The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae

Aránzazu RODRÍGUEZ, Tamara de la CERA, Pilar HERRERO and Fernando MORENO

INTRODUCTION

In Saccharomyces cerevisiae, the phosphorylation of glucose at C6 can be catalysed by three enzymes, namely the hexokinases 1 and 2 (EC 2.7.1.1; encoded by the HXK1 and HXK2 genes) and glucokinase (EC 2.7.1.2; encoded by the GLK1 gene). These enzymes can catalyse the first irreversible step in the intracellular metabolism of glucose. However, the HXK2 gene product appears to play the main role during glucose phosphorylation in vivo, because it is the isoenzyme that predominates in glucose increase and decrease the amounts of these enzymes. Glucose has been shown to induce transcription of the HXK2 gene but the mechanism through which it operates is not known. DNA–protein complexes involving two downstream-repressing sequences (DRSs) located within the coding region of the HXK2 gene have been described [9]. The transcription factors that operate through these DRSs repress HXK2 gene transcription under conditions of sugar limitation or when ethanol is used as a carbon source [10]. The combinatorial effect of three regulatory sequences of the GLK1 promoter, STRE (stress-responsive element) [11,12], ERA/TAB (ethanol repression autoregulation/TATA box) [13] and GCR1 (glucose-regulatory protein 1; [14,15], and see [16] for a review), leads to the regulated transcription of the GLK1 gene, i.e. silent in media with glucose and other preferred carbon sources such as fructose or mannose and increased levels of expression upon glucose depletion [17]. The transcription of the HXK1 gene is repressed in the presence of glucose by transcription factors operating through an ERA element, and, upon glucose depletion, a quick induction of transcription, through several STRE elements is observed (P. Herrero and F. Moreno, unpublished work). In this paper, the role of Hxk2 protein in the regulation of gene expression, through these cis-acting elements of the glucose-phosphorylation system, is discussed.

Hxk2 protein unable to enter the nucleus, shows that nuclear localization of Hxk2 protein is necessary for glucose-induced repression signalling of the HXK1 and GLK1 genes and for glucose-induced expression of the HXK2 gene. Gel mobility-shift analysis shows that Hxk2p-mediated regulation is exerted through ERA (ethanol repression autoregulation)-like regulatory sequences present in the HXK1 and GLK1 promoters and in two downstream repressing sequences of the HXK2 gene. These findings reveal a novel mechanism of gene regulation whereby the product of a glycolytic gene, normally resident in the cytosol, interacts directly with nuclear proteins to regulate the transcription of the HXK1 and GLK1 genes and to autoregulate its own transcription.

Key words: glucose-phosphorylating enzyme, glucose repression, transcriptional control, yeast.

Abbreviations used: DRS, downstream-repressing sequence; YEPD, yeast extract/peptone/dextrose; YEPE, yeast extract/peptone/ethanol; ERA, ethanol repression autoregulation; Hxk2p, hexokinase 2 protein; Hxk1, hexokinase 1; Glk1p, glucokinase.

1 To whom correspondence should be addressed (e-mail fmoreno@correo.uniovi.es).
MATERIALS AND METHODS

Strains and plasmids

The *S. cerevisiae* strains used in this study are listed in Table 1 and are isogenic to the wild-type strain DBY1315, a gift from David Botstein (Stanford University, Stanford, CA, U.S.A.). The host strains for transformation are summarized in Table 1; the remaining strains are one of the host strains with a particular integrated plasmid, always carrying an allele of the *HXK2* gene. Bacterial transformation and large-scale preparation of plasmid DNA were performed in *Escherichia coli* MC1061 (hslR merB araD139Δ araABC-lev)7679Δαc-74 galU galK rpsL thi.

Plasmids YIp and YEp are yeast–*E. coli* shuttle vectors suitable for use respectively as integrative or episomal vectors. These vectors have a *URA3* yeast-selectable marker [19]. Plasmid pJJH215, a gift from Jürgen Heinisch (University of Hohenheim, Stuttgart, Germany), is also a yeast–*E. coli* shuttle vector suitable for use as an episomal vector with a *LEU2* yeast-selectable marker.

Media and growth conditions

Rich media were based on 1% yeast extract/2% peptone, with either 2% glucose (YPED) or 3% ethanol (YEPE) added as carbon sources. Synthetic media consisted of 0.67% yeast nitrogen base without amino acids, supplemented with amino acids as required and 2% glucose or 3% ethanol. These media were utilized to select for transformants when plasmids carrying *URA3* or *LEU2* were used.

General DNA techniques

Routine DNA manipulations were performed essentially as described previously [20].

Construction of reporter fusions and plasmids carrying alleles of the *HXK2* gene

To construct a gene fusion between *HXK1* and the bacterial *lacZ* gene, encoding β-galactosidase, a 621 bp *SnaRI–XmnI* fragment containing 582 nucleotides from the 5'-non-coding region and 39 bp of the *HXK1* coding sequence was ligated in frame to *lacZ* into YIp358R [19], digested previously with *BamHI* and *SmaI* to form plasmid YIp621. To construct a gene fusion between *HXK2* and *lacZ*, a 1242 bp *BamHI–HindIII* fragment containing 838 nucleotides from the 5'-non-coding region and 404 bp of the *HXK2* coding sequence was cloned in frame to *lacZ* into YIp356 [19] to form plasmid YIp1242 [9]. To construct a gene fusion between GLK1 and *lacZ*, a 944 bp fragment containing 63 bp of the GLK1 coding region plus additional DNA upstream was amplified by PCR using, as a primer, an oligonucleotide with either a *PstI* site (OL1, 5'-ATCTGCAAGTCGATGCAAAGTTTC-3') or an *EcoRI* site (OL2, 5'-ATCTGCAAGGCGAAGTTAATTTC-3') at the 5' end (the restriction sites are underlined). Genomic DNA from the wild-type strain DBY1315 served as the GLK1-containing template. The amplified product was digested with *PstI* and *EcoRI* and ligated to YIp358R [19] digested with the same enzymes to form plasmid YIp944 [17]. Plasmids YIp621, YIp944 and YIp1242 were used to transform the yeast strains YDBY1315, DBY2052, DBY2184 and DBY2053. The plasmids were integrated into the *URA3* locus by digestion with *StuI* prior to transformation. Single-copy integration was confirmed by Southern-blot analysis of genomic DNA digested with *BglII* and by probing with a 1.1 kb *HindIII* fragment containing the *URA3* gene. The yeast strains generated are listed in Table 1.

A DNA fragment containing the complete *HXK2* promoter was isolated from the vector pRS-HXK2 [9] as an 0.88 kb *SphI–NcoI* fragment and subcloned into a *SphI–NcoI* previously cleaved vector pSP73-HG (this plasmid contains the complete coding region of the *HXK2* gene and 254 bp of the 5'-non-coding region in a 2.75 kb fragment). The resulting plasmid pSP73-*HXK2* contains the complete *HXK2* gene under the control of its own complete promoter in a 3.35 kb *SphI–EcoRI* fragment. The 3.35 kb fragment was cloned into YEp352 [21] and pJJH215, and the resulting plasmids were named YEp352-*HXK2* and pJJH215-*HXK2*.

Oligonucleotides 5'-ATGAACATTATTATT-3' and 5'-GGTTCCATGGCGCATGTTG-3' were used to generate construction pSP73-*HXK2ΔK'M* by PCR. The resulting plasmid (pSP73-*HXK2ΔK'M*) was cleaved by *SphI* and *EcoRI* to obtain an approx. 3.35 kb fragment, which was subcloned into vectors pJJH215 and YEp352, cleaved previously by *SphI*/*EcoRI*. The plasmids obtained, pJJH215-*HXK2ΔK'M* and YEp352-*HXK2ΔK'M*, have a 30-nucleotide deletion between nucleotides +19 and +48 of the *HXK2* gene. Expression of this mutant gene generates a truncated Hxk2 protein with similar specific activity to the wild-type hexokinase 2 but lacking amino acids Lys5–Met16 [6].

Plasmids YEp352-*HXK2*, pJJH215-*HXK2*, YEp352-*HXK2ΔK'M* and pJJH215-*HXK2ΔK'M* were used to transform the different host strains, as indicated in each Figure.

Table 1 Strains of *S. cerevisiae* used in this study

<table>
<thead>
<tr>
<th>Strain</th>
<th>Genotype</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBY1315</td>
<td>MATA ura3-52 leu2-3,2-112 lys2-801 gal2</td>
<td>[18]</td>
</tr>
<tr>
<td>DBY2052</td>
<td>MATA hox1Δ::LEU2 hox2-202 ura3-52 leu2-3,2-112 lys2-801 gal2</td>
<td>[18]</td>
</tr>
<tr>
<td>DBY2053</td>
<td>MATA hox1Δ::LEU2 ura3-52 leu2-3,2-112 lys2-801 gal2</td>
<td>[18]</td>
</tr>
<tr>
<td>DBY2184</td>
<td>MATA hox2-202 ura3-52 leu2-3,2-112 lys2-801 gal2</td>
<td>[18]</td>
</tr>
<tr>
<td>PMY151</td>
<td>Isogenic to DBY1315, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY201</td>
<td>Isogenic to DBY2052, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY531</td>
<td>Isogenic to DBY3052, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY841</td>
<td>Isogenic to DBY2184, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY152</td>
<td>Isogenic to DBY1315, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY522</td>
<td>Isogenic to DBY2052, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY532</td>
<td>Isogenic to DBY2053, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY842</td>
<td>Isogenic to DBY2184, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY153</td>
<td>Isogenic to DBY1315, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY523</td>
<td>Isogenic to DBY2052, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY533</td>
<td>Isogenic to DBY2053, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
<tr>
<td>PMY843</td>
<td>Isogenic to DBY2184, with HXK1p::lacZ</td>
<td>This work</td>
</tr>
</tbody>
</table>

Preparation of protein extracts and enzymic determinations

Enzyme activities were determined on crude extracts. These were prepared as follows: yeast was grown on 10–20 ml of rich medium (YPEP or YEPE) at 28 °C until a O.D. 660 value of 1.0. Cells were collected, washed twice with 1 ml of 1 M sorbitol and suspended in 100 μl of buffer C (20 mM Hepes buffer, pH 7.9, containing 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.5 mM PMSE, 0.42 M NaCl, 1.5 mM MgCl2, and 25% glycerol). The cells were broken by vortexing (6 x 20 s) in the presence of glass beads (0.5 g), and 400 μl of buffer C was added to the suspension. After centrifugation at 19000 g for 15 min at 4 °C, the supernatant was used as crude protein extract.

This fraction was used directly for enzyme assays of hexokinase and total protein determinations. Hexokinase was assayed at 28 °C with either glucose or fructose as the substrate (in the latter case, 2 μg of phosphoglucosomerase was added), as described
previously [22]. Protein concentration was determined with the Lowry protein assay. β-Galactosidase activity was assayed according to [23]. Reagents and auxiliary enzymes were from Sigma.

Northern-blot analysis
Yeast cells were harvested in mid-exponential phase. Total RNA was isolated as described in [24], and separated on 1.5 % agarose/formaldehyde gels. After transfer to Hybond-N nylon membranes (Amersham Pharmacia Biotech), the RNA was UV cross-linked and hybridized with probes for the HXK1, GLK1 and ACT1 (actin) genes as described previously [2]. The amount of the hybridizing RNA was quantified in an Instantimager Packard and normalized to the Act1 mRNA level as described previously [2].

DNA probes
To investigate interaction of proteins with the sequences carrying regulatory elements in the GLK1, HXK1 and HXK2 promoters regions, we reconstituted the fragment from two complementary oligonucleotides. The complementary strands were annealed, and either end was labelled with [α-32P]dCTP by fill-in using the Klenow fragment of DNA polymerase I or used as unlabelled competitors in gel-retardation assays. In all cases the oligonucleotides were synthesized with an added TCGA nucleotide overhang at the 5’ end. The synthetic DNA fragments used in gel-retardation experiments are listed in Table 2.

Preparation of yeast nuclei
Nuclei were prepared by a method based on that of [25] with the modifications indicated in [26].

Gel-retardation assays
Binding reactions contained 10 mM Hepes (pH 7.5), 1 mM dithiothreitol, 1–5 μg of poly(dI-dC) and 0.5 ng of end-labelled DNA in a volume of 25 μl. Where unlabelled competitor DNA was added, its amount is indicated in the Figure legends. The binding-reaction mixtures included 24 μg (6 μl) of nuclear protein extract and, after 30 min of incubation at room temperature, they were loaded on to a 5 % non-denaturing polyacrylamide gel. Electrophoresis was carried out at 10 V/cm of gel for 45 min–1 h in 0.5 × TBE buffer (45 mM Tris/borate/1 mM EDTA). Gels were dried and autoradiographed at –70 °C with an intensifying screen.

RESULTS AND DISCUSSION
Differential expression of the HXK1 and GLK1 genes in the presence and absence of Hxk2 protein
The expression of the HXK1 and GLK1 genes was investigated by Northern-blot analysis of total RNA isolated from a wild-type strain (HXK1 HXK2 GLK1) and two isogenic, hsk2Δ and hsk1Δ hsk2Δ, mutant strains. The probes utilized were specific for the Hxk1 and Glk1 mRNAs expressed by these strains, as was demonstrated by Northern-blot analysis using, as RNA sources, null mutants of the HXK1 and GLK1 genes and the corresponding probe. Wild-type yeast cells were grown in glucose (repressed conditions) or ethanol (de-repressed conditions) media; the mutant strains and transformed derivative strains were grown only in glucose medium. The results are shown in Figure 1. The mRNA levels reported were quantified by an Instantimager and normalized to the levels of actin mRNAs.

As was previously reported [2], the HXK1 and GLK1 transcripts are repressed by glucose and de-repressed in the absence of a preferential sugar or when the cells are grown using ethanol as a carbon source (Figure 1, lanes 1 and 2). Deletion of the HXK2 gene increased the level of the HXKI transcript 10-fold in the repressed glucose medium (Figure 1A, lane 5). Thus Hxk1 mRNA levels are similar under the de-repressed conditions of the wild-type strain and the repressed conditions of the hsk2Δ strain. This pattern of HXK1 regulation is opposite to that in HXK2 cells and indicates that the hsk2Δ mutation converts HXK1 from a glucose-repressed gene into a glucose-non-repressed gene.

In order to confirm that Hxk2 protein is necessary for HXK1 regulation, we transformed the hsk2Δ mutant strain with two different plasmids. One contained the native HXK2 gene under the control of its own promoter and the other contained a HXK2ΔK'M (HXK2Δ) gene under the control of the HXK2 promoter. In fact, the wild-type phenotype was restored after transformation of the hsk2Δ mutant strain with a HXK2-containing plasmid (Figure 1A, lane 3). However, the wild-type phenotype was not restored after transformation of the hsk2Δ mutant strain with a HXK2Δ-containing plasmid (Figure 1A, lane 4), and the Hxk1 mRNA levels remained as in the de-repressed conditions of the wild-type strain.

In a parallel experiment, the level of Glk1 RNA was examined by using the same filters utilized in the Hxk1 RNA experiment, but now hybridizing with a GLK1 probe. The Glk1 regulation pattern is very similar to that described for Hxk1 RNA. The transcript is repressed by glucose and de-repressed in the absence of glucose when the cells are grown using ethanol as a carbon source (Figure 1B, lanes 1 and 2). However in this case, deletion of the HXK2 gene only increased the levels of the Glk1 transcript 4-fold in the repressed glucose medium, which represents 30 % of the Glk1 mRNA levels detected in the de-repressed conditions of the wild-type strain (Figure 1B, lane 5).

It is known that glucose-dependent transcriptional repression exerted through the main glucose-repression pathway is primarily dependent on hexokinase 2 [4,27]. It has also been described that overexpression of HXK1, but not of GLK1, partially relieves the requirement for Hxk2p in establishing glucose repression [18]. Our results indicate that HXK1 gene expression is repressed 10-fold by glucose and that this inhibition is Hxk2p-dependent. Since disruption of the HXK2 gene resulted in very high

Table 2 Complementary oligonucleotides carrying regulatory elements of the GLK1, HXK1 and HXK2 promoters used in this study

<table>
<thead>
<tr>
<th>DNA fragment</th>
<th>Sense (5’–3’)</th>
<th>Antisense (5’–3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERAhxk1</td>
<td>tcgAACAAGATGCACGGTTAATATATATATAAAATGTTACGTTTCTG (-526)</td>
<td></td>
</tr>
<tr>
<td>ERAhxk2</td>
<td>tcgAACAAGATGCACGGTTAATATATATATAAAATGTTACGTTTCTG (-334)</td>
<td></td>
</tr>
<tr>
<td>DRS1hxk2</td>
<td>tcgAACAAGATGCACGGTTAATATATATATAAAATGTTACGTTTCTG (+163)</td>
<td></td>
</tr>
<tr>
<td>DRS2hxk2</td>
<td>tcgAACAAGATGCACGGTTAATATATATATAAAATGTTACGTTTCTG (+251)</td>
<td></td>
</tr>
</tbody>
</table>

Lower-case letters indicate 5′ overhangs. Bold letters indicate regulatory elements of the respective promoters.
intracellular levels of Hxk1p, which could partially relieve the absence of Hxk2p in hxx2Δ mutants, the effect of Hxk2p on the expression of the Glk1 mRNA was studied using a hxx1Δ hxx2Δ double-mutant strain.

The results reported in Figure 1(C) strongly suggest that disruption of both HXK1 and HXK2 genes leads to an approx. 14-fold increase in the levels of Glk1 transcription under repressed conditions (Figure 1C, lane 8). Thus Glk1 mRNA levels are similar under the de-repressed conditions of the wild-type strain and the repressed conditions in the hxx1Δ hxx2Δ strain. This pattern of Glk1 regulation is opposite to that in wild-type cells and indicates that the hxx1Δ hxx2Δ mutation converts GLK1 from a glucose-repressed gene into a glucose-non-repressed gene. These results also confirm that high intracellular levels of Hxk1p can partially relieve the absence of Hxk2p in signalling glucose repression.

Additionally, the wild-type phenotype was completely restored after transformation of the hxx1Δ hxx2Δ double-mutant strain with a HXK2-containing plasmid (Figure 1C, lane 6), indicating that the Hxk2 protein is enough to signal glucose-repression of the GLK1 gene in a hxx1Δ hxx2Δ double-mutant strain. However, the wild-type phenotype was not restored after transformation of the hxx1Δ hxx2Δ double-mutant strain with a HXK2-containing plasmid (Figure 1C, lane 7), suggesting again that nuclear localization of the Hxk2p is necessary in signalling glucose repression of Glk1 transcription. mRNA levels of the control gene, ACT1, are unaffected by either Hxk2p or Hxk1p function and serve as loading controls.

Thus we conclude that glucose repression of the HXK1 and GLK1 genes requires Hxk2p, which operates at the nuclear level, suggesting that the Hxk2p is a direct or indirect trans-acting regulatory factor of the molecular machinery involved in the transcriptional repression of the HXK1 and GLK1 genes.

Hxk2p is required for glucose-induced expression of HXX2 and for glucose-repressed expression of the HXK1 and GLK1 genes in vivo

The finding that the glucose-controlled expression of the HXK1 and GLK1 genes failed in hxx2Δ mutants suggested that these phenotypes were mediated by the Hxk2 protein. To analyse this and to create an analytical system to study HXK2 gene expression, we used a set of strains containing integrated reporter plasmids with the lacZ gene cloned downstream of the HXK1, HXK2 and GLK1 promoters in single copy (Table 3). In order to complete the analytical system, we transformed the hxx2Δ and the hxx1Δ hxx2Δ mutant strains with two different plasmids.

Table 3 Regulation of HXK1, HXK2 and GLK1 expression in wild-type and mutant strains

<table>
<thead>
<tr>
<th>Genetic background . . .</th>
<th>hxx1 hxx2</th>
<th>hxx1 hxx2</th>
<th>hxx1 hxx2</th>
<th>hxx1 hxx2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion gene integrated</td>
<td>Gene in plasmid . . .</td>
<td>HXK2Δ</td>
<td>HXK2</td>
<td>HXK1 HXK2</td>
</tr>
<tr>
<td>HXK1:: lacZ</td>
<td>–</td>
<td>HXK2Δ</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>HXK2:: lacZ</td>
<td>900</td>
<td>930</td>
<td>115</td>
<td>118</td>
</tr>
<tr>
<td>GLK1:: lacZ</td>
<td>102</td>
<td>110</td>
<td>1103</td>
<td>1445</td>
</tr>
</tbody>
</table>

β-Galactosidase activity (m-units/mg of protein)
One contained the native HXK2 gene under the control of its own promoter and the other contained a HXK2ΔKK'M14 (HXK2Δ) gene under the control of the HXK2 promoter. Both genes were expressed efficiently in the host strains as judged by enzymic determinations of fructose-phosphorylating activities and by immunoblotting analysis using polyclonal antiserum raised against hexokinase 2 from S. cerevisiae in rabbits (results not shown). The cells were grown in glucose medium (YEPD) until the D₆₀₀ reached 1.0. The results are shown in Table 3.

Approximately a 7–8-fold increase in Hxk1-lacZ and Glk1-lacZ fusion enzyme activities were observed in the hxxk1Δ hxxk2Δ double null-mutant strains over the activity of the same fusion in the wild-type strains (Table 3, compare columns 1 and 5). These results could be attributed to a Hxk2p-dependent regulatory mechanism, because expression of the HXK2 gene in a hxxk1Δ hxxk2Δ double null-mutant background (Table 3, column 3) or a hxxk2Δ null-mutant background (Table 3, column 6), led to a dramatic decrease of Hxk1-lacZ and Glk1-lacZ fusion enzyme activities, restoring the basal levels of the reporter gene in the wild-type strains (Table 3, column 5).

Moreover, comparison of the activities observed in column 1 with 3 and 4, and column 5 with 8 of Table 3 indicated that Hxk2p not only represses HXK1 and GLK1 but also induces HXK2 expression. Comparing column 3 with 4 and column 5 with 6 in Table 3, it is observed that there is no difference between chromosomal HXK2 or HXK2 on a plasmid, although it was a multi-copy plasmid.

Thus the HXK2 gene, which encodes the major glucose-phosphorylating enzyme in S. cerevisiae and is also required for repression of several glucose-regulated genes and for induction of HXT1 expression at high concentrations of glucose [27,28], can also be considered a repressor of major importance in the control of the HXK1 and GLK1 and an important inductor in the control of HXK2 expression. One would expect that if Hxk2p plays a role in the transcriptional machinery that controls HXK1, GLK1 and HXK2 expression, it should be present in the nucleus. Recently, it has been reported from subcellular-localization studies that Hxk2p is localized in both the cytosol and nucleus [29]. Moreover, the essential part of the protein-mediating nuclear localization has been reported [6]. Thus comparison of β-galactosidase activity observed in Table 3, columns 1 and 2 and in columns 7 and 8, demonstrated that HXK2Δ is not functional in the regulatory process. Thus the Hxk2-mediated repression of HXK1::lacZ and GLK1::lacZ fusion genes together with the Hxk2-mediated induction of HXK2::lacZ fusion gene are dependent on the presence of the Hxk2p protein in the nucleus.

Finally, the reduction in β-galactosidase-specific activity in transformants carrying the hxxk2Δ mutation and the GLK1::lacZ fusion gene (Table 3, column 8) suggests that the activity observed is caused by the high level of Hxk1 protein present in the strain. Our results in Table 3 confirm that when Hxk2p was present, Hxk1p repressed HXXK2-lacZ expression (compare column 4 with 5). In the absence of Hxk2p, Hxk1p partially repressed GLK1-lacZ expression (compare column 1 with 8).

The importance of Hxk2p for protein–DNA interactions

We were interested to determine whether we could detect a differential pattern of band shifting with nuclear protein extracts prepared from wild-type and hxxk1Δ hxxk2Δ double-mutant strains grown in the presence of glucose and the different regulatory elements identified previously in the GLK1, HXK1 and HXK2 promoters. As shown in Figure 2, we observed that the hxxk1Δ hxxk2Δ mutation influences DNA–protein complex formation with four nearly homologous regulatory sequences from these genes: the ERA elements of the GLK1 (position −536, AAATGCA) and HXK1 (position −341, AAATGCA) genes and the DRS elements of HXK2 (DRS1+147, AAATGAA, and DRS2+245, AAATGAC). To carry out these experiments we synthesized double-stranded oligonucleotides containing the ERAHXK1, ERAHXK2, DRShxxk1 and DRS2hxk2 sequences (see Table 2) and used them as probes in a band-shift experiment. The four probes gave rise to a positive-differential band-shift reaction.
(CI, DNA–protein complex, on Figure 2) with extracts prepared from the hxk1Δ hxk2Δ double-mutant strain (Figure 2, lane 3). However, a band shift was not observed with extracts prepared from the wild-type strain (Figure 2, lane 2). After transformation of the hxk1Δ hxk2Δ mutants with plasmid-encoded HXK2, the signal representing the CI complex disappeared (Figure 2, lane 9). These results suggested that Hxk2p impairs CI complex formation, which only appears in the absence of Hxk2p.

The apparently identical gel mobility observed for the complexes, independent of the probe utilized in the experiment, suggested that the DNA–protein interactions could occur with the same protein(s). To test this hypothesis, we carried out a series of competition experiments with a 100-fold excess of unlabelled double-stranded oligonucleotides containing the ERA

\[\text{ERA}_{\text{HXK1}}, \text{ERA}_{\text{HXK2}}, \text{DRS1}_{\text{HXK2}} \text{ and DRS2}_{\text{HXK2}} \]

elements as specific competitors and with a 300-fold excess of unlabelled calf thymus DNA as non-specific competitor. Figure 2 shows that the excess of calf thymus DNA was an ineffective competitor in band-shift assays with radiolabelled probes (lane 8). However, the oligonucleotide containing the ERA

\[\text{ERA}_{\text{GLK1}} \]

-binding site was an effective competitor in the band-shift assays that utilized the ERA

\[\text{ERA}_{\text{HXK1}}, \text{DRS1}_{\text{HXK2}} \text{ and DRS2}_{\text{HXK2}} \]

elements, and itself as probe. The fact that the oligonucleotide containing the ERA

\[\text{ERA}_{\text{GLK1}} \]

-binding site was able to compete with all these probes suggested that identical proteins are responsible for the band shifts that we observed with the differently labelled oligonucleotides.

The oligonucleotides containing the ERA

\[\text{ERA}_{\text{HXK1}} \text{, DRS1}_{\text{HXK2}} \text{ and DRS2}_{\text{HXK2}} \]

-binding sites were also effective competitors in the band-shift assays that utilized these probes, but higher amounts of competitor were necessary to completely displace the complexes (results not shown).

Taken together, this information is consistent with a model (Figure 3) in which the participation of Hxk2 and Hxk1 proteins is required for the glucose-induced modulation of GLK1, HXK1 and HXK2 gene expression. In the presence of glucose, the ERA and DRS elements do not operate in the control of GLK1 and HXK2 expression. When glucose is present in the culture medium the GLK1 gene is either not expressed or expressed at a very low level. We did not observe differences between yeast strains with or without the ERA element of the GLK1 promoter, in terms of GLK1 gene expression [17]. Similarly, in rich medium with glucose the presence or absence of the DRS element in HXK2 does not affect its gene expression [9]. Thus the ERA and DRS elements do not have a regulatory function under these metabolic conditions and the CI DNA–protein complex was not detected (Figure 2, lane 2). However, several non-carbon-source-dependent DNA–protein complexes were observed, as described previously [10,17]. Upon glucose exhaustion or even in the presence of glucose when the HXK2 gene was deleted (hxk2Δ), the ERA and DRS elements were operative and functioning in the negative control of GLK1 and HXK2 gene expression, respectively [9,17]. A high-mobility DNA–protein complex (CI) was detected under these metabolic conditions (Figure 2, lane 3), suggesting that unknown proteins (X in Figure 3) interact with the regulatory elements. We believe that this DNA–protein complex should be a functional complex under the negative control of GLK1 and HXK2 gene expression.

Deletion of the HXK2 gene induces an overexpression of HXK1 (Figure 1), and this has a marked repressing effect on HXK2 and GLK1 gene expression (Table 3, compare lane 4 with 5 and lane 1 with 8). A possible explanation would be that Hxk1p acts as an Hxk2p analogue with regard to the ERA element and as an Hxk2p competitor with regard to the DRS element.

In summary, we have shown that a cytosolic protein (Hxk2p) that participates in an essential metabolic pathway (glycolysis) can also be targeted to the nucleus, where it functions in transcription, alluding to a potentially important pathway of nuclear–cytosolic dialogue. This dual capacity suggests that Hxk2p plays a multifunctional role in the cell. The simplest interpretation of our findings is that Hxk2p is involved in a positive-feedback loop that serves to amplify its own expression and in a negative-feedback loop that represses the expression of HXK1 and GLK1 in response to high glucose levels in the culture medium. Our data also suggest that Hxk1p acts to dampen Hxk2p-mediated regulatory functions.

We are very grateful to Juana Maria Gancedo and Brian Gin for critical reading of the manuscript. This work was supported by grant PB97-1213-C02-02 from the Dirección General de Enseñanza Superior e Investigación Científica (DGESIC). T.C. and A.R. were supported respectively by the DGESIC and the University of Oviedo.

REFERENCES

Hexokinase 2 protein in expression control of GLK1, HXK1 and HXK2 genes

© 2001 Biochemical Society