Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver

Anna Kordelia KURZ*, Christoph BLOCH†, Dirk GRAF*, Stephan vom DAHL*, Freimut SCHLIESS* and Dieter HÄUSSINGER*†

**Medizinische Einrichtungen der Heinrich-Heine Universität, Klinik für Gastroenterologie, Hepatologie und Infektiologie, Moorstrasse 5, D-40225 Düsseldorf, Germany, and †Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, Postfach 500247, D-44202 Dortmund, Germany

INTRODUCTION

Tauroursodesoxycholate (TUDC), a choleretic dihydroxy bile salt, prevents bile-salt-induced cholestasis [1,2] and exerts choleric effects by stimulating the excretion of other bile salts due to modulation of hepatocellular signalling pathways leading to increased canalicular transport capacity [3–10]. In addition, TUDC is thought to exert hepatoprotection [11–14]. This may explain the clinical use of ursodesoxycholic acid, which in vivo is rapidly conjugated with taurine or glycine [15], for treatment of cholestatic liver diseases such as primary biliary cirrhosis and primary sclerosing cholangitis [16–22]. A recent study investigating the possible mechanisms underlying the effects of TUDC showed that, in primary rat hepatocytes, TUDC caused an activation of the MAP (mitogen-activated protein) kinases extracellular-signal-regulated kinase-1 (Erk-1) and Erk-2 [10]. This MAP-kinase activation may be of relevance for the understanding of the physiological and therapeutic effects of TUDC in the liver [10]. The TUDC-induced MAP-kinase activation proceeds via a Raf-dependent pathway, as suggested by its inhibition by cAMP.

Furthermore, a specific inhibitor of MEK (MAP kinase/Erk kinase), PD098059 [23–25], completely blocked TUDC-induced MAP-kinase activation [10].

MAP kinases mediate the hypo-osmotic and TUDC-induced stimulation of taurocholate (TC) excretion into bile [8,10]. TUDC [4,7] like hypo-osmotic cell swelling [3,9,26], causes a microtubule-dependent increase in the capacity of canalicular bile salt excretion and stimulation of exocytosis [3,26,27], presumably due to apical targeting of vesicles containing bile salt transporter molecules in response to MAP-kinase activation [4,8,10].

MAP kinases have a central control position in cellular signal transduction, and different upstream signalling events, often converging at the level of Ras/Raf, are known to participate in this signal transduction towards Erks. Ras is a small monomeric protein kinase C- and genistein-sensitive tyrosine kinases. Ras activation by TUDC was followed by an activation of the mitogen-activated protein kinases extracellular-signal-regulated kinase-1 (Erk-1) and Erk-2. In perfused rat liver, PI 3-kinase inhibitors largely abolished the stimulatory effect of TUDC on taurocholate excretion, suggesting an important role for a PI 3-kinase/Ras/Erk pathway in the choleretic effect of TUDC.

Key words: bile salt, cholestasis, hepatocytes, MAP kinases, signal transduction

GTP-binding protein that cycles between an inactive GDP-bound and an active GTP-bound form [8,10,28–30].

In the present study, the involvement of TUDC-induced signal elements upstream of the MAP kinases Erk-1 and Erk-2 were analysed. The results reveal TUDC as a potent activator of phosphoinositide 3-kinase (PI 3-kinase) and Ras, and suggest that TUDC signalling via the PI 3-kinase/Ras/Raf/MEK/Erk pathway mediates its choleretic effect.

MATERIALS AND METHODS

Materials

Anti-Erk-1 and anti-Erk-2 antibodies were obtained from UBI (Lake Placid, NY, U.S.A.); the rat monoclonal anti-Ras antibody Y13-259 was provided by the Max-Planck-Institut für Molekulare Physiologie (Dortmund, Germany). The anti-phosphotyrosine (p-Tyr) antibody was obtained from Sigma-Aldrich Chemie GmbH (Deisenhofen, Germany); genistein, daidzein and PD098059 were purchased from Calbiochem-Novabiochem GmbH (Bad Soden, Germany); wortmannin and LY294002 were from Biomol Research Laboratory Inc. (Hamburg, Germany); and cholera toxin was from Research Biochemicals Inc. (Natick, MA, U.S.A.). G68850 was a gift from Gödecke AG (Freiburg, Germany). Cell culture media and fetal calf serum were from Gibco Life Technologies (Gaithersburg, MD, U.S.A.). EGF (epidermal growth factor), TUDC, TC, Protein A-Sepharose and IGEPAL CA-630 [octylphenoxynoyl(polyethoxyethanol) were obtained from Sigma-Aldrich Chemie GmbH. ATP was from Roche Diagnostics GmbH (Mannheim, Germany); [*-32P]ATP was from Amersham Pharmacia Biotech (Uppsala, Sweden), and [*]HTC was from DuPont (Bad Homburg, Germany). All other chemicals were from E. Merck (Darmstadt, Germany) at the highest quality available.

Abbreviations used: EGF, epidermal growth factor; Erk, extracellular-signal-regulated kinase; GST, glutathione S-transferase; JNK, Jun kinase; MAP, mitogen-activated protein; MEK, MAP kinase/Erk kinase; PI 3-kinase, phosphoinositide 3-kinase; p-Tyr, phosphotyrosine; RBD, Ras-binding domain; TC, taurocholate; TUDC, tauroursodesoxycholate.
Cell preparation and culture

Isolated hepatocytes were prepared from livers of male Wistar rats by a collagenase perfusion technique, as described [31]. Aliquots of 1.5 x 10^6 cells were plated on collagen-coated culture dishes (36 mm diameter) and maintained at 37 °C and a 5% CO2 atmosphere in bicarbonate-buffered Krebs–Henseleit medium (115 mmol/l NaCl, 25 mmol/l NaHCO3, 5.9 mmol/l KCl, 1.18 mmol/l MgCl2, 1.23 mmol/l NaH2PO4, 1.2 mmol/l NaSO4 and 1.25 mmol/l CaCl2), supplemented with 6 mmol/l glucose. After 2 h the medium was removed and the cells were washed twice. Subsequently the culture was continued for 24 h in 1 ml of Williams medium E (Sigma-Aldrich Chemie), supplemented with glutamine (2 mmol/l), penicillin (100 units/ml), streptomycin (0.1 mg/ml), insulin (0.1 µmol/l), dexamethasone (0.1 µmol/l) and 5% (v/v) fetal calf serum. The viability of the hepatocytes was more than 95%, as assessed by Trypan Blue exclusion. TUDC and TC were dissolved in medium; the supernatant of a primary culture lysed in 100 µl of RIPAPuffer and the sample was incubated at 4 °C for 40 min. Beads were collected by centrifugation (20000 g for 20 min), washed three times with RIPAPuffer and resuspended in 10 µl of loading buffer. The protein samples were submitted to SDS/PAGE (15%-polyacrylamide gel) and immunoblotted. Ras was detected using the rat monoclonal pan-Ras antibody Y13-259 (16 h at 4 °C), followed by rabbit-anti-(rat IgG) antibody (2 h at room temperature) coupled to horseradish peroxidase. Antigen–antibody complexes were visualized using an enhanced chemiluminescence detection system (Amersham Buchler). Densitometric evaluation was performed with the E.A.S.Y RH-system (Herolab, Wiesloch, Germany).

Detection of mobility-shifted Erk-1 and Erk-2

At the end of the incubation period, the medium was removed and the cells were immediately lysed at 4 °C using RIPAPuffer (50 mmol/l Tris/HCl buffer, pH 7.2, containing 150 mmol/l NaCl, 40 mmol/l NaF, 5 mmol/l sodium dithiothreitol, sodium vanadate, 0.5 mmol/l PMSF, 0.1% aprotinin, 1% IGEPAL CA-630, 0.1% sodium deoxycholate and 0.1%, SDS). The homogenized lysates were centrifuged at 20000 g at 4 °C, and the supernatant was added to an identical volume of gel loading buffer containing 200 µmol/l 1,4-dithiothreitol, and adjusted to pH 6.8. After heating to 95 °C for 5 min, the proteins were subjected to SDS/PAGE (50 µg of protein/ lane; 9%, gel). Following SDS/PAGE, gels were equilibrated with transfer buffer (39 mmol/l glycine, 48 mmol/l Tris/HCl, 0.03%, SDS and 20% methanol). Proteins were transferred to nitrocellulose membranes using a semi-dry transfer apparatus (Pharmacia Biotech GmbH, Freiburg, Germany). Blots were blocked in TBST (20 mmol/l Tris/HCl, pH 7.5, 150 mmol/ l NaCl and 0.1%, Tween 20) containing 5% (w/v) BSA and then incubated overnight with 1:50000 diluted antisera against Erk-1 or Erk-2. After washing with TBST and incubation with horseradish peroxidase-coupled anti-(rabbit IgG) antibody diluted 1:10000 at room temperature for 1 h, the blots were washed three times and developed using enhanced chemiluminescence detection (Amersham Pharmacia Biotech).

Ras activation assay

The minimal Ras-binding domain (RBD) of Raf-1 was used as an activation-specific probe for Ras-GTP [32]. GST–RBD, a fusion protein comprising glutathione S-transferase (GST) and the RBD (amino acids 51-131) of Raf-1, was constructed and expressed in Escherichia coli, as previously described [30]. The bacterial pellet (50 g wet weight) was resuspended in PBS containing 2 mM 1,4-dithiothreitol, 0.1 µM aprotinin, 1 µM leupeptin and 20 µM Pefabloc. After sonication for 6 x 1 min on ice and subsequent centrifugation (50000 g for 60 min), the supernatant was chromatographed on a column (2.6 cm x 6 cm) of glutathione–Sepharose (Pharmacia Biotech). The column was washed with PBS and protein was eluted with 10 mM glutathione in PBS. Fractions containing GST–RBD were concentrated by ultrafiltration and applied in PBS to a HiLoad 26/60 Superdex 200 gel-filtration column (Pharmacia Biotech) for final purification. Purified GST–RBD (10 mg) was bound to glutathione–Sepharose (2 ml) by incubation for 30 min and washed three times with RIPAPuffer.

GST–RBD (2 µg of protein), recoupled to glutathione–Sepharose beads in 4 µl of RIPAPuffer, was added to the supernatant of a primary culture lysed in 100 µl of RIPAPuffer and the sample was incubated at 4 °C for 30 min. Beads were collected by centrifugation (20000 g for 20 min), washed three times with RIPAPuffer and resuspended in 10 µl of loading buffer. The protein samples were submitted to SDS/PAGE (15%-polyacrylamide gel) and immunoblotted. Ras was detected using the rat monoclonal pan-Ras antibody Y13-259 (16 h at 4 °C), followed by rabbit-anti-(rat IgG) antibody (2 h at room temperature) coupled to horseradish peroxidase. Antigen–antibody complexes were visualized using an enhanced chemiluminescence detection system (Amersham Buchler). Densitometric evaluation was performed with the E.A.S.Y RH-system (Herolab, Wiesloch, Germany).

PI 3-kinase assay

The assay was performed according to [33]. Briefly, cell cultures were washed twice with ice-cold PBS, and lysed in a buffer containing 1% Triton X-100, 150 mmol/l NaCl, 10 mmol/ l Tris/HCl (pH 7.5), 1 mmol/l EDTA, 1 mmol/l EGTA, 20 mmol/l NaF, 0.2 mmol/l PMSF and 40 mmol/l 0.5% Nonidet P-40. Soluble extracts were prepared by centrifugation at 12000 g for 15 min at 4 °C. The supernatants were removed and assayed for total protein by the Bradford method [33]. For immunoprecipitation, 500 µg of protein from each lysate was incubated with 2 µg of an antibody against p-Tyr for 2 h at 4 °C. Immune complexes were collected with the aid of Protein A-Sepharose, washed three times with kinase buffer (10 mmol/l Tris/HCl, pH 7.4, 150 mmol/l NaCl, 10 mmol/l MgCl2, and 0.5 mmol/l 1,4-dithiothreitol), washed two times with a buffer containing 0.5 mmol/l LiCl and 100 mmol/l sodium vanadate in 0.1 mmol/l Tris/HCl (pH 7.5), and two times with a buffer containing 10 mmol/l Tris, 100 mmol/l NaCl, 1 mmol/l EDTA (pH 7.5) and 200 mmol/l sodium vanadate. PI 3-kinase assays were performed in a reaction mixture containing 50 mmol/ l Hepes (pH 7.5), 200 mmol/l ATP, 50 mmol/l MgCl2, and 1 mmol/l EGTA (pH 7.5). A 30 µl portion of assay buffer supplemented with 20 µg of sonicated PtdIns and 8 µCi of [γ-32P]ATP was added to the immune complex. The reactions were allowed to proceed at 37 °C for 30 min, and were stopped by the addition of 100 µl of 1 M HCl to each sample. Lipid extracts were obtained by the addition of 180 µl of chloroform/methanol (1:1, v/v), intense mixing of the probes, and centrifugation (14000 g for 2 min) for phase separation. Aliquots of 40 µl of lower organic phase were spotted on to TLC plates. The plates were developed using chloroform/methanol/4 M NH4OH (9:7:2, by vol.). The activity of PI 3-kinase was monitored by autoradiography.

Liver perfusions

Livers from male Wistar rats (120–180 g body weight), fed ad libitum with a standard diet, were perfused as described previously [34] in a non-recirculating system at 37 °C with bicarbonate-buffered Krebs/Henseleit medium, supplemented with 2.1 mmol/l l-lactate and 0.3 mmol/l pyruvate. The flow was adjusted such that the influent K+ concentration was 5.9 mmol/l. The perfusate was equilibrated with O2/CO2 (95:5); the perfusate flow rate was 3.5–4 ml·min⁻¹·g of liver⁻¹. Portal pressure was monitored continuously with a pressure transducer; tissue vi-
ability was routinely tested by measuring the release of lactate dehydrogenase during perfusion. The inhibitors used in the present study were without effect on tissue viability and perfusion pressure. Bile ducts were cannulated, and bile was collected in 2-min samples. Bile flow was determined gravimetrically. Probes of 100 μmol/l [3H]TC were added to the perfusion buffers to give a final radioactivity of approx. 37 kBq/l. Biliary TC excretion was calculated by measuring radioactivity in the bile samples and on the basis of the specific radioactivity in the influent perfusate. To wash out endogenously formed bile salts and to obtain steady-state TC excretion, livers were pre-perfused for 30–40 min before the experiments were started.

GTPase assay

The GTPase activity of Ras protein was determined using HPLC, as described previously [35,36]. Aliquots from a 100 μmol/l Ras-GTP solution in the absence and in the presence of TUDC were taken at different time intervals and the reaction was stopped by freezing in liquid nitrogen. For detection of guanosine phosphates, the samples were applied to an RP-18 HPLC column (250 mm x 4 mm), and isocratic acetonitrile elution (7.5 % for GTP analysis) was performed at a flow rate of 1.8 ml/min. The HPLC solution contained 10 mmol/l tetrabutylammonium bromide and 2 mmol/l NaNO₃. The GTP content is expressed by the quotient [GTP] ([GTP]+[GDP]).

Statistics

Results from different experiments were expressed as means ± S.E.M. (n = number of independent experiments). Results were compared using Student’s t-test; P < 0.05 was considered statistically significant.

RESULTS

Activation of Ras by TUDC in cultured rat hepatocytes

To examine whether the bile salt-induced activation of MAP kinases which is found with TUDC, and to a much lesser extent with TC [10], is accompanied by Ras activation, rat hepatocytes were exposed to different concentrations of TUDC and TC. Whereas TC, even at a concentration of 500 μmol/l, did not induce a significant effect, TUDC produced a strong activation of approx. 8.2 ± 3.5-fold (n = 9; Figure 1, Table 1). Regardless of the variability of this activation, ranging from 15-fold (Figure 1A) to 4-fold (Figure 2) in all experiments (n = 9), pronounced Ras activation was observed. Ras activation by TUDC was concentration-dependent, and detectable at a concentration of 100 μmol/l. Because TUDC at concentrations up to 500 μmol/l did not affect the viability of hepatocytes [10], this concentration was used to establish the time-dependency of Ras activation (Figure 1B). TUDC-induced activation of Ras was maximal after 10 min and no longer detectable after 30 min (Figure 1B). Experiments performed with TC under identical conditions showed no detectable Ras activation, whereas EGF, which is known to stimulate the Ras/Raf-dependent MAP-kinase pathway in hepatocytes [37], caused the expected Ras activation (Figure 1B).

Pharmacological characterization of TUDC-induced activation of Ras and Erk-1/Erk-2

In order to identify TUDC-activated signalling components upstream of Ras, inhibitor studies were performed. None of the tyrosine kinase inhibitor genistein, its inactive analogue daidzein, or the inhibitor of G-protein function cholera toxin prevented the activation of Ras by TUDC in rat hepatocytes (n = 3; Figure 2A, Table 1). In the presence of Go6850, a potent inhibitor of most protein kinase C isoforms [38], Ras activation by TUDC was not significantly affected (n = 3; Figure 2A, Table 1). These results are in accordance with previous findings that activation of Erk-1 and Erk-2 by TUDC was likewise not affected by these inhibitors [10], and support the conclusion that TUDC-induced Ras activation occurs upstream of MAP-kinase activation [39].

Sensitivity of TUDC signalling to PI 3-kinase

In order to examine a possible involvement of PI 3-kinase in TUDC-induced signalling, two structurally different inhibitors, wortmannin and LY294002 [40], were tested. Preincubation of hepatocyte cultures with wortmannin (100 nmol/l) for 10 min largely suppressed TUDC-induced activation of both Ras and the MAP kinases Erk-1 and Erk-2 (Figure 2B, Table 1). Expressed

Table 1 Effects of inhibitors of protein kinase C, tyrosine kinase, G-protein function and PI 3-kinase on TUDC-induced Ras activation

<table>
<thead>
<tr>
<th>Compounds</th>
<th>n</th>
<th>Relative Ras activation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUDC</td>
<td>9</td>
<td>8.2 ± 3.5</td>
</tr>
<tr>
<td>+ Go6850</td>
<td>3</td>
<td>6.8 ± 2.8</td>
</tr>
<tr>
<td>+ genistein</td>
<td>3</td>
<td>8.2 ± 2.7</td>
</tr>
<tr>
<td>+ cholera toxin</td>
<td>3</td>
<td>5.7 ± 1.6</td>
</tr>
<tr>
<td>+ wortmannin</td>
<td>5</td>
<td>1.2 ± 0.2</td>
</tr>
<tr>
<td>+ LY294002</td>
<td>5</td>
<td>0.9 ± 0.3</td>
</tr>
</tbody>
</table>

© 2000 Biochemical Society
Figure 2 Pharmacological characterization of TUDC-induced activation of Ras and Erk-1/Erk-2

Figure 3 Time course of TUDC-induced PI 3-kinase activation in cultured hepatocytes

Involvement of PI 3-kinase in the stimulation of bile salt excretion by TUDC in the perfused rat liver

TUDC at concentrations of 10-50 μmol/l has been shown to increase the capacity for TC excretion into bile [3,4]. Upstream inhibition of the TUDC-induced activation of MAP kinase by increasing the intracellular cAMP level or inhibition of MEK fully abolished the TUDC-induced stimulation of TC excretion into bile in the perfused rat liver. This suggested an important role for MAP-kinase activation in the TUDC-induced increase in PI 3-kinase activity, as indicated by autoradiography and used as an indication of total PI 3-kinase activity. Hepatocytes were exposed to TUDC for the indicated time periods. Representative results, from a series of three independent experiments, are shown. The corresponding controls were not exposed to TUDC.
bile salt excretion [10]. In line with this, blockade of the TUDC-induced activation of Ras and Erk by inhibitors of PI 3-kinase, such as LY294002 and wortmannin, also largely blunted the stimulation of TC excretion by TUDC in the perfused rat liver (Figure 4; and results not shown). These inhibitors of PI 3-kinase had no effect on the steady-state excretion of \[3H]TC (Figure 4). Gö6850, an inhibitor of most isoforms of protein kinase C, had no effect on the stimulation of TC excretion from perfused rat liver by TUDC (Figure 4). In separate perfusion experiments, in the presence of Gö6850 the average increase in portal pressure during a 20 min infusion of PMA at 50 nM was 2.9 ± 0.4 cmH₂O (n = 4), as compared with 7.8 ± 0.4 cmH₂O (n = 3) in control experiments without Gö6850, indicating an effective inhibition of protein kinase C-dependent haemodynamic effects of PMA at this concentration.

**DISCUSSION**

The present study identifies TUDC as a potent activator of PI 3-kinase and of Ras, an important molecular switch in cell signalling, which is also activated by growth factors. Ras activation plays a role in the regulation of cell function, proliferation and also malignant transformation. The interaction of Ras with Raf in cell signalling has been studied thoroughly [41,42]. Ras proteins have a low intrinsic GTPase activity, which is enhanced by GTPase-activating proteins [43]. In order to assess whether Ras activation by TUDC involves direct effects of TUDC on the GTPase activity, the GTPase activity of Ras was determined in the absence and the presence of TUDC [43]. No effect of TUDC on the GTPase activity of Ras was detectable (results not shown), suggesting that Ras activation by TUDC is not the result of a direct interaction between Ras and TUDC. However, it is mediated in a PI 3-kinase-dependent way, whereas G-proteins, tyrosine kinases and protein kinase C are apparently not involved. Because TUDC induced an activation of PI 3-kinase, it is unlikely that TUDC signalling towards Ras only requires basal PI 3-kinase activity. The primary molecular target of TUDC upstream of PI 3-kinase remains to be identified, since no direct effect of TUDC on PI 3-kinase activity was detectable in vitro (results not shown). Other bile salts, such as TC or the tauro conjugates of chenodesoxycholic acid, and desoxycholic acid or glycochenodesoxycholate [44], can activate Erk-1 and Erk-2 [10]. However, compared with TUDC the effect was small and was not investigated further. In addition, activation of PI 3-kinase by TC has been described [45].

TUDC-induced Ras activation is transient, occurs within 10 min and may trigger Erk activation via the Ras/Raf/MEK pathway. TUDC induced activation of PI 3-kinase, and this TUDC-induced Erk activation was sensitive not only to inhibitors of PI 3-kinase, which abolish TUDC-induced Ras activation, but also to the MEK inhibitor PD098059 and to cAMP [10], which inhibits the signalling pathway via protein kinase A activation at the level of Ras/Raf [46,47]. Thus TUDC signalling via the PI 3-kinase/Ras/MEK pathway towards Erks apparently mediates the choleretic effect of TUDC, because the same inhibition pattern is observed for both TUDC-induced Erk activation in cultured hepatocytes and TUDC-induced stimulation of TC excretion in the perfused rat liver [10]. Although this inhibition pattern implies the importance of Erk activation in the choleretic effect of TUDC, the possibility is not excluded that additional, as yet unknown, signalling inputs are required in order to trigger cholestasis. Microtubules are involved in the TUDC signalling downstream of Erks, as suggested by the colchicine-sensitivity of TUDC-stimulated TC excretion in the perfused rat liver [4] and the fact that colchicine had no effect on TUDC-induced Erk activation [48]. The molecular link between TUDC-induced Erk activation and the involvement of microtubules remains to be disclosed. Possible targets are microtubule-associated proteins such as Tau [49,50], or protein kinases such as the MAP-kinase signal-integrating protein kinase MNK1 [28]. The involvement of microtubules in vesicular transport could well explain the choleretic effect of TUDC via short-term regulation of biliary excretion by insertion/retrieval of canalicular transport ATPases, as shown for MRP2 (multidrug resistance protein 2) in response to hypo-osmotic stimulation [51].

Although EGF induced activation of MAP kinase, which was also sensitive to the PI 3-kinase inhibitors LY294002 and wortmannin, it did not affect TC excretion in the perfused rat liver (results not shown). Possibly, EGF-induced MAP kinase activation in rat hepatocytes leads to downstream targets other than TC excretion. Possible explanations for this difference in the activation of downstream targets include differences in the kinetics and intensity of MAP kinase activation, involvement of different MAP kinase modules in response to EGF and TUDC, or the involvement of different co-signalling events for cholestasis. Like TUDC, hypo-osmotic swelling of hepatocytes triggers a choleretic response due to Erk activation [8,9]. However, TUDC and hypo-osmotic signalling towards Erks differ in their upstream events. TUDC signalling involves PI 3-kinase, whereas hypo-osmotic Erk activation is a G-protein- and tyrosine kinase-dependent process. Interestingly, both TUDC and hypo-osmotic signalling towards Erks were not affected by Gö6850 ([10]; Figure 2A), a broad-spectrum inhibitor of protein kinase C isoforms. Although this does not rule out protein kinase C activation by TUDC, as reported by others [5–7], the present and previous [10] results on the importance of Erk signalling in the TUDC-induced stimulation of bile salt excretion do not support the view that potential protein kinase C activation plays a significant role in this process. In line with this, stimulation of TC

**Figure 4** Effects of the PI 3-kinase inhibitor LY294002 and the protein kinase C inhibitor Gö6850 on TUDC-induced TC excretion in perfused rat liver

Livers were perfused in the presence of 100 μmol/l [3H]TC. After a pre-perfusion period of 60 min, TUDC (20 μmol/l) was infused for 30 min (●). If present, infusion of LY294002 (2 mmol/l; □) or Gö6850 (50 mmol/l; ○) was started at 30 min of perfusion time. Data are given as means ± S.E.M. from 3–4 different experiments.

Ras activation by tauroursodesoxycholate 211
excretion by TUDC in perfused rat liver was insensitive to G60850 (Figure 4). Ras and Erk activation were also induced by TC; however, it was less effective than TUDC. Nonetheless, these findings again support the previous view [10] of a feed-forward regulation of canalicular bile salt excretion by bile salts.

Erk activation by TUDC has been demonstrated at concentrations as low as 10–50 μmol/l [10], whereas Ras activation required TUDC concentrations of ≥ 100 μmol/l. This difference is most likely due to differing sensitivities of the detection methods for Ras and Erk activation, and further amplification of the signal within the signalling cascade. Therapeutic plasma methods for Ras and Erk activation, and further amplification of TUDC concentrations of GTPase assay.

and the Fonds der Chemischen Industrie, Frankfurt, Germany. We thank Professor the Erk and Erk activation may inhibit apoptosis by inducing a shift in the balance of cellular GTPases. In some cell types, such as neurons, the balance of cellular GTPases is strongly influence whether cell injury will trigger apoptosis or settle this issue.

REFERENCES

This work was supported by the Forschungskommission of the University of Düsseldorf and the Fonds der Chemischen Industrie, Frankfurt, Germany. We thank Professor Dr. Alfred Wittig for helpful discussions, and Reza Amadhan for carrying out the GTPase assay.

REFERENCES


32 de Rooij, J. and Bos, J. L. (1997) Minimal Ras-binding domain of Raf1 can be used as an activation specific probe for Ras. Oncogene 14, 623–625
317 in 3T3L1 adipocytes does not alter insulin-stimulated PI3 kinase activity or glucose transport. Mol. Endocrinol. 11, 67–76


Received 18 November 1999/18 April 2000; accepted 23 May 2000