The processing and activation of prolegumain were studied using the recombinant protein synthesized by cells that had been stably transfected with a human legumain cDNA construct. A cell line termed C13 was selected for the high-level expression of prolegumain. C13 cells produced primarily 56 kDa prolegumain. The 56 kDa form was enzymically inactive but stable at neutral pH, unlike the 35 kDa mature pig legumain; it could be converted into a 46 kDa active form by incubation at pH 4.5. The 56 kDa pro-form and the 46 kDa active form were found to have the same N-terminal amino acid sequence, indicating that cleavage at the N-terminus was not necessary for prolegumain activation, and that the decrease in molecular mass was due to a C-terminal cleavage. The C-terminal processing site was identified as Asn223. Replacement of Asn223 at the cleavage site with aspartate, serine, alanine or glutamate abolished the processing and activation of prolegumain. In contrast, mutation of other asparagine and aspartate residues near the cleavage site had no effect. These results demonstrate that Asn223 is essential for prolegumain activation.

Key words: asparaginyl endopeptidase, legumain, lysosomal endopeptidase, enzyme processing.

INTRODUCTION

Mammalian legumain (EC 3.4.22.34) is a recently discovered lysosomal protease that belongs to a distinct family of cysteine endopeptidases, C13. [Identifiers for peptidase families and clans are as defined in the MEROPS database, Release 5.0 (www.merops.co.uk/merops/merops.htm) [1].] Legumain requires acidic conditions for activity and has strict specificity for cleavage at an asparaginyl residue in the P1 site. Legumain activity can be inhibited by human cystatin C and ovocystatin, but not by compound E-64 [trans-epoxysuccinyl-l-leucylamido (4-guanidino)butane], a potent inhibitor of many cysteine peptidases of the papain family, including most lysosomal cathepsins [2-4]. In plants, there is abundant evidence that legumain functions as a processing enzyme that causes limited proteolysis of precursor proteins [5]. Mammalian legumain has also been shown to be involved in processing of the microbial tetanus toxin C fragment for MHC class II antigen presentation in the endosomal system [6,7]. Recently, legumain was implicated as an inhibitor of osteoclast formation and bone resorption [8].

INTRODUCTION

It has been established that the genes for legumain in Schistosoma mansoni [9] and humans [10] encode inactive prolegumain that can be activated by incubation at acid pH. Prolegumain expressed in Saccharomyces cerevisiae from a plant legumain gene has also been demonstrated to be processed and activated in yeast vacuoles, known to be acidic compartments [11]. The activation appears to be autocatalytic, but for both the human [10] and plant [12] systems the authors have emphasized the importance of cleavage at aspartyl bonds, rather than the asparaginyl bonds that are far more readily cleaved by legumain.

On the basis of a common catalytic-site motif, legumain (C13) and four other families of endopeptidases, containing clostripain (C11), gingipain (C25), caspases (C14) and seprin (C50), form a distinct group of cysteine peptidases termed clan CD [13,14]. The substrate specificities of the peptidases in clan CD are dominated by the interactions of the S1 subsites. Many of the enzymes in clan CD are known to be synthesized as proenzymes, but for none of them is the mechanism of activation well understood. It is hoped that the present investigation of the route of activation of human prolegumain will contribute to the eventual understanding of the regulation of activity of this whole group of enzymes.

MATERIALS AND METHODS

Materials

Z-Ala-Ala-Asn-NHMec [where Z is benzylloxy carbonyl and NHMec is 7-(4-methyl) coumaryl amide] was purchased from Dr C. Graham Knight (Department of Biochemistry, University of Cambridge, Cambridge, U.K.). Human embryonic kidney (HEK) 293 cells (cat. no. CRL 1573) were from American Type Culture Collection (Rockville, MD, U.S.A.). All reagents for tissue culture were purchased from either Sigma or Life Technologies (Paisley, Scotland, U.K.). The synthetic peptides acetyl (Ac)-DDPEDGG-amide (N-peptide), Ac-DLEESRLTEEIQ-RHLD-amide (C-peptide), 9-fluorenylmethoxy carbonyl (Fmoc)-Ala-Glu-Gln-Lys-amide (AEQK) and Fmoc-Ala-Glu-Asn-Lys-amide (AENK) were purchased from MWG-Biotech (Milton Keynes, U.K.). All oligonucleotides were synthesized by Sigma Genosys. Brefeldin A, NH$_2$Cl and protease inhibitors (E-64, leupeptin, PMSF, pepstatin, 1.10-phenanthroline and benzamidine) were purchased from Sigma. Endoglycosidase F (PNGase) was from New England Biolabs. Pig legumain and ovocystatin were as described previously [2].
Plasmids for the expression of wild-type and mutant legumain in mammalian cells

The full-length cDNA encoding human prolegumain was amplified using the forward primer 5'-GTGTCTGCAATTTGATATCAGATCTGAGGACG-3' and the reverse primer 5'-GTCTCTGAGTCGACATCAGTCTCGG-3', and a human placenta Marathon-Ready cDNA (Clontech) as the template. The PCR product was subcloned into the mammalian expression vector pcDNA3.1(−) (Invitrogen) through 5'EcoRI and 3'HindIII sites. The construct (hsleg/pcDNA) was propagated in Escherichia coli DH5α (Life Technologies) and the plasmid DNA was purified with a Qiagen Maxiprep kit. The insert was sequenced and found to be identical with the published human legumain sequence (accession number Y09862 [2]). Mutagenesis was performed by the PCR site-directed mutagenesis method originally described by Picard et al. [15], with modifications. Mutagenic primers based on the nucleotide sequence of human legumain were designed to generate seven constructs with putative processing sites mutated (Table 1). Polymerase pfu (Stratagene) was used for all PCR reactions, with a typical run of 94 °C for 3 min, followed by 30 cycles of 94 °C for 1 min, 48 °C for 1 min and 72 °C for 2 min. Mutated codons were introduced by performing PCR with a mutagenic primer and the reverse primer of pcDNA3.1 (5'-TAGAAGGCACAGTCGAGGC-3'), and hsleg/pcDNA as the template to generate a megaprimer. The megaprimer and a legumain-specific forward primer (5'-CTCCAGGACAGTCGAGGACG-3') were used for the second run of PCR with the same template to generate a 1 kb product containing the mutated nucleotides. The 1 kb legumain fragment with mutation was double-digested with BamHI and HindIII, and then ligated into hsleg/pcDNA plasmid that had also been digested with the same restriction enzymes to remove the wild-type legumain fragment. Plasmid DNA of mutants or wild type was propagated in DH5α and the wild-type legumain fragment. Plasmid DNA of mutants or wild type was propagated in DH5α and purified by standard procedures [16]. The sequences of all mutated constructs were confirmed by sequencing.

Production of recombinant legumain in mammalian cells

HEK293 cells maintained in minimal Eagle's medium (MEM) supplemented with 10% (v/v) fetal bovine serum (FBS) were transfected with the legumain construct by use of either a Calcium Phosphate Transfection Kit (Invitrogen) or DNA–liposome fusion with LIPOFECTAMINE™ reagent (Life Technologies).

To prepare stable transfectants, HEK293 cells transfected by incubation with the hsleg/pcDNA plasmid (20 μg) in calcium phosphate precipitate for 24 h were subjected to a 30 s shock with glycerol/PBS (pH 7.4) solution. Cells were washed with PBS and then fed with fresh complete growth medium and, 24 h later, were passaged with 1:6 dilution and grown under selection with 1 mg/ml antibiotic G418 (Geneticin; Life Technologies) for 2 weeks. Cells that were resistant to G418 were passaged into two 24-well plates and cultured under selection until confluent. Further passages were done to plate cells from the two 24-well plates to four 12-well and finally to eight 6-well plates. When these 48 cultures reached confluency, one-third of the cells from each well were passaged to fresh plates, and two-thirds were collected to prepare cell lysates. Positive clones were screened and selected on the basis of the protein expression and enzymatic activity of recombinant legumain.

Transient expression of the wild-type and mutant legumain constructs was performed by transfection of plasmid DNA–liposome complexes into HEK293 cells. Briefly, cells were plated in 60 mm culture dishes and reached about 80% confluency the next day. Plasmid DNA (6 μg) in 300 μl of OPTI-MEM medium was first mixed with 25 μl of LIPOFECTAMINE™, also diluted in 300 μl of the same medium, and the mixture was incubated for 30 min to allow liposome–DNA complexes to form. The solution containing liposome–DNA complexes was brought up to 3 ml with OPTI-MEM medium and applied to cells that were rinsed with the same medium immediately before transfection. After incubation with the complexes for 5 h, the cells were changed into normal growth medium (MEM; 3 ml) containing 20% (v/v) FBS. This medium was replaced with fresh complete medium 24 h after transfection, and cells were harvested on the second day.

Cell culture and preparation of conditioned medium and cell lysate

C13 cells were grown in MEM supplemented with 10% (v/v) FBS and 0.5 mg/ml G418. In some instances, cultures were treated with 20 mM NH₄Cl or 20 μM brefeldin A for 16 h before harvesting. To collect conditioned medium, confluent cultures were washed with PBS and incubated in serum-free MEM for 16 h. The serum-free conditioned medium was collected and concentrated 20-fold with a Centricon 30 (Amicon). The concentrated medium was dialysed into PBS containing 1 mM EDTA and 0.01% CHAPS, pH 7.2. Further separation of molecules greater than 30 kDa in the concentrated conditioned medium was achieved by gel filtration on a Superdex 75 column in the same buffer. Fractions containing prolegumain detectable by immunoblot were collected.

Lysates were prepared from confluent cultures of C13 cells, HEK293 cells transiently transfected with legumain constructs (wild type and mutated) or mock-transfected. Cells were disrupted by three cycles of freeze/thaw in a lysis buffer. Depending upon the experiment, one of two lysis buffers was used: 40 mM citric acid and 121 mM Na₂HPO₄ (pH 5.8), or 8 mM Na₂HPO₄, 1.47 mM KH₂PO₄, 136.8 mM NaCl and 2.68 mM KCl (pH 7.2); both included 1 mM EDTA and 1% n-octyl β-D-glucopyranoside. Cell lysates were collected after removal of material pelleted during centrifugation at 18000 g for 10 min.

Immunological and enzymic detection of recombinant legumain

C13 cells were fixed in 3% (w/v) paraformaldehyde in PBS and permeabilized in 0.4% Triton X-100 in PBS. They were then incubated with an affinity-purified anti-(pig legumain) antibody raised in a sheep [3], followed by FITC-conjugated anti-(sheep immunoglobulin) secondary antibody (Sigma). Cells were examined by the use of a Zeiss Axioshot microscope equipped with an epifluorescence light source and a filter set for fluorescein, and photographed with a Zeiss camera system.
Legumain in conditioned medium or cell lysates was detected by SDS/PAGE immunoblot. Proteins in the SDS/polyacrylamide gel were transferred to nitrocellulose or PVDF membrane according to the method of Towbin et al. [17]. Immunoreaction and colour development were as previously described [3].

To measure the enzymic activity of recombinant legumain, cell lysate (20 μl) was placed in the wells of a 96-well microtitre plate, and the reaction was started by addition of 150 μl of Z-Ala-Ala-Asn-NHMec solution in assay buffer (40 mM citric acid, 121 mM Na₂HPO₄, pH 5.8, containing 1 mM dithiothreitol, 1 mM EDTA and 0.1% CHAPS) to give a final concentration of 10 μM substrate. The plates were incubated at 25 °C and readings of fluorescence (excitation 360 nm; emission 460 nm) were taken for five cycles, with an interval of 7 min between cycles, in a PerSeptive Biosystems CytoFluor II fluorescence plate reader. The maximum rate, determined as the average of changes between cycles, was the measure of activity. Results were corrected by subtracting the value obtained with the extraction buffer control.

N-terminal microsequencing

Samples containing various forms of legumain and fragments were separated in 10% (w/v) NuPAGE Bis-Tris gels (Novex) in Mops/SDS running buffer (50 mM Mops, 50 mM Tris base, 3.5 mM SDS and 1 mM EDTA, pH 7.7). The separated proteins were transblotted on to PVDF membrane in 10 mM Caps buffer, pH 11, containing 10% (v/v) methanol, and stained with Coomassie Blue R solution. Bands of interest were excised and subjected to N-terminal sequence analysis. N-terminal sequencing was carried out using an Applied Biosystems Procise Model 492 Sequencer at the Microchemical Facility of the Babraham Institute.

RESULTS

Production of recombinant human prolegumain

Full-length cDNA for human legumain was stably transfected into cells of the HEK293 cell line that we had used previously for transient expression of mouse legumain [3]. Several clones resistant to G418 were screened and their expression of recombinant legumain was examined by immunoblot analysis and activity assay. One of the clones, designated C13, was selected on the basis of the high level of expression of prolegumain. An immunofluorescence image of the C13 cells labelled with a specific polyclonal antibody against pig legumain (Figure 1A) shows diffuse cytoplasmatic staining, but also punctate staining consistent with the presence of legumain in lysosomes, as found previously for rat kidney cells [3]. Figure 1(B) demonstrates the species of legumain from C13 cells by immunoblot. Three bands at 56, 47 and 36 kDa were recognized by the anti-legumain antibody in a C13 lysate prepared by extracting cells with pH 5.8 lysis buffer (lane 1). Brefeldin A is known to block transit of proteins by disrupting the Golgi apparatus [18]. Following treatment of C13 cells with brefeldin A (20 μM), the 56 kDa form was the predominant species in the lysate (lane 2). When C13 cultures were grown in the presence of 20 mM NH₄Cl for 16 h, a reagent known to increase the pH of the lysosomal system [19,20], the 56 kDa form could be found in the cell lysate (lane 3) and the conditioned medium (lane 4). A very small amount of the 47 kDa form was also detected in the lysate from either brefeldin A- or NH₄Cl-treated cultures (lanes 2 and 3). When pH 7.2 lysis buffer was used to extract C13 cells, only the 56 kDa form was seen in the lysate from cultures with or without NH₄Cl treatment (not shown here; see lanes 1 of Figures 3, 7 and 8). No enzymic activity was detected in lysates containing the 56 kDa form (see Figure 2 pH dependence of prolegumain activation

Prolegumain in the conditioned medium (●) or in the cell lysate (▲) of C13 cells was incubated at 30 °C in phosphate/citrate buffers in the pH range 2.5–7.5, and the activity was plotted between pH 2.5 and pH 6. Enzymic activity was determined as described in the Materials and methods section.

© 2000 Biochemical Society
Figure 3 Processing of the 56 kDa legumain at pH 5.8 and pH 4.5

C13 cell lysate containing the 56 kDa legumain in pH 7.2 buffer (lane 1) was adjusted to pH 5.8 (lane 2) and 4.5 (lane 3) by the addition of 0.1 M citric acid containing 1 mM EDTA and 0.01% CHAPS, and incubated at 30 °C for 3 h. After incubation, one-half of each sample was subjected to SDS/PAGE and immunoblotting to detect different forms of legumain (A), and the other half was used in the fluorimetric assay to detect legumain activity (B).

Figures 3B, 7B and 8B). The data suggest that the 56 kDa immunoreactive protein is the pro-form of legumain, which remains stable at pH 7.2.

Activation of prolegumain

The conditioned medium and cell extracts from NH₄Cl-treated C13 cultures containing 56 kDa prolegumain (Figure 1B, lanes 3 and 4), and showing no legumain activity, were incubated at 30 °C for 4 h in phosphate/citrate buffers in the range of pH 2.5–7.5 before assay of legumain activity at pH 5.8. As shown in Figure 2, active legumain was formed, the optimal pH for activation being approx. 4.5.

In the immunoblot (Figure 3A), it could be seen that, during incubation of the lysate prepared with the pH 7.2 buffer (lane 1) for 3 h at pH 5.8, the 56 kDa form was converted primarily into the 47 kDa form (lane 2), whereas pH 4.5 gave the 46 kDa form (lane 3). Appearance of the 46 kDa form in the cell lysate coincided with an increased amount of legumain activity, whereas only a low level of legumain activity was detected in the sample containing both the 56 and 47 kDa forms (Figure 3B). More 47 kDa form was generated in the sample containing both the 56 and 47 kDa forms after a 4 h incubation in the same pH 5.8 buffer, but again not much activity was detected (Figure 4A, lane 1; Figure 4B). Incubation at pH 4.5 for 4 h resulted in the conversion of both the 56 and 47 kDa forms into the 46 kDa form, and in a 15-fold increase in enzymic activity (Figure 4A, lane 3; Figure 4B). These data demonstrate that the 56 kDa prolegumain could be converted into the 47 kDa intermediate form at pH 5.8 and into the 46 kDa active form at pH 4.5, and that the 46 kDa active form could also be generated from the 47 kDa intermediate form at pH 4.5, presumably by limited proteolysis.

Legumain purified from pig kidney was a 35 kDa glycoprotein [2], and a 36 kDa form was also detected in the C13 cell lysate prepared in the pH 5.8 buffer (Figure 1A, lane 1). In contrast, the active legumain derived from the recombinant 56 kDa prolegumain was a protein of 46 kDa. We asked whether the difference in apparent molecular mass between the two active forms of legumain was due to the degree of glycosylation. Treatment of the proteins with endoglycosidase F [2] caused a decrease in molecular mass of approx. 7 kDa for both (results not shown). This suggested that both proteins have the same carbohydrate component, and that the change in molecular mass is due to loss of polypeptide as a result of proteolysis. This possibility was examined further by prolonged (24 h) incubation of C13 cell lysate containing the 46 kDa active legumain in the
Legumain has a very strict specificity for cleavage of asparaginyl bonds on pH 5.8 [2,4], although it has also been shown to cleave aspartyl bonds slowly, especially under acidic conditions [10,12]. There are Asn and Asp residues close to the identified processing site. In order to test whether Asn-232 is crucial for activation of prolegumain, Asn and Asp residues at and near the site were mutated. Seven mutant constructs, N321Q, N323Q, N323D, N323S, N323A, D324E and D340E, were transiently expressed in HEK293 cells. Cells were treated with 20 mM NH4Cl for 16 h (a condition previously described for obtaining mostly prolegumain) before harvesting, and extracted with pH 7.2 buffer. Cell lysates from mutants and the wild type (WT; lane 16). Only these four samples acquired enzymic activity after incubation at pH 4.5, as shown in (B). In the immunoblot (A), the band between 56 kDa and 46 kDa (block arrow; lanes 1–18) was an artifact, seen also in the vector control (VEC; lanes 17 and 18). In lanes 7 and 8, prolegumain expressed from mutant N323S was larger than 56 kDa. It is likely that additional glycosylation occurred in this mutant, as a result of the creation of a new potential glycosylation site (Asn-Thr-Ser) at Asn-232 when Asn-232 was mutated to Ser-232. The data shown are representative of the results from four transfection experiments.

Fig. 5 Sites of post-translational processing in prolegumain

Schematic representation of the 56 kDa human prolegumain showing the cleavage site of the signal peptide (position A) and the C-terminal processing site (position C) that produces active legumain. The inactive 56 kDa and 47 kDa forms had the same N-terminal residue, Val18, as the 46 kDa active legumain. The N-terminus of the 35 kDa legumain purified from pig kidney was identified as Gly19 [2], showing cleavage at position B. His148 and Cys189 are the catalytic residues [13]. Two synthetic peptides, denoted N-peptide and C-peptide and used for the inhibition study, were derived from the amino acid sequences as shown.

Fig. 6 Asn-323 is essential for the processing and activation of prolegumain

The wild-type and mutant forms of legumain were transiently expressed in HEK293 cells, as described in the Materials and methods section. Cells were extracted with pH 7.2 lysis buffer and incubated at pH 7.2 or pH 4.5 for 3 h. After incubation, samples from each preparation were used for immunoblotting (A) to analyse prolegumain expression and processing. Samples from each preparation were also assayed in triplicate for legumain activity (B). It can be seen that 56 kDa prolegumain was expressed from the wild type and all mutants, and it remained stable at pH 7.2 (odd-numbered lanes). Processing of the 56 kDa form to the 46 kDa form at pH 4.5 was detected only with mutants N321Q (lane 2), D324E (lane 12) and D340E (lane 14), and the wild type (WT; lane 16). Only these four samples acquired enzymic activity after incubation at pH 4.5, as shown in (B). In the immunoblot (A), the band between 56 kDa and 46 kDa (block arrow; lanes 1–18) was an artifact, seen also in the vector control (VEC; lanes 17 and 18). In lanes 7 and 8, prolegumain expressed from mutant N323S was larger than 56 kDa. It is likely that additional glycosylation occurred in this mutant, as a result of the creation of a new potential glycosylation site (Asn-Thr-Ser) at Asn-323 when Asn-323 was mutated to Ser-323. The data shown are representative of the results from four transfection experiments.

Autocatalytic activation

The finding that the C-terminal residue of mature legumain is asparagine suggested that the activation of prolegumain is an autoprocessing event. We tested this hypothesis by the use of proteinase inhibitors. A mixture of inhibitors of aspartic proteinases (pepstatin), metalloproteinases (1,10-phenanthroline), serine proteinases (PMSF and benzamidine) and cysteine proteinases (E-64 and leupeptin) did not prevent the conversion of prolegumain when the 56 kDa form (Figure 7, lane 4) was incubated at either pH 5.8 (lane 5) or pH 4.5 (lane 6). Only when ovocystatin was added to the inhibitor mixture was the conversion inhibited (lanes 8 and 9). Legumain is the only peptidase known so far to be inhibited by cystatin but not by E-64 [21]. We conclude that ovocystatin blocked the processing of prolegumain into the 47 kDa intermediate form as well as into the 46 kDa active enzyme.

We also examined the effect of a competing tetrapeptide substrate on prolegumain activation (Figure 8). When Fmoc-
Figure 7 Ovocystatin blocks the conversion of the 56 kDa prolegumain into the intermediate and active forms

The lysate of C13 cells was incubated at pH 7.2, 5.8 and 4.5 at 30 °C for 4 h, without inhibitors (lanes 1–3), with a mixture of inhibitors (Mix; lanes 4–6), or with the same mixture of inhibitors plus 1 μM ovocystatin (Mix+Cy; lanes 7–9). The inhibitor mixture contained E-64 (10 μM), leupeptin (50 μM), PMSF (1 mM), pepstatin (1 μM), 1,10-phenanthroline (1 mM) and benzamidine (5 mM). Samples from each incubation mixture were subjected to (A) immunoblot analysis, and (B) assay of legumain activity (in triplicate).

Ala-Glu-Asn-Lys-amide (AENK), a specific peptide substrate of legumain shown previously to block the processing of the tetanus toxin C fragment by legumain [6], was included in the pH 4.5 incubation buffer, the conversion of prolegumain into the active form was almost completely prevented (Figure 8, lane 3). The same concentration of the glutamine analogue Fmoc-Ala-Glu-Gln-Lys-amide (AEQK; lane 4) had no effect on the processing and activation of prolegumain under the same conditions.

Slight inhibition of legumain activity by C-peptide

There is ample evidence that the propeptides of proteinases often act as inhibitors of the mature active enzymes. Examples are the N-terminal propeptides of cathepsins B [22,23], L [24,25] and S [26], Pseudomonas aeruginosa elastase [27], and a metalloproteinase from Brevibacillus brevis [28]. The data described above show that activation of prolegumain depends upon cleavage of a C-terminal peptide, and especially that the inactive 47 kDa intermediate form is converted into the active 46 kDa form by removal of a C-terminal peptide, since both forms share the same N-terminus (Figures 3–5). To evaluate the possibility that the residues immediately C-terminal to Asn232 of prolegumain may block the catalytic site, C-peptide consisting of 17 amino acids (Ac-DLEESQLEEEQRHLD-amide; Figure 5) was synthesized and tested for its inhibitory activity against the active mature pig legumain at pH 5.8. An N-peptide composed of seven amino acids from Asp257 to Gly287 (Ac-DDPEDGGR-amide; Figure 5) was also used. N-peptide was tested because the first residue of mature pig legumain from kidney was Gly2 [2], despite the fact that no N-terminal processing was observed during the activation of recombinant prolegumain. C-peptide inhibited approx. 75% of pig legumain activity at 1 mM concentration (K_i ≈ 630 μM), whereas N-peptide inhibited only about 10% of the activity at the same concentration.

DISCUSSION

Most lysosomal cysteine peptidases are synthesized aszymogens and can be autoactivated under acidic conditions, such as those found within the lysosomal compartment. Recombinant legumain overexpressed in C13 cells consisted of the 56 kDa proform, a 47 kDa intermediate form and a 36 kDa active form when cells were grown under normal conditions. The 36 kDa form was similar in size to the 35 kDa legumain purified from pig kidney [2], and the 36 kDa legumain from mouse tissues and recombinant mouse legumain expressed in HEK293 cells [3]. If the culture was exposed to NH_4Cl, which would be expected to induce a prolonged rise in pH in the lysosomes, only the 56 kDa pro-form was detected. Furthermore, treatment of the C13 cell culture with brefeldin A, which perturbs membrane trafficking, resulted in the presence of only 56 kDa prolegumain (Figure 1). These findings suggest that in vivo, once prolegumain is synthesized, it is routed via the Golgi to the lysosomal system for processing.

Reduced pH is crucial for the activation of the 56 kDa prolegumain. As shown in Figure 3, an inactive 47 kDa form of legumain was generated when prolegumain was incubated at pH 5.8, whereas incubation at pH 4.5 produced the 46 kDa
active legumain. The optimal pH for prolegumain activation was found to be 4.5 (Figure 2); this is in the pH range of lysosomal compartments measured from macrophages, kidney cells and some fibroblasts [20,29–31].

Since the 47 kDa and 46 kDa forms share the same N-terminus, the difference in molecular mass is attributable to a C-terminal extension of 10–20 amino acids beyond Asn in the 47 kDa form. The extension may cause the inactivity of the 47 kDa form by blocking the active-site cleft, as N-terminal propeptides have been shown to do in other endopeptidases [25]; see [32] for a review. The synthetic 17-mer peptide mimicking region Asp–Asp was weakly inhibitory, and this inhibition was not due to substrate competition, since C-peptide contains neither asparagine residues nor cleavable aspartyl bonds. Nevertheless, no clear conclusion can be reached from this. It is conceivable that the short synthetic peptide could not adopt the necessary conformation to exert inhibitory activity.

Although the first residue of active legumain purified from kidney tissues was identified as Gly [2], the first amino acid of the 46 kDa active legumain generated by incubating the 56 kDa prolegumain at pH 4.5 was Val [5] (Figure 5), immediately C-terminal to the putative signal peptide of human legumain. Conversion of the 56 kDa form into active 46 kDa legumain was due to C-terminal processing, removing 110 amino acids. The data indicate that the removal of the N-terminal peptide from prolegumain is not required for legumain activity. This activation profile may represent one of the features of members of clan CD, which also includes the caspase family. In caspases, activation of the pro-enzymes is achieved primarily by internal cleavages to produce two subunits with the catalytic dyad in the N-terminal subunit, and removal of the N-terminal peptide is not required for activation [33]. In contrast, conversion and activation of the proenzymes of the papain family (in clan CA), including cathepsins B, K and L, involve limited proteolysis leading to the pro-enzymes of the papain family (in clan CA), including cathepsins B, K and L, involve limited proteolysis leading to the pro-enzymes is achieved primarily by internal cleavages to

Conversion of prolegumain into the 46 kDa active form by C-terminal cleavage was attributable to the action of legumain itself, as it could be inhibited by a legumain inhibitor, ovocystatin, and a competing legumain substrate, AENK, but not the analogue AEQK (Figures 7 and 8). This is consistent with the recent report of Caffrey et al. [9] that a form of recombinant prolegumain from S. mansoni, in which asparagine replaced the catalytic cysteine, could not self-process to yield the active form.

Our finding that the activation of prolegumain occurs by cleavage of an asparaginyl bond contrasts with two previous reports implicating cleavage of aspartyl bonds. A human prolegumain–IgG fusion protein was shown to be activated at pH (4.5) for human prolegumain activation, the crucial residue that the C-terminal processing of plant legumain occurred at the second aspartyl bond of a di-aspartate site. Our data from site-directed mutagenesis (Figure 6) clearly show that, at the optimal pH (4.5) for human prolegumain activation, the crucial residue is Asn. Processing and activation of prolegumain were not affected by replacement of Asn, Asp or Asp with other amino acids. Only when Asn was mutated was the processing prevented. Moreover, with prolegumain from the N324D mutant, in which a di-aspartate site was created by the substitution of Asn with Asp, neither conversion nor activation of the mutant prolegumain occurred.

The autolytic activation of prolegumain gives rise to a 46 kDa active form, but a 35/36 kDa form of legumain is commonly present in cells and tissues [2,3]. The change from 46 kDa to 36 kDa can be mediated at pH 4.5 by one or more peptidases that are inhibited by E-64 and leupeptin. This further processing is therefore likely to be due to the action of other lysosomal peptidases in the acidic conditions of the lysosomal compartment, and may be a step towards the ultimate degradation of the enzyme.

REFERENCES

Received 23 June 2000/23 August 2000; accepted 14 September 2000

