Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase

Sylvain BÉDARD, Bruno MARCOTTE and André MARETTE*
Department of Physiology and Lipid Research Unit, Laval University Hospital Research Center, Ste-Foy, Québec, Canada G1V 4G2

INTRODUCTION

It is well documented that septicemia elicits profound changes in host metabolism, including increased energy expenditure and impaired whole-body glucose homeostasis in both animals and humans [1]. Septic patients have an accelerated rate of glucose clearance in the basal state [2]. On the other hand, acute infection is also associated with a state of insulin resistance, as evidenced by diminished glucose tolerance, hyperinsulinemia and impaired insulin action on peripheral glucose disposal [3,4]. Previous studies have focused on the role of cytokines in mediating the effects of infection on metabolism. Indeed, administration of the cytokines tumour necrosis factor-α (TNF-α) and interleukin-1β to experimental animals has been reported to mimic the metabolic response to acute infection [5–7]. Sakurai et al. [6] have recently provided evidence that TNF-α directly stimulates glucose uptake in peripheral tissues of dogs. Conversely, in vivo infusion of endotoxin and cytokines has also been found to reduce insulin-stimulated glucose uptake by skeletal muscles, the main site of glucose disposal in the post-prandial state [7]. Other studies have shown that cytokines affect glucose metabolism in isolated muscles or cultured myocytes [8–10]. Thus cytokines appear to modulate glucose homeostasis by a direct action on skeletal muscle cells.

The precise cellular mechanisms responsible for the action of cytokines on muscle glucose metabolism are not known. It has been recently shown that skeletal muscle expresses nitric oxide synthase (NOS), the enzyme that catalyses the formation of NO from l-arginine [11–14]. In resting muscle, both the constitutive neuronal-type (nNOS) and endothelial-type (eNOS) isoforms are expressed [11,13]. Whereas nNOS localization is restricted to type IIb fast-twitch glycolytic fibres, eNOS can be found both in the endothelial cells and within mitochondria-enriched (oxidative) fibres [11,13]. Moreover, experimental septicemia induced by endotoxin treatment of rats has been reported to increase the expression of an inducible, calcium-independent NOS (iNOS) in skeletal muscle of rats [15,16]. iNOS expression and NO production have also been reported in cultured C2C12 myocytes challenged with cytokines and LPS [17]. Recent studies in our laboratory have shown that increasing NO concentrations with NO donors inhibit insulin-stimulated glucose transport in isolated rat soleus and extensor digitorum longus muscles [11]. This effect could be reproduced in cultured L6 myocytes, strongly suggesting that NO exerted its action by a direct action and not by diffusion to the muscle vasculature. Thus one possible mechanism by which cytokines and endotoxin could affect glucose metabolism in muscle cells is by induction of iNOS expression and exaggerated NO production. This hypothesis was directly tested in the present study using cultured L6 skeletal muscle cells.

MATERIALS AND METHODS

Materials

z-Minimum essential medium (z-MEM), foetal bovine serum and other tissue-culture products were obtained from Gibco

Abbreviations used: NOS, nitric oxide synthase; nNOS, neuronal-type NOS; eNOS, endothelial-type NOS; iNOS, inducible NOS; TNF-α, tumour necrosis factor-α; IF-γ, interferon-γ; LPS, lipopolysaccharide; RT-PCR, reverse transcriptase-PCR; i-NAME, Nω-nitro-l-arginine methyl ester; z-MEM, z-minimum essential medium; GAPDH, glyceraldehyde phosphate dehydrogenase. * To whom all correspondence should be addressed.
BRL. Human insulin (Humulin R) was purchased from Eli Lilly.
2-Deoxy-D-glucose, cytochalasin B, lipopolysaccharide (LPS) (from *Escherichia coli*) and NADPH were obtained from Sigma.
2-Deoxy-D-[3H]glucose was purchased from NEN Dupont. N-(β-Nitro-L-arginine methyl ester (L-NAME) was obtained from Alexis (San Diego, CA, U.S.A.). Recombinant murine and human TNF-α were purchased from R & D systems and Boehringer Mannheim respectively. Murine interferon-γ (IF-γ) was kindly supplied by Dr. Martin Olivier (CHUL research center, Ste-Foy, QC, Canada). An antibody directed against a C-terminal peptide (amino acids 1131–1144) of mouse macrophage iNOS was purchased from Cedarlane Laboratories (Mississauga, ON, Canada). Polyclonal antibodies directed against rat GLUT1 and GLUT4 or mouse GLUT3 were from East Acres Biologicals (Southbridge, MA, U.S.A.). Monoclonal α1-Na/K-ATPase was a kind gift from Dr. K. Sweadner (Massachusetts General Hospital, Boston, MA, U.S.A.).

Cell culture
A line of L6 skeletal muscle cells (kind gift of Dr. A. Klip, Hospital for Sick Children, Toronto, ON, Canada) clonally selected for high fusion potential was used in the present study. The L6 cell line was derived from neonatal rat thigh skeletal muscle cells and retains many morphological, biochemical and metabolic characteristics of skeletal muscle [18]. Fully differentiated L6 myotubes express several muscle-specific proteins, such as myosin ATPase, the sarcoplasmic reticulum Ca²⁺-ATPase and the dihydropyridine receptor [19]. Cells were grown and maintained in monolayer culture in α-MEM containing 10% foetal bovine serum and 1% antibiotic-antimycotic reagent; Life Technologies). These protein samples were used for isolation of cellular proteins and membranes. Total or membrane protein samples (50 µg) of total RNA in 20 µl of reverse transcriptase buffer (50 mM Tris/HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂ and 10 mM DTT) containing 1 µM each dNTP and 8 pmol of iNOS or GAPDH sense primers/water to 30 µl, cDNAs were denatured for 5 min at 94 °C and cooled to 72 °C, and then 1 unit of *Thermophilus aquaticus* DNA polymerase (Boehringer Mannheim) was added to each sample. Amplification was performed as follows: 30 cycles of temperature (94 °C, 30 s; 60 °C, 1 min; 72 °C, 1 min) in a temperature cycler (DNA Thermal Cycler, Perkin–Elmer). Sequences of the antisense and sense oligonucleotides (based on rat iNOS and GAPDH (see [15])) were as follows: iNOS, 5'-TGGAAACCACCTCAGTACTTGGGA-3' and 5'-CAAGAGTTTGACCAGGACC-3'; GAPDH, 5'-AGATCCACACGGA-TACATT-3' and 5'-TCCCTGAGATTGTCGCAA-3'. The expected sizes of the amplification products were 653 bp for iNOS and 331 bp for GAPDH. The amplification products were run in 8% acrylamide gels and stained in ethidium bromide, and fluorescence associated with DNA bands was measured using a BioImage-Visage 110S scanner from Millipore.

RNA extraction and RT-PCR
Total cellular RNA was isolated using guanidium thiocyanate/phenol/chloroform extraction with the TRIZol Reagent (Life Technologies) based on the method developed by Chomczynski and Sacchi [21]. cDNA synthesis was performed with 200 units of Moloney murine leukaemia virus reverse transcriptase (Gibco BRL), using 1 µg of total RNA in 20 µl of reverse transcriptase buffer (50 mM Tris/HCl, pH 8.3, 75 mM KCl, 3 mM MgCl₂ and 10 mM DTT) containing 1 µM each dNTP and 8 pmol of iNOS or GAPDH sense primers. The reaction was performed at 42 °C for 1 h, and the enzyme was then denatured at 95 °C for 10 min. Samples were then supplemented with 3 µl of 10 × PCR buffer (1 × PCR buffer is 33.3 mM KCl and 3 mM MgCl₂)/8 pmol of iNOS or GAPDH sense primers/water to 30 µl; cDNAs were denatured for 5 min at 94 °C and cooled to 72 °C, and then 1 unit of *Thermophilus aquaticus* DNA polymerase (Boehringer Mannheim) was added to each sample. Amplification was performed as follows: 30 cycles of temperature (94 °C, 30 s; 60 °C, 1 min; 72 °C, 1 min) in a temperature cycler (DNA Thermal Cycler, Perkin–Elmer). Sequences of the antisense and sense oligonucleotides (based on rat iNOS and GAPDH (see [15])) were as follows: iNOS, 5'-TGGAAACCACCTCAGTACTTGGGA-3' and 5'-CAAGAGTTTGACCAGGACC-3'; GAPDH, 5'-AGATCCACACGGA-TACATT-3' and 5'-TCCCTGAGATTGTCGCAA-3'. The expected sizes of the amplification products were 653 bp for iNOS and 331 bp for GAPDH. The amplification products were run in 8% acrylamide gels and stained in ethidium bromide, and fluorescence associated with DNA bands was measured using a BioImage-Visage 110S scanner from Millipore.

Isolation of cellular proteins and membranes
Total cellular proteins were isolated from the same cells used for RNA isolation. The proteins were extracted from the phenol/ethanol supernatant obtained after precipitation of DNA with ethanol, as described by the manufacturer’s instructions (TRizol reagent; Life Technologies). These protein samples were used for determination of iNOS-protein content by Western blotting (see below). For membrane isolation, fully differentiated L6 myotubes were washed twice with ice-cold PBS (pH 7.4), scraped with a rubber policeman, collected and centrifuged at 700 g for 10 min. The 700 g cell pellet was resuspended in homogenizing buffer containing 250 mM sucrose, 2 mM EGTA, 5 mM Na₂CO₃, 20 mM Heps (pH 7.4), 200 µM PMSF, 1 µM leupeptin, 1 µM pepstatin and 10 µM E-64. Cells were homogenized using a Wheaton A (tight-fit) glass homogenizer (20 strokes), followed by centrifugation at 2000 g for 15 min. The resulting supernatant was centrifuged at 186000 g for 1 h at 4 °C. The pellet (total membranes) was resuspended in homogenizing buffer, and protein concentrations were determined by the bichromonic acid assay (Pierce), using BSA as standard. Membrane proteins were used for Western-blot analysis of glucose transporters (see below).

Western-blot analysis
Total or membrane protein samples (50 µg) were subjected to SDS/PAGE on 7.5% polyacrylamide gels as described by Laemmli [22] and were electrophoretically transferred (100 V, 2 h) to PVDF filter membranes for 2 h. Immunoblotting was
performed as previously described [23]. Briefly, PVDF membranes were incubated for 1 h at room temperature with buffer I (50 mM Tris/HCl, pH 7.4, and 150 mM NaCl) containing 0.04% (v/v) NP-40, 0.02% (v/v) Tween-20 and 3% (w/v) fatty acid-free BSA, followed by overnight incubation at 4 °C with primary antibodies. Dilutions of antibodies were: polyclonal anti-iNOS, 1:2500; polyclonal anti-GLUT1, 1:2000; -GLUT3, 1:1000; -GLUT4, 1:2000; and monoclonal anti-z1-Na/K-ATPase, 1:200. PVDF membranes were then washed for 30 min, followed by a 1 h incubation with either anti-mouse or anti-rabbit IgG (1:10000 dilution) conjugated to horseradish peroxidase (Amersham) in buffer I containing 1% (w/v) BSA. The PVDF membranes were washed for 30 min in buffer I, and the immunoreactive bands were detected by the enhanced chemiluminescence method.

NOS histochemistry

NOS was selectively stained by reduced NADPH–diaphorase histochemistry [24]. L6 myotubes grown on cover slips in 6-well plates were incubated with or without cytokines + LPS for 24 h, washed three times in Tris buffer (0.1 M Tris/HCl, pH 8), and fixed in 4% (v/v) paraformaldehyde followed by a 30 min incubation at 37 °C in 0.1 M Tris/HCl buffer containing 1 mM NADPH, 0.2 mM Nitro Blue Tetrazolium and 0.3% (w/v) Triton X-100. Sections were rinsed in PBS (2 × 10 min) and mounted on slides for histochemistry. Cells were viewed using a high-power microscope (Nikon, optiphot). No staining was observed when NADPH was omitted from the reaction mixture (results not shown).

Statistical analysis

Values are means±S.E.M. The effect of cytokines/LPS and insulin on glucose transport were compared by a two-way analysis of variance. The effects of different concentrations of insulin on glucose transport were analysed by two-way analysis of variance. The level of significance was *P < 0.05.

RESULTS

The effects of individual cytokines and their combination on NOS activity in L6 myocytes were determined by measurements of nitrite levels in the medium, as shown in Table 1. Neither TNF-α nor IF-γ alone stimulated NO production over basal values. However, a significant increase in nitrite levels was observed when cells were incubated with both cytokines. Moreover, the addition of LPS synergistically enhanced the effects of the cytokines to promote NO production. LPS alone did not increase nitrite levels (results not shown). Addition of the NOS inhibitor l-NAME (2 mM) totally abrogated the effects of the cytokines and LPS on NO production.

We next investigated whether the increased production of NO was related to the induction of iNOS. L6 myocytes treated as above were used for extraction of RNA and iNOS mRNA detection by RT-PCR analysis (Figure 1). GAPDH mRNA levels assessed in the same samples were used as internal controls for the RT-PCR assay. iNOS and GAPDH were both amplified as single gene products migrating at the expected molecular size (iNOS, 653 bp; GAPDH, 331 bp) on agarose gels. iNOS mRNA was not detectable in control myocytes or in cells treated with either cytokines or LPS alone, but was observed in cells treated with the combination of TNF-α and IF-γ. As for nitrite levels, the combination of both cytokines and LPS markedly induced iNOS expression. The expression of GAPDH mRNA was not different among treatment groups. Moreover, neither the nNOS nor the eNOS isoforms could be detected in control or cytokine/LPS-treated L6 cells (results not shown).

The close parallelism between the action of cytokines and LPS to increase nitrite levels and iNOS mRNA strongly suggested that iNOS was responsible for the enhanced NOS activity. To establish that point, we also determined iNOS protein levels in these cells, using both immunoblotting and histochemical detection techniques. Using a specific polyclonal antibody against macrophage-type iNOS, we could detect iNOS induction at the protein level only in cells chronically treated with both cytokines and LPS (Figure 2). In contrast, the z1-Na/K-ATPase, used here as a control protein, was present in all samples. Moreover, this treatment did not affect total cellular proteins (µg per well) under the same conditions (results not shown). The lack of detection of iNOS protein in muscle cells treated with both cytokines in the absence of LPS may be related to the limited sensitivity of Western blotting as compared with RT-PCR analysis of iNOS mRNA. This is supported by the observation that nitrite pro-

Table 1: Effect of TNF-α, IF-γ, LPS and l-NAME on nitrite production by L6 myocytes.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Nitrite (µM)</th>
<th>−l-NAME</th>
<th>+l-NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.27 ± 0.04</td>
<td>0.49 ± 0.14</td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td>0.09 ± 0.10</td>
<td>0.36 ± 0.26</td>
<td></td>
</tr>
<tr>
<td>IF-γ</td>
<td>0.22 ± 0.11</td>
<td>0.14 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>TNF-α + IF-γ</td>
<td>1.60 ± 0.87</td>
<td>0.25 ± 0.07*</td>
<td></td>
</tr>
<tr>
<td>TNF-α + IF-γ + LPS</td>
<td>9.57 ± 0.85</td>
<td>0.93 ± 0.17**</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2 Effect of TNF-α (10 ng/ml), IF-γ (200 units/ml) and LPS (10 µg/ml) on the expression of iNOS protein in L6 myocytes.

L6 cells were treated or not with cytokines and LPS for 24 h before protein extraction and Western-blot analysis with specific antibodies against iNOS and the α1-subunit of the Na/K-ATPase (α1-Na/K). The migrations of molecular-mass standards (in kDa) are shown on the left. The experiment shown is representative of three individual determinations with different cells.

Table 2 Effects of chronic cytokines/LPS exposure on basal and insulin-stimulated glucose transport in L6 myocytes.

Cells were treated or not with a combination of TNF-α (10 ng/ml), IF-γ (200 units/ml) and LPS (10 µg/ml), with or without l-NAME (2 mM), for 24 h, followed by 0.6 µM insulin (or medium) for an additional 45 min incubation before glucose-uptake measurements. Values represent means±S.E.M. of four individual experiments performed in triplicate. Insulin-mediated 2-deoxyglucose uptake values were calculated from the difference between insulin and non-insulin-stimulated values for each experimental conditions.

Figure 3 Histochemical detection of NOS in control (A) and cytokines/LPS-treated (B) L6 myocytes.

Cells grown on coverslips were incubated in the presence or not of the cytokines/LPS mixture for 24 h, and NOS was revealed by histochemical diaphorase staining, as described in the Materials and methods section. Arrows point to intense labelling located throughout the cytoplasm of multinucleated myotubes. Magnification: ×50. The experiment shown is representative of two separate experiments.

Table 3 Effects of chronic cytokines/LPS exposure on lactate and glucose concentrations in the culture medium of L6 myocytes.

Cells were treated or not with a combination of TNF-α (10 ng/ml), IF-γ (200 units/ml) and LPS (10 µg/ml), with or without l-NAME (2 mM), for 24 h. Medium was collected and used for measurements of lactate and glucose concentrations as described in the Materials and methods section. *P < 0.05 as compared with control values.

production was observed in cells treated with both cytokines (Table 1). Induction of iNOS was further confirmed by diaphorase staining (Figure 3B). Thus these results demonstrate that the induction of iNOS mRNA expression in cytokines/LPS-treated cells resulted in the synthesis of more iNOS protein and NO production.

We next investigated the effects of cytokines and LPS on basal and insulin-stimulated glucose transport in L6 myocytes (Table 2). As expected, acute insulin stimulation (45 min) significantly stimulated glucose transport in these cells. Chronic exposure (24 h) of L6 cells to the cytokines/LPS mixture markedly increased basal glucose uptake above that seen with insulin alone. As shown in Table 3, this treatment also induced a significant release of lactate in the medium. Lactate concentrations in the medium were not increased during the acute (45 min) stimulation with insulin (results not shown). In cells previously treated with cytokines/LPS, insulin produced a much smaller increase in glucose transport above that seen with cytokines/LPS treatment (Table 2). This stimulation (in
Cytokines and glucose uptake in skeletal muscle

Glucose transport is mediated by the GLUT1, GLUT3 and GLUT4 glucose transporter proteins in L6 myocytes. With the known effects of cytokines such as TNF-α and IF-γ either alone or in combination failed to affect basal or insulin-stimulated glucose transport in the same conditions (results not shown). Noticeably, preventing NO production by addition of l-NAME to the incubation medium of cells treated with cytokines and LPS blocked the stimulation of basal glucose uptake and lactate release, and restored the responsiveness of L6 myocytes to insulin (Tables 2 and 3). Similar results were obtained when NO production was abolished by l-N®-(1-iminoethyl)lysine (0.1 mM), a more selective inhibitor of iNOS [25] (results not shown).

We also determined the effects of cytokines/LPS on insulin sensitivity by measuring glucose uptake at different concentrations of insulin (Figure 4). Cells chronically exposed to the cytokines/LPS mixture were more resistant to the action of insulin, as reflected by the lack of significant effect of lower doses (up to 60 nM) of the hormone to activate glucose transport in cytokines/LPS-treated cells (see the EC50 in the legend to Figure 4). l-NAME improved insulin sensitivity in cytokines/LPS-treated myocytes, as shown by the restored ability of lower concentrations to stimulate glucose transport. The NOS inhibitor alone slightly decreased absolute glucose transport rates in L6 cells. However, both basal and insulin-stimulated glucose transport were similarly affected, and, thus, L6-cell insulin responsiveness and sensitivity were not significantly different from control myocytes.

Glucose transport is mediated by the GLUT1, GLUT3 and GLUT4 transporters in L6 muscle cells, and insulin has been shown to stimulate glucose transport by inducing the translocation of these transporter proteins to the plasma membrane [26]. The effect of cytokines/LPS treatment on the cellular expression of these glucose transporter isoforms is shown in Figure 5. The cytokines/LPS mixture significantly increased (by ~60%) the expression of the GLUT1 transporter protein. In marked contrast, the expression of the GLUT4 glucose transporter was markedly decreased in the same cells. Inhibition of NO production by l-NAME treatment reversed the increasing effect of cytokines/LPS on GLUT1 protein expression but failed to restore GLUT4 protein levels. The NOS inhibitor did not alter GLUT1 or GLUT4 expression. On the other hand, the expression of the GLUT3 transporter protein was not affected by these treatments (Figure 5). As expected, acute exposure (45 min) of the cells to insulin did not affect the total levels of any GLUT isoforms (results not shown).

DISCUSSION

The present study shows that chronic exposure of L6 myocytes to cytokines induced iNOS expression and NO production in these cells. Moreover, the cytokine effect was markedly enhanced by the presence of LPS. These results in L6 cells are in good agreement with previous studies showing iNOS mRNA induction in skeletal muscle of endotoxin-treated rats and in C2C12 mouse myocytes exposed to cytokines [15,17]. Our findings further demonstrate that iNOS expression is increased at the protein level, as determined by immunoblotting and histochemical techniques.

This induction of iNOS expression was associated with important changes in glucose transport in muscle cells. First, cytokines and LPS markedly increased basal glucose-transport activity in L6 myocytes. This metabolic effect has been recently observed in another study with muscle cells [27], and the present study suggests that the extra glucose taken up by the cells was mainly used for glycolysis, since lactate concentrations significantly rose in the medium. These results are in good agreement with the known effects of cytokines such as TNF-α in *vivo.*
Indeed, TNF-α has been reported to increase skeletal muscle glucose disposal in rats and even cause hypoglycaemia at high doses [28,29]. The increase in glucose utilization was more easily observed at high concentrations of the cytokine [29]. It has been suggested that this metabolic response is not readily observed at lower doses of TNF-α because of the concomitant elevation of counter-regulatory hormones (glucagon, catecholamines and cortisol). Indeed, the hypoglycaemic effects of TNF-α are observed at lower doses of the cytokine in adrenalectomized rats [29]. More recently, Sakurai et al. [6] have provided evidence that TNF-α directly stimulates peripheral glucose uptake in peripheral tissues by preventing any changes in insulin and glucagon during TNF-α infusion.

Another finding of the present study is that cytokines/LPS treatment impaired insulin stimulation of glucose transport in L6 muscle cells. This impairment was observed despite the elevation of basal glucose transport by cytokines/LPS exposure. These results are consistent with previous reports that septic patients are insulin resistant [3] and that exogenous challenge with cytokines impairs insulin-mediated glucose uptake in skeletal muscle [7]. It is likely that the insulin-resistant effects of cytokines are better appreciated in vivo, since, as mentioned above, the direct action of TNF-α to enhance muscle glucose disposal is over-ruled by counter-regulatory hormones such as glucagon. Importantly, in the conditions used in the present study (24 h), TNF-α alone was not able to influence muscle cell glucose uptake, thus suggesting that it interacts with other cytokines and/or endotoxin during infection in vivo. These results are in accordance with the recent work of Ranganathan and Davidson [27], who also found that insulin action on glucose transport is not affected by TNF-α alone. However, these data are at odds with another study in which the same concentration of TNF-α was found to inhibit insulin-stimulated glucose uptake within minutes and for up to 12 h in L6 cells [30]. The reasons for these discrepant findings are not known. They cannot be attributed to the type (murine or human) of TNF-α used and, thus, the type of TNF-α receptors activated (murine TNF-α binds to both p55 and p75 receptors but human TNF-α only binds to the p55 receptor [31]), as we found similar effects of murine or human TNF-α on iNOS expression and glucose transport in this study (results not shown).

An important goal of the present study was to determine the cellular mechanism by which cytokines and endotoxin affect glucose transport in muscle cells. The fact that cytokines/LPS increased NO production and modulated glucose transport in the same cells suggests that these effects are related, but a causal relationship remained to be shown. Our findings that the NOS inhibitor L-NAME inhibited NO production and fully prevented the effects of the cytokines/LPS challenge on basal and insulin-stimulated glucose transport provide convincing evidence that both the stimulatory and insulin-resistant actions of cytokines are linked to the induction of iNOS and the production of NO by muscle cells.

Since chronic alterations in glucose-transport activity may be linked to changes in the expression of glucose transporters, we have determined the cellular protein levels of the three transporter isoforms known to be present in L6 muscle cells. Our results strongly suggest that cytokines/LPS increase basal glucose transport at least in part by augmenting the expression of the GLUT1 glucose transporter. It should be noted that the effect of cytokines/LPS on GLUT1 expression (60%) was smaller than their enhancing action on basal glucose transport (120%). However, it is possible that most of the biosynthesized GLUT1 proteins are localized in the plasma membrane (where glucose transport takes place) in cytokine-treated cells, thus explaining the greater increases in basal glucose transport. Another possibility is that GLUT1 intrinsic activity is activated by cytokines. Whatever the mechanism, it was found that GLUT1 over-expression is blocked by L-NAME treatment, indicating that NO production was responsible for the effects of cytokines and LPS on both basal glucose transport and GLUT1 protein levels.

In contrast to their effects on GLUT1 expression, cytokines and LPS markedly reduced GLUT4 protein levels in L6 muscle cells. These findings suggest that the impaired insulin action in cytokine-treated L6 cells is associated with a decreased expression of GLUT4, an hypothesis that is in accordance with previous studies in which chronic treatment with cytokines was found to decrease GLUT4 expression in adipocytes [32–34]. However, the finding that NOS blockade with L-NAME re-established insulin action without restoring GLUT4 content indicates that the cytokine effect is not only related to the cellular expression of the GLUT4 protein. Insulin stimulates glucose transport in L6 myocytes by translocation of glucose transporters (GLUT1, GLUT3 and GLUT4) to the plasma membrane [26]. Thus it is possible that cytokines and LPS decrease insulin action by impairing the translocation of glucose transporters and that this effect is NO dependent, as it can be reversed by l-NAME treatment. This hypothesis is consistent with our recent observations that NO inhibits insulin-stimulated glucose transport in isolated rat skeletal muscles and in L6 myocytes [11].

In summary, the present study demonstrates that the cytokines TNF-α and IF-γ, when added in combination, induce iNOS expression and stimulate nitrite production in L6 myocytes, and that LPS synergistically enhances these effects. Moreover, cytokines and LPS markedly increase basal glucose transport but decrease insulin action to stimulate glucose uptake, and these effects are mediated by induction of iNOS and NO production. Our results further show that cytokines and endotoxin increase GLUT1 expression by an NO-dependent mechanism.

This work was supported by grants from the Canadian Diabetes Association, the Canadian Medical Research Council and the ‘Association du diabète du Québec’. A. M. is a Canadian Medical Research Council scholar. We thank Dr. Pascale Mauriège for her help with the measurements of lactate and glucose concentrations in the media and Dr. Guy Drolet for help with microscopy techniques. We also thank Dr. Martin Olivier for the gift of interferon-γ.

REFERENCES

Cytokines and glucose uptake in skeletal muscle

Received 28 November 1996/20 February 1997; accepted 19 March 1997