenic mice developed inflammatory lesions more easily than the mammary glands, even though the expression of IL-10 was much lower in the latter (Figures 3E and 3F). These results imply that the Fas-L/Fas-mediated pathway through lymphocyte infiltration is not enough to invoke apoptosis of the cells in the mammary gland, in contrast with the salivary gland, so some other signals might be involved. The induction of IL-10 at the involution might be linked through Fas–FasL interaction with the tolerance of the immune system to prevent organ injury, as shown in the eye [32], the placenta [33] and the testis [34].

The specific increase in expression of the gene encoding TRAIL among the apoptosis-related genes by IL-10 indicates that IL-10 participates in apoptosis through a specific death pathway in the mammary gland. This is supported by the lower expression of TRAIL in the IL-10−/− mice. Previous studies in vitro have shown that TRAIL induces apoptosis in some tumour cell lines, which could potentially induce the Fas-mediated apoptotic pathway.

We thank Dr H.-S. Yoon for his kind discussion. This study was supported by research funds from the Molecular Medicine Research Group, Korea Ministry of Science and Technology. A research fund from BK21 was granted to B.H.S. and Y.S.B.

REFERENCES

© 2001 Biochemical Society

Schneider, P., Thorne, M., Burns, K., Bodmer, J. L., Hofmann, K., Kataoka, T., Hollier, N. and Tschopp, J. (1997) TRAIL: receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-κB. Immunity 7, 831–836

Received 15 January 2001/23 July 2001; accepted 11 September 2001