A phosphotyrosine-containing quenched fluorogenic peptide as a novel substrate for protein tyrosine phosphatases

Makoto NISHIKATA¹, Kuniaki SUZUKI, Yoshitaka YOSHIMURA, Yoshiaki DEYAMA and Akira MATSUMOTO
Department of Dental Pharmacology, Hokkaido University School of Dentistry, Sapporo 060-0813, Japan

INTRODUCTION

Protein tyrosine phosphatases (PTPs), which catalyse the dephosphorylation of phosphotyrosine residues, are involved in many biologically important processes [1–5]. PTP activity is usually measured using phosphotyrosine-containing proteins or peptides as specific substrates. Dephosphorylation of these substrates can be measured in several ways. The released phosphate is measured by colorimetry as a Malachite Green–phosphomolybdate complex [6]. This method can detect sub-nmol amounts of phosphate but is greatly distorted by endogenous phosphate in crude-enzyme preparations. Another assay, which takes advantage of the increase in absorbance or fluorescence upon dephosphorylation, permits continuous monitoring of dephosphorylation [7,8].

The lower detection limit of the spectrophotometric method is in the nmol range, whereas the fluorimetric method is nearly two orders of magnitude more sensitive. Although the continuous monitoring seems especially useful in kinetic studies, proteins in crude-enzyme preparations or proteins added as enzyme stabilizers to the assay mixture interfere with the measurements, since the assay is conducted at a wavelength where proteins absorb and fluoresce. A similar assay is presented that uses phosphotyrosine as a substrate [9]. Quantification of the dephosphorylated peptide by HPLC [9,10] and use of anti-phosphotyrosine antibodies to detect remaining phosphopeptides [10,11] may be highly sensitive but are time-consuming and laborious, and hence are not convenient for practical use. Probably the most sensitive and widely employed assay uses [³²P]labelled substrates [12]. The radioactive phosphate released from [³²P]phosphotyrosine residues is measured after organic-solvent extraction as a phosphomolybdate complex or separation from unreacted protein substrate by acid precipitation. Although the lower detection limit of the radioisotopic assay depends on the specific radioactivity of [³²P]phosphate, sub-nmol to pmol amounts of phosphate may be detectable if the specific radioactivity is about 1000 c.p.m./pmol. Despite the high sensitivity of the radioisotopic assay, the preparation and use of radio-labelled substrates have some drawbacks: (i) the phosphorylation of proteins or peptides, which uses appropriate tyrosine kinases and [γ-³²P]ATP, is not stoichiometric in most cases, resulting in lot-to-lot variation in the degree of phosphorylation; (ii) phosphorylation may occur at more than one tyrosine residue in a protein, making the interpretation of the experimental data complicated; (iii) the short half-life of ³²P (14 days) makes it difficult to use the same lot over a long period of time; and (iv) special care must be taken to avoid unnecessary exposure to radiation. The drawbacks associated with the PTP assays described above seem to constitute some of the reasons why research on protein dephosphorylation has lagged behind that of protein phosphorylation. Therefore development of a new assay procedure that is non-radioisotopic, at least as sensitive as existing radioisotopic assays, and compatible with contaminants such as inorganic phosphate and proteins, is strongly desired.

In the present study, we have developed a novel non-radioisotopic method for the assay of PTPs (Scheme 1 shows the principle of the assay). The assay uses a fluorogenic phosphopeptide substrate internally quenched by resonance-energy transfer. The substrate contains a fluorophore group, (7-methoxycoumarin-4-yl)acetyl (Mca), and a quencher group, 2,4-dinitrophenyl (DNP) [13], in addition to a phosphotyrosine phosphorylated by some PTPs much more rapidly than the corresponding [³²P]labelled substrate used for comparison, whereas alkaline phosphatase dephosphorylated the two substrates at similar rates. The fluorogenic substrate is therefore more specific for PTPs than the radiolabelled substrate. The assay with the fluorogenic substrate could be applied to the estimation of kinetic parameters and measurement of PTP activity in crude-enzyme preparations. The lower detection limit of our assay (1 μM substrate in 200 μl of reaction mixture) was estimated to be 0.2–0.4 pmol, whereas it was estimated to be about 1 pmol in the assay that used [³²P]labelled peptide (specific radioactivity of approx. 1000 c.p.m./pmol). Our assay is simple, specific, highly sensitive and non-radioisotopic, and hence would contribute greatly to the development of PTP biology.

Key words: chymotrypsin, dephosphorylation, fluorimetric assay, non-radioisotopic assay, resonance-energy transfer.
residue located between these groups. PTP-catalysed dephosphorylation of this peptide and subsequent chymotryptic cleavage of the dephosphorylated species resulted in a considerable fluorescence enhancement. This article describes the synthesis and evaluation of the fluorogenic phosphopeptide substrate for use in the sensitive assay of PTPs. In addition, the data obtained with our assay were compared with those obtained from a conventional radioisotopic assay.

MATERIALS AND METHODS

Materials

YOP PTP (recombinant Yersinia enterocolitica Yop51*), T-cell PTP (recombinant TCAC11), LAR PTP (recombinant leucocyte-antigen-related D1), protein phosphatase 1 (recombinant PPIz) and Abelson murine leukaemia virus (Abi) protein tyrosine kinase (recombinant) were from New England Biolabs. Alkaline phosphatase (bovine intestinal mucosa), Lys(DNP) and 7-methoxycoumarin-4-acetic acid were from Sigma. Chymotrypsin (bovine pancreas, three-times crystallized) was from Worthington and dissolved in 1 mM HCl before use. [γ-32P]ATP (4500 Ci/mm mol) was from ICN Biomedicals. Fmoc-Tyr(PHO₃H₂) (where Fmoc is 9-fluorenylmethoxy carbonyl) was from Calbiochem-Novabiochem. Fmoc-Lys(DNP) was prepared by reaction of Lys(DNP) with Fmoc N-hydroxysuccinimide ester. Other Fmoc-amino acid derivatives and resins were from Watanabe Chemical Industries, Osaka, Japan. Crude extracts of Porphyromonas gingivalis cells and rat pancreas and submaxillary gland were prepared as follows. The cells and tissues were homogenized in twice their weight of 10 mM Tris-HCl (pH 7.2) containing 5 mM EDTA, 2 mM dithiothreitol and 0.15 M NaCl. After centrifugation of the homogenate, the supernatant was used for experiments.

Synthesis of substrates

The fluorogenic phosphopeptide had the structure Mca-Gly-Asp-Ala-Glu-Tyr(PO₃H₂)-Ala-Ala-Lys(DNP)-Arg-NH₂. The sequence of this peptide was similar to that around the phosphotyrosine residue in pp60rc, the Rous sarcoma virus-transforming protein [14], and more similar to that of a peptide used by Casnaille et al. [15] as a tyrosine protein kinase substrate. The peptide was synthesized by manual Fmoc solid-phase methodology on a Rink amide methylbenzhydrylamine resin (0.49 mmol/g).

The fluorogenic phosphopeptide had the structure Mca-Gly-Asp-Ala-Glu-Tyr(PO₃H₂)-Ala-Ala-Lys(DNP)-Arg-NH₂. The sequence of this peptide was similar to that around the phosphotyrosine residue in pp60rc, the Rous sarcoma virus-transforming protein [14], and more similar to that of a peptide used by Casnaille et al. [15] as a tyrosine protein kinase substrate. The peptide was synthesized by manual Fmoc solid-phase methodology on a Rink amide methylbenzhydrylamine resin (0.49 mmol/g).

Scheme 1 Principle of PTP assay

Assay of phosphatases

Activities of PTPs, protein phosphatase (PP1) and crude-enzyme preparations were measured in 20 mM 3,3-dimethylglutarate
buffer (pH 6.6). Alkaline phosphatase activity was measured in 20 mM carbonate buffer (pH 9.5). Each buffer contained 0.01 % (w/v) BSA and an appropriate substrate. For PP1 assay, 1 mM MnCl₂ was also included. Phosphatase activity was determined using p-nitrophenyl phosphate (10 mM) as a substrate, and 1 unit of phosphatase was defined as the amount of enzyme that hydrolysed 1 nmol of the substrate in 1 min. The release of p-nitrophenol was monitored continuously at 405 nm. All assays were performed at 25 °C.

Dephosphorylation of the fluorogenic peptide was measured with a fluorescence spectrophotometer (Hitachi F-3000) at excitation and emission wavelengths of 328 and 395 nm, respectively, using a 5-mm × 5-mm square microcuvette. Bandwidths were set at 5 nm (excitation and emission) or 1.5 nm (excitation) and 10 nm (emission). In the continuous fluorescence monitoring, the latter set of bandwidths was always employed, since gradual increases and decreases in fluorescence intensity were observed for the fluorogenic peptide and Mca-Gly-Asp-Ala-Glu-Tyr (a chymotryptic fragment of dephosphorylated peptide) respectively, when exposed continuously to UV irradiation at 5 nm bandwidth (results not shown).

Dephosphorylation of the radiolabelled peptide was measured according to the method of Shacter [17]. The sample (200 µl) was mixed with 800 µl of 5 mM silicotungstate/1 mM H₂SO₄ to stop the dephosphorylation reaction. Then, 160 µl of 5 % (w/v) ammonium molybdate/2 M H₂SO₄ and 1.2 ml of 2-methyl-1-propanol/toluene (1:1, v/v) were added. After vortexing and centrifugation, 0.5 ml of the organic phase was withdrawn, mixed with a scintillation cocktail and the radioactivity was estimated. The total c.p.m. extracted into the organic phase was calculated by multiplying the observed c.p.m. by 2.3, as described in [17].

RESULTS

HPLC analysis of enzymic products of the fluorogenic peptide

To verify that the enzymic reactions shown in Scheme 1 actually take place, we analysed the reaction products by HPLC (Figure 1). Elution was monitored at 350 nm, where both Mca and DNP groups have absorption. When the fluorogenic phosphopeptide (10 µM) was incubated with YOP PTP (250 units/ml) at pH 6.6 for 30 min, a new peak (Figure 1, peak b) appeared with almost complete disappearance of the original peak (Figure 1, peak a). This new peak had the same retention time as an authentic sample of the corresponding dephosphorylated peptide. Subsequent treatment with chymotrypsin (0.05 %, w/v) at pH 6.6 for 30 min gave two new peaks (Figure 1, peaks c and d) having the same retention times as authentic samples of Ala-Ala-Lys(DNP)-Arg-NH₂ and Mca-Gly-Asp-Ala-Glu-Tyr, respectively, with complete disappearance of peak b (Figure 1). Treatment of the fluorogenic phosphopeptide with chymotrypsin alone (without pretreatment with a PTP) did not change the chromatogram at all (results not shown), indicating that chymotrypsin was specific exclusively for the newly generated tyrosine residue. During the course of the enzymic treatment described above, the fluorescence intensity of the reaction mixture was also measured (diluted 10-fold for measurement). Although, as expected, practically no change in fluorescence intensity was observed on dephosphorylation, approx. 120-fold increase was observed on treatment with chymotrypsin. The fluorescence intensity after chymotrypsin treatment was the same as that of 1 mM Mca-Gly-Asp-Ala-Glu-Tyr. Thus these results confirm the reactions shown in Scheme 1.

Effect of enzyme concentration on dephosphorylation rate

We examined whether the rate of dephosphorylation of the fluorogenic peptide is dependent on enzyme concentration. Enzymatic reactions were allowed to proceed in a microcuvette fitted in the fluorescence spectrophotometer, during which time the fluorescence intensity was monitored continuously (Figure 2A). The fluorogenic peptide (1 µM) was allowed to react with various concentrations of YOP PTP in 200 µl of reaction mixture. After incubation for 1 min, the reaction was stopped by the addition of sodium vanadate (0.1 mM, final concentration). Chymotrypsin (0.05 % final concentration, w/v) was then added to restore quenched fluorescence. The fluorescence intensity reached a plateau in about 15 s. Since the increase in fluorescence intensity can be converted directly into the concentration of the dephosphorylated species (using Mca-Gly-Asp-Ala-Glu-Tyr as a reference), the results obtained above were plotted in terms of the degree of dephosphorylation as a function of enzyme concentration (Figure 2B). Dephosphorylation of as little as 1 % of substrate was detected, and a linear correlation was observed up to at least 30 % dephosphorylation.

A parallel experiment was conducted for comparison under the same conditions (1 µM substrate in 200 µl of reaction mixture) with a corresponding radiolabelled peptide, Gly-Asp-Ala-Glu-Tyr(32PO₄H₂)-Ala-Ala-Lys-Arg-NH₂. As Figure 3 shows, a curve similar to that obtained with the fluorogenic peptide (Figure 2B) was obtained, although a departure from linearity was observed at low enzyme concentrations for unknown reasons. Also in this
M. Nishikata and others

Figure 2 Dependence of the rate of fluorogenic peptide dephosphorylation on enzyme concentration

(A) Continuous monitoring of the change in fluorescence intensity. To 200 µl of 1 µM fluorogenic peptide in a microcuvette was added 2 µl each of YOP PTP solution (a), 10 mM sodium vanadate (b) and 5% (w/v) chymotrypsin (c) as indicated. (B) A plot on the basis of the results obtained in (A).

Figure 2 Dependence of the rate of fluorogenic peptide dephosphorylation on enzyme concentration

(A) Continuous monitoring of the change in fluorescence intensity. To 200 µl of 1 µM fluorogenic peptide in a microcuvette was added 2 µl each of YOP PTP solution (a), 10 mM sodium vanadate (b) and 5% (w/v) chymotrypsin (c) as indicated. (B) A plot on the basis of the results obtained in (A).

Figure 3 Dependence of the rate of 32P-labelled peptide dephosphorylation on enzyme concentration

To 200 µl of 1 µM 32P-labelled peptide (1070 c.p.m./pmol) was added 2 µl of YOP PTP solution. After 1 min, the reaction mixture was processed as described in the Materials and methods section. The background (no enzyme) radioactivity recovered in 0.5 ml of organic phase was 450 c.p.m.

Figure 4 Time course of dephosphorylation

To 2 ml of 1 µM fluorogenic peptide or 32P-labelled peptide (1120 c.p.m./pmol) was added 20 µl (0.77 unit for the former peptide and 163 units for the latter peptide) of YOP PTP solution. Aliquots (200 µl) were withdrawn at indicated time intervals and treated as follows. For the fluorogenic peptide, aliquots were added to 2 µl of 10 mM sodium vanadate, and, after approx. 30 s, 2 µl of 5% (w/v) chymotrypsin was added before the increase in fluorescence intensity was measured. For the labelled peptide, aliquots were processed as described in the Materials and methods section. D, Fluorogenic peptide; E, labelled peptide.

Time course of dephosphorylation

The degree of YOP-PTP-catalysed dephosphorylation of the fluorogenic peptide (1 µM) was determined at time intervals on the basis of the increase in fluorescence intensity. As Figure 4 shows, the degree of dephosphorylation seemed to be linear up to 1 min. The deviation from linearity thereafter may have been due to the inactivation of the enzyme. The radiolabelled peptide gave a similar time course of dephosphorylation. The results obtained here and above demonstrate that the fluorogenic peptide can be used as a substrate for the quantitative measurement of PTP activity.

Kinetics experiment

As an example of the possibilities of application for the fluorogenic substrate, kinetic constants were determined for the YOP-PTP-catalysed dephosphorylation. The increase in fluorescence intensity in 1 min, which was taken as a measure of initial velocity, was measured at several substrate concentrations. The fluorescence measurement may have been affected by quenching due mainly to an inner filter effect, especially at high concentrations of substrate. We therefore examined this effect by measuring the increase in fluorescence intensity on addition of a reference compound, Mca-Gly-Asp-Ala-Glu-Tyr (0.1 µM final

© 1999 Biochemical Society
parameters could not be determined accurately. Thus the kinetic portion of the double-reciprocal plot gave a line passing very close to the origin (results not shown). Extrapolation of the linear portions b for more accurate estimation of dephosphorylation activity of the recombinant PP1. The tyrosine phosphatase activity was measured with the fluorogenic substrate (1 μM) in the presence of various concentrations of the inhibitors. Almost complete (over 95%) inhibition was observed with micromolar concentrations of okadaic acid and nanomolar concentrations of microcystin-LR (results not shown), confirming that the observed tyrosine phosphatase activity was inherent in the recombinant PP1. The radiolabelled substrate was also dephosphorylated by the PTPs and PP1, but much more slowly. On the other hand, alkaline phosphatase dephosphorylated the two substrates at similar rates.

Table 1 Dephosphorylation of fluorogenic and 32P-labelled peptides by various phosphatases

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Fluorogenic peptide</th>
<th>Radiolabelled peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>YOP PTP</td>
<td>160</td>
<td>1.5</td>
</tr>
<tr>
<td>T-cell PTP</td>
<td>670</td>
<td>3.1</td>
</tr>
<tr>
<td>JAR PTP</td>
<td>74</td>
<td>5.7</td>
</tr>
<tr>
<td>PP1</td>
<td>26</td>
<td>0.05</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>0.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Application to crude-enzyme preparations

Assays suitable for measuring PTP activities in crude-enzyme preparations would be useful especially for physiological studies in which changes in enzyme activities in biological samples are measured. Application of our assay procedure to crude-enzyme preparations, however, may be hampered by at least two endogenous factors. One is proteolytic activity that may degrade the substrate, particularly between the fluorophore and the quencher, and the other is substances such as chymotrypsin inhibitors or high concentrations of proteins that may disturb efficient chymotryptic cleavage of the dephosphorylated substrate. In order to examine these possibilities, we assayed PTPs in crude-enzyme preparations from different origins that are rich in proteolytic activities. The fluorogenic substrate (196 pmol of 1 μM solution) was incubated with the crude extracts (4 μl each) of pancreas (10 min), submaxillary gland [21] (6 min) and P. gingivalis, a suspected pathogen of adult periodontitis [22] (10 min), during which the change in fluorescence intensity was monitored continuously. The fluorescence intensity increased steadily with all the crude extracts, suggesting proteolytic cleavage of a peptide bond(s). The time course for the P. gingivalis extract is shown as a representative result in Figure 6. The increase in fluorescence intensity in 10 min (Figure 6, portion a) corresponded to proteolytic cleavage of as little as 1.2% of the substrate. On the other hand, the amount of substrate dephosphorylated during this period, which was estimated from the burst of fluorescence intensity (Figure 6, portion b) on addition of chymotrypsin, was 24%. If at least a part of portion a (Figure 6) was due to the proteolytic cleavage of the dephosphorylated species that occurred during the incubation, it must be added to portion b for more accurate estimation of dephosphorylation rate. In the case of the P. gingivalis extract, however, the ratio of b to a was high and hence the proteolytic cleavage was practically insignificant. Use of appropriate protease inhibitors is re-

![Figure 5 Determination of kinetic constants for the fluorogenic peptide dephosphorylation](image-url)

Dephosphorylation of the fluorogenic peptide was measured as in Figure 2(A) at substrate concentrations of 3, 5, 6, 8, 10 and 20 μM. The reaction mixture contained 0.72 unit of YOP PTP/ml.
overcome these drawbacks. Both the fluorimetric and radioisotopic assays performed in this study could detect dephosphorylation of about 1%, (i.e. 2 pmol) of the substrate when 1 μM substrate in 200 μl of reaction mixture was used (Figures 2 and 3). Although not fully explored in this study, the sensitivity may be higher. In the fluorimetric assay, an increase in fluorescence as small as one-tenth to one-fifth of the background fluorescence (signal-to-noise ratio of approx. 10–20) should be detectable by appropriately selecting the full scale of the chart recorder. This would indicate a sensitivity to detect dephosphorylation of about 0.1–0.2% of the substrate. Therefore, the lower detection limit would be about 0.2–0.4 pmol. In the radioisotopic assay performed for comparison, when the specific radioactivity of the substrate was 1070 c.p.m./pmol, the observed background radioactivity recovered in 0.5 ml of 2-methyl-1-propanol/toluene was 450 c.p.m. (described in the legend to Figure 3). At this level of background, counts of at least 400–500 c.p.m. above background may be required for reliable detection. Thus the lower detection limit would be about 1 pmol. Our fluorimetric assay is therefore superior to or at least comparable in sensitivity with assays using 32P-labelled substrates. The fluorogenic substrate was dephosphorylated by some PTPs much more quickly than the corresponding radio labelled substrate (Table 1) and was more specific for PTPs than the radiolabelled substrate, since alkaline phosphatase did not discriminate between the two substrates (Table 1). Derivatization with the fluorophore and quencher had a favourable effect on the peptide, although it is not certain whether such an effect is commonly observed for any phosphotyrosyl peptide. The fluorimetric assay could be applied to the measurement of PTP activity in crude-enzyme preparations without any noticeable difficulties (e.g. Figure 6). Addition of inorganic phosphate (up to 0.2 M) and BSA (up to 0.2%) to the assay mixture did not affect the fluorescence measurement (results not shown). The fluorogenic substrate has outstanding advantages over 32P-labelled substrates in that the compound is stoichiometrically phosphorylated and stable enough to allow the use of the same lot over long periods of time, thus eliminating the need for time-consuming and laborious substrate preparation at regular intervals. The fluorimetric assay does not involve separation of released inorganic phosphate from the unreacted phosphopeptide, which is essential to radioisotopic assays, and can be performed even in a single cuvette (Figures 2, 5 and 6). Taking these features together, it is no overstatement to say that our fluorimetric assay procedure is superior to existing radioisotopic assays and would greatly contribute to the development of the research on protein dephosphorylation.

The assay principle presented in this article can be applied to the investigation of PTP substrate specificity, which would provide useful information, especially for the preparation of fluorogenic substrates that are highly selective for particular physiologically important PTPs. Such a study is best conducted by determining kinetic constants for the dephosphorylation of fluorogenic substrates with different amino acid sequences, since PTP substrate specificity is at least in part controlled at the primary structure level [23–26]. A limitation in preparing such substrates is that Tyr, Phe and Trp should not be incorporated between a fluorophore and a quencher, since chymotrypsin is specific for the cleavage of peptide bonds at the carboxyl side of these residues. However, specific substrates for a particular PTP, if not the best, may be prepared by properly arranging amino acid residues other than these three. A recombinant form of PP1 had tyrosine phosphatase activity dephosphorylating our fluorogenic substrate (Table 1), and this activity was blocked by low concentrations of okadaic acid and microcystin-LR. It is therefore expected that our assay can be used, by taking advantage of...
this nature, as a valuable non-radioisotopic method for detecting these naturally occurring toxins.

In the present article we have only described a discontinuous assay (activity measurement at time intervals) of PTPs. One might think that it would be possible to monitor dephosphorylation continuously if chymotrypsin is included in advance in the substrate solution prior to addition of a PTP sample. For such a continuous assay, sufficient amounts of chymotrypsin should be included to completely cleave the dephosphorylated species promptly (within a few s). Our preliminary experiment showed that at least 0.15 % (w/v) chymotrypsin in reaction mixture is required to completely cleave less than 1 μM dephosphorylated species within 5 s at pH 6.6. However, it is highly probable that PTPs are unstable at such a high chymotrypsin concentration. In fact, when 0.15 % chymotrypsin was included in the assay mixture, YOP PTP lost its activity by approx. 50 % in 1 min even in the presence of 0.01 % BSA. Consequently, we cannot but regard the continuous assay as unreliable as long as the present fluorogenic substrate is used. We are now making efforts to design new substrates that are suitable for continuous assays, i.e. those with much more elevated sensitivity to chymotryptic cleavage after dephosphorylation.

REFERENCES

Received 26 January 1999/18 July 1999; accepted 9 August 1999