Identification and characterization of the 2-enoyl-CoA hydratases involved in peroxisomal β-oxidation in rat liver

Martine DIEUAIDE-NOUBHANI*, Dmitry NOVIKOV*, Joël VANDEKERCKHOVE†, Paul P. Van VELDHOVEN*† and Guy P. MANNAERTS‡‡

*Katholieke Universiteit Leuven, Faculteit Geneeskunde, Campus Gasthuisberg, Departement Moleculaire Celbiologie, Afdeling Farmacologie, Herestraat B-3000 Leuven, Belgium, and †Université Gent, Faculteit Geneeskunde Vakgroep Biochemie (VIB), B-9000 Gent, Belgium

In this study we attempted to determine the number of 2-enoyl-CoA hydratases involved in peroxisomal β-oxidation. We therefore separated peroxisomal proteins from rat liver on several chromatographic columns and measured hydratase activities on the eluates with different substrates. The results indicate that rat liver peroxisomes contain two hydratase activities: (1) a hydratase activity associated with multifunctional protein 1 (MFP-1) (2-enoyl-CoA hydratase/Δ3,Δ3-enoyl-CoA isomerase/Δ3-3-hydroxyacyl-CoA dehydrogenase) and (2) a hydratase activity associated with MFP-2 (17β-hydroxysteroid dehydrogenase/Δ3-3-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase). MFP-1 forms and dehydrogenates Δ3-3-hydroxyacyl-CoA species, whereas MFP-2 forms and dehydrogenates Δ3-3-hydroxyacyl-CoA species. A portion of MFP-2 is proteolytically cleaved, most probably in the peroxisome, into a 34 kDa 17β-hydroxysteroid dehydrogenase/Δ3-3-hydroxyacyl-CoA dehydrogenase and a 45 kDa Δ3-specific 2-enoyl-CoA hydratase. Finally, the results confirm that MFP-1 is involved in the degradation of straight-chain fatty acids, whereas MFP-2 and its cleavage products seem to be involved in the degradation of the side chain of cholesterol (bile acid synthesis).

INTRODUCTION

Peroxisomes are the subcellular site of β-oxidation of very-long-chain fatty acids, 2-methyl-branched fatty acids (e.g. pristanic acid and the synthetic 2-methylpalmitic acid) and the bile acid intermediates di- and trihydroxycoprostanic acids [1–3]. In rat liver the first step of peroxisomal β-oxidation is catalysed by three separate acyl-CoA oxidases: palmitoyl-CoA oxidase [4,5], pristanoyl-CoA oxidase [6] and trihydroxycoprostanoyl-CoA oxidase [7], involved in the oxidation of the CoA esters of straight-chain fatty acids, 2-methyl-branched fatty acids and the bile acid intermediates respectively [8]. In addition we have shown that the second (2-enoyl-CoA hydratase) and third (3-hydroxyacyl-CoA dehydrogenase) reactions of peroxisomal β-oxidation are catalysed by two separate multifunctional proteins (MFPs) [9,10]. MFP-1 (78 kDa) displays 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and Δ3,Δ3-enoyl-CoA isomerase activity [11,12]. The enzyme specifically dehydrogenates Δ3-3-hydroxy stereoisomers and shows homology with the hydratases and 3-hydroxyacyl-CoA dehydrogenases present in mitochondria. MFP-2 (79 kDa) displays 2-enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 17β-hydroxysteroid dehydrogenase activity. The enzyme specifically dehydrogenates Δ3-3-hydroxy stereoisomers [10] and shows homology with the Δ3-specific peroxisomal β-oxidation MFP from yeast [13]. MFP-2 is identical with an enzyme originally described as pig endometrial β-oestradiol dehydrogenase IV [14] and consists of an N-terminal short-chain alcohol dehydrogenase domain, harbouring the 17β-hydroxysteroid dehydrogenase activity [15] and the Δ3-3-hydroxyacyl-CoA dehydrogenase activity [10], followed by a 2-enoyl-CoA hydratase domain and finally a C-terminal domain that shows homology with sterol carrier protein 2 [15]. After importation into the peroxisome, a portion of MFP-2 is proteolytically cleaved, giving rise to an active homodimeric enzyme (subunit approx. 40 kDa by SDS/PAGE) that consists of the N-terminal 17β-hydroxysteroid/3-hydroxyacyl-CoA dehydrogenase domain of MFP-2 [10]. Rat liver peroxisomes also contain a 45 kDa (gel electrophoresis) polypeptide that cross-reacts with antiserum raised against MFP-2 [10], suggesting that this polypeptide might represent the C-terminal hydratase/sterol carrier protein 2 domains of MFP-2.

The naturally occurring 3-hydroxyacyl-CoA intermediate in the β-oxidation of straight-chain fatty acids has the Δ3-configuration [16,17] indicating that MFP-1 is involved in the degradation of straight-chain fatty acids. The physiological 3-hydroxyacyl-CoA intermediate in bile acid synthesis was originally reported to be 24R,25S-varanoyl-CoA in which the 24R hydroxyl group corresponds to a Δ3-3-hydroxy group in the carboxy side chain [18,19]. The physiological 3-hydroxyacyl-CoA intermediate in bile acid synthesis was originally reported to be 24R,25S-varanoyl-CoA in which the 24R hydroxyl group corresponds to a Δ3-3-hydroxy group in the carboxy side chain [18,19]. The designation of this isomer, based on reports by three different groups [20–22], was recently changed to 24R,25R. The Δ3-3-hydroxyacyl-CoA dehydrogenase, together with the fact that MFP-2 specifically dehydrogenates and dehydrogenates 24R,25R stereoisomer of varanoyl-CoA [10], indicates that MFP-2 is not involved in the β-oxidation of straight-chain fatty acids but in that of the side chain of cholesterol (bile acid synthesis). The stereochemical configuration of the 3-hydroxy intermediate in the β-oxidation of 2-methyl-branched fatty acids remains unknown; it is therefore currently impossible to conclude which of the two MFPs is involved in the metabolism of the branched fatty acids.

The presence of three acyl-CoA oxidases and three 3-hydroxyacyl-CoA dehydrogenases (MFP-1, MFP-2 and its N-terminal cleavage product) raises the question of whether hydratases besides the two MFPs described above occur in...
peroxisomes. Indeed, three research groups reported the presence of so-called peroxisomal hydratases 2, also known as \(\alpha \)-3-hydroxyacyl-CoA dehydratases. A first protein, described as an 80 kDa homodimer consisting of 44 kDa subunits, was purified by Li et al. [23]. Malila et al. [24] described a 62 kDa homodimer (subunit 33.5 kDa) and Cook et al. [25] purified a protein of 150 kDa consisting of 78, 71 and 47 kDa polypeptides after gel electrophoresis. All three enzymes specifically catalysed the hydration of a 2-trans-enoyl-CoA to a \(\alpha \)-3-hydroxyacyl-CoA.

The aim of the present work was to determine the exact number of hydratases present in peroxisomes and to elucidate how closely (some of) the additional hydratases would be related to the two MFPs.

EXPERIMENTAL

Materials

CoA, acetoacetyl-CoA and palmitoyl-CoA were from Pharmacia Benelux. Nycodenz was from Nycomed. Acyl-CoA oxidase (from *Arthrobacter* sp.), crotonase (from bovine liver), octanoyl-CoA and crotonoyl-CoA were from Sigma. 3-Hydroxyacyl-CoA dehydrogenase (pig heart) was obtained from Boehringer Mannheim. \(C_{18} \) cartridges (500 mg; 3 ml) were from Varian Benelux.

Animals

Livers from control and clofibrate-treated rats were used as described previously [9].

Synthesis and purification of the substrates

2-trans-Octenoyl-CoA and 2-trans-hexadecenoyl-CoA were synthesized as described previously [10]. The four stereoisomers of varanoyl-CoA were obtained as described by Dieuaide-Noubhani et al. [10]. Racemic 3-hydroxy-2-methylpalmitoyl-CoA was prepared as described previously [9]. \(\alpha \)-3-Hydroxyoctanoyl-CoA was synthesized by incubating octanoyl-CoA (200 \(\mu \)M) in 50 mM Tris/HCl pH 8, with acyl-CoA oxidase (25 m-units/ml) and with purified rat liver MFP-2 (30 m-units/ml octenoyl-CoA hydratase). After 20 min of incubation, the CoA esters were partly purified by applying the reaction mixture to a \(C_{18} \) cartridge and eluting the esters with methanol [10]. After evaporation of the methanol, the residue was dissolved in 50 mM potassium phosphate buffer, pH 5.3, (buffer A) and injected to a phenyl column equilibrated with the same buffer. The bound proteins were eluted by a linear negative salt gradient as described previously [9]. The flow rate was 0.8 ml/min and fractions of 1.6 ml were collected.

Fractions from the sulphopropyl column (fractions 13–19 and fractions 20–25 in the experiment presented in Figure 1) were pooled, concentrated, dialysed overnight against 20 mM potassium phosphate buffer (pH 7.5)/0.6 M (NH\(_4\))\(_2\)SO\(_4\) (buffer A) and injected to a phenyl column equilibrated with the same buffer. The bound proteins were eluted by a linear negative salt gradient 100–0% buffer A; 0–100% buffer B containing 20 mM potassium phosphate, pH 7.5 and 30% (w/v) ethylene glycol over 50 min at a flow rate of 0.8 ml/min. Fractions of 1.6 ml were collected.

Enzyme assays

Varanoyl-CoA dehydrogenase [9] and acetoacetyl-CoA reductase [26] activities were measured as described previously. Hydratase activities were measured as the hydration of 2-trans-enoyl-CoA for straight-chain fatty acids or in the reverse direction (dehydration) for varanoyl-CoA and 3-hydroxy-2-methylpalmitoyl-CoA as described previously [10]. \(\alpha \)-3-Hydroxyacyl-CoA dehydratase activity (substrate \(\alpha \)-3-hydroxyoctanoyl-CoA) was measured indirectly by monitoring NADH production in a reaction mixture containing crotonase (conversion of the 2-octenoyl-CoA, formed via dehydration of \(\alpha \)-3-hydroxyoctanoyl-CoA, to \(\alpha \)-3-hydroxyoctanoyl-CoA) and \(\alpha \)-3-hydroxyacyl-CoA dehydrogenase (dehydration of the \(\alpha \)-3-hydroxyoctanoyl-CoA). The reaction mixture contained 50 mM Tris/HCl, pH 8.0, 1 mM NAD\(^+\), 60 mM hydrazine, pH 8.0, 50 mM KCl, 0.05% defatted BSA, 25 \(\mu \)M \(\alpha \)-3-hydroxyoctanoyl-CoA, crotonase (2 units/ml) and \(\alpha \)-3-hydroxyacyl-CoA dehydrogenase (40 \(\mu \)g/ml). The reaction was started by the addition of 25 \(\mu \)l of enzyme solution, diluted in 0.125 M Tris/HCl, pH 8.0, to the incubation mixture, in a total volume of 250 \(\mu \)l. NADH formation was followed at 340 nm and corrected for substrate-independent NADH formation and for NADH production due to \(\alpha \)-hydroxyacyl-CoA dehydrogenase activity. Normally, at the dilution used to measure \(\alpha \)-dehydratase activity, the \(\alpha \)-dehydrogenase activity was responsible for less than 10% of the NADH production.

SDS/PAGE and immunoblotting

SDS/PAGE, silver staining of the gels and immunoblotting were performed as described previously [9,10].

N-terminal sequencing of the 45 kDa polypeptide

Fractions corresponding to peak D (see Figure 3) of octenoyl-CoA hydratase activity from the phenyl column were pooled, dialysed against 20 mM potassium phosphate buffer, pH 7, and concentrated by dialysis against poly(ethylene glycol) (20 kDa). Proteins were precipitated by adding 0.1 vol. of 100% (w/v) trichloroacetic acid and were collected by centrifugation. The pellet was redissolved in 20 \(\mu \)l of SDS-containing sample buffer and loaded on a minigel containing 10% (w/v) polyacrylamide [27]. Proteins were further electrophoresed on a Pro Blott membrane (Applied Biosystems) in 0.1 M Tris/borate buffer, pH 8.0.
[28], and the pattern was revealed by staining with Amido Black. The band corresponding to the 45 kDa enoyl-CoA hydratase was excised and subjected to automated Edman degradation by using a 477A model sequenator equipped with a 120A model phenylthiohydantoin amino acid analyser (Applied Biosystems).

RESULTS

Subperoxisomal distribution of 2-enoyl-CoA hydratase activities

Highly purified peroxisomes were subfractionated into matrix, peripheral membrane and integral membrane proteins. Table 1 shows that most of the hydratase and dehydratase activities were found in the protein fraction that behaves as peripheral membrane proteins. Similar results have previously been obtained for the 3-hydroxyacyl-CoA dehydrogenase activities [10]. As for the varanoyl-CoA stereoisomers, dehydratase activity was found only with the 24R,25R and 24S,25S stereoisomers.

Separation of the 2-enoyl-CoA hydratases

The peripheral-membrane protein fraction was used for the further separation of the hydratases. After dialysis and concentration, the proteins were applied to a sulphopropyl column and eluted with a linear gradient of potassium phosphate (Figure 1). The highest hydratase activities were obtained with crotonyl-CoA and octenoyl-CoA as the substrates. Crotonyl-CoA hydratase activity was eluted in one large peak (fractions 20 and 21) that also showed octenoyl-CoA and hexadecenoyl-CoA hydratase activities and 3-hydroxy-2-methylhexadecanoyl-CoA and 24S,25S-varanoyl-CoA dehydratase activities. Octenoyl-CoA hydratase activity was eluted in two peaks: the peak described above (fractions 20 and 21) and an earlier peak (fractions 13–19) that also displayed 24R,25R-varanoyl-CoA dehydratase activity but little crotonase activity. The substrate spectrum of the early peak corresponds to that of the purified MFP-2 [9,10], whereas that of the second peak (fractions 20 and 21) corresponds to that of the purified MFP-1 [9]. SDS/PAGE confirmed the presence of MFP-2 (79 kDa) in fractions 15–20 and the presence of MFP-1 (78 kDa) in fractions 17–22 (Figure 2). A smaller peak of activity was seen in fraction 18 with crotonoyl-CoA, 3-hydroxy-2-methylhexadecanoyl-CoA and hexadecenoyl-CoA as the substrates (Figure 1). This peak, which did not correspond to a particular band on SDS/PAGE, might be the result of the simultaneous presence of MFP-1 and MFP-2 (Figure 2).

Fractions 11–19 and 20–22 from the sulphopropyl column were separately pooled and each of the pooled fractions was chromatographed on a phenyl column. The hydratase activities of fractions 11–19 and 20–22 from two runs were pooled separately and used for further purification. Symbols (shown in parentheses) independent determinations. Activities measured in the subfractions, expressed as percentages of the total recovered amount

Table 1 Release of enoyl-CoA hydratase activity after subfractionation of purified peroxisomes

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Protein amount (% of total)</th>
<th>Activity (µmol/min per mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxisomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>S2</td>
<td>18</td>
<td>67</td>
</tr>
<tr>
<td>P2</td>
<td>46</td>
<td>21</td>
</tr>
</tbody>
</table>
Figure 2. Analysis of the fractions from the sulphopropyl column by SDS/PAGE and silver staining

Lanes a–j correspond to proteins contained in 10 µl of fractions 13–22 from the sulphopropyl column described in Figure 1. The left-hand vertical arrow indicates the peak fraction containing MFP-2 (fraction 17) and the right-hand vertical arrow indicates the peak fraction containing MFP-1 (fraction 21). The horizontal arrows indicate the positions of MFP-2 (79 kDa) and MFP-1 (78 kDa). The positions of the protein markers, their molecular masses expressed in kDa, are shown at the left.

Figure 3. Hydrophobic chromatography of the 2-enoyl-CoA hydratases

Fractions 20–22 (upper panel) and fractions 11–19 (lower panel) from the sulphopropyl column (Figure 1) were separately pooled, concentrated, and dialysed overnight against 20 mM potassium phosphate buffer (pH 7.5)/0.6 M (NH4)2SO4 and injected on the phenyl column. The bound proteins were eluted by means of a negative salt and a positive ethylene glycol gradient as described in the Experimental section (percentage of buffer A, broken line). Fractions of 1.6 ml were collected and assayed for enoyl-CoA hydratase activity with crotonyl-CoA (○), octenoyl-CoA (□), hexadecenoyl-CoA (●), 3-hydroxy-2-methylpalmitoyl-CoA (●) and 24R,25R-varanoyl-CoA (★), and for 24R,25R-varanoyl-CoA dehydrogenase (dotted line) and acetate-CoA reductase (□). Upper panel: 1.1 ml of the concentrated fraction containing 221 units of crotonase (recovery 44%), 113 units of octenoyl-CoA hydratase (recovery 49%), 32 units of hexadecenoyl-CoA hydratase (recovery 39%), and 6.75 units of acetate-CoA reductase (recovery 79%) were injected. Lower panel: 1.7 ml of the concentrated fraction containing 35 units of crotonase (recovery 55%), 197 units of octenoyl-CoA hydratase (recovery 58%), 12 units of hexadecenoyl-CoA hydratase (recovery 54%), 12 units of 3-hydroxy-2-methylpalmitoyl-CoA dehydrogenase (recovery 44%), 52 units of 24R,25R-varanoyl-CoA dehydrogenase (recovery 54%) and 1.3 units of 24R,25R-varanoyl-CoA dehydrogenase (recovery 90%) were injected. Symbols are omitted where no activity was found in a fraction. Vertical arrows indicate the positions of the four peak fractions of hydratase activity (A to D).

Fractions 28–39 (peaks C and D) were pooled and injected on different columns (cation-exchange and anion-exchange columns) to separate the 45 kDa polypeptide from the 79 kDa polypeptide. During further chromatographic steps, complete separation of the two polypeptides was not achieved (results not shown), suggesting that MFP-2 and its C-terminal cleavage product are rather tightly associated. The (inhomogeneous) association between MFP-2 and its C-terminal cleavage product may explain why the hydratase activities were eluted in two peaks (C and D) from the phenyl column.
Fraction 30 from the phenyl column also contained a 33 kDa polypeptide (Figure 4) that might correspond to the 33.5 kDa D-dehydratase described by Malila et al. [24]. However, separation of peroxisomal proteins from clofibrate-treated rats indicated that the 33 kDa polypeptide does not display hydratase activity, as detailed below.

Finally, electrophoresis and immunoblot analysis of fractions 22–24 from the phenyl column (peak B) demonstrated the presence of a 67 kDa polypeptide cross-reacting with antibodies raised against MFP-2 (Figure 5), suggesting that the hydratase activities of peak B were due to the presence of a proteolytic degradation product of MFP-2. The 67 kDa polypeptide was not purified further to confirm this possibility.

The 45 kDa polypeptide is the C-terminal hydratase/sterol carrier protein 2 domain of MFP-2

Previous data from our laboratory showed that MFP-2 is cleaved after amino acid residues 312 and 316, giving rise to a separate enzyme that comprises the N-terminal domain of MFP-2, containing the 17β-hydroxysteroid and D-3-hydroxyacyl-CoA dehydrogenase activities [10]. Those experiments and the present study also revealed the occurrence of a 45 kDa polypeptide cross-reacting with antibodies raised against MFP-2 (Figure 5), suggesting that the hydratase activities of peak B were due to the presence of a proteolytic degradation product of MFP-2. The 45 kDa polypeptide was not purified further to confirm this possibility.

Figure 4 Analysis of fractions eluted from the phenyl column by SDS/PAGE and silver staining

Fractions from the column described in Figure 3 (lower panel) were analysed by SDS/PAGE. Lanes a–m correspond to proteins contained in 40 µl of fractions 27–39 from the phenyl column. The horizontal arrows indicate the position of the MFP-2 (79 kDa) and the 45 kDa polypeptide, and vertical arrows indicate fractions corresponding to peaks of 2-enoyl-CoA hydratase activity (fractions 29 and 34) and/or 3-hydroxyacyl-CoA dehydrogenase activity (fractions 30 and 34) on the phenyl column. The positions of the protein markers, their molecular masses expressed in kDa, are shown at the left.

Figure 5 Immunoblot analysis of fractions eluted from the phenyl column

After separation by SDS/PAGE, proteins contained in fractions 22–24 (lanes a–c) and 34 (lane d) from the phenyl column (Figure 3, lower panel) were transferred to nitrocellulose and the blot was incubated with antibodies raised against MFP-2, followed by detection with alkaline phosphatase-labelled anti-rabbit IgG. The horizontal arrows indicate the position of the MFP-2 (79 kDa) and its two cleavage products. The positions of the protein markers, their molecular masses expressed in kDa, are shown at the left.

Expressed peroxisome targeting signal 1 receptor [29], indicating that the 45 kDa protein still carries the C-terminal peroxisomal targeting signal (Ala-Lys-Leu) of MFP-2 [10]. Overall, our earlier and the present results show that a portion of MFP-2 is cleaved into a 17β-hydroxysteroid/D-3-hydroxyacyl-CoA dehydrogenase and a 2-enoyl-CoA hydratase/sterol carrier protein 2. The molecular masses of the dehydrogenase and hydratase/sterol carrier domains, calculated from the deduced amino acid sequence [10], are 33753 and 45525 Da and 34108 and 45170 Da when the protein is cleaved after amino acid residues 312 and 316 respectively.

MFP-2 displays D-hydratase activity

Previous results from our laboratory showed that MFP-2 specifically dehydrogenates D-3-hydroxyacyl-CoAs including the physiological 24R,25R-varanoyl-CoA stereoisomer [10]. We also demonstrated that MFP-2 specifically dehydrates 24R,25R-varanoyl-CoA, but the stereospecificity of the hydration reaction in the forward direction was not investigated [10]. Therefore purified MFP-2 was incubated with 2-trans-octenoyl-CoA in the absence of NAD⁺, leading to the partial conversion of the enoyl-CoA to the 3-hydroxyacyl-CoA as measured at 263 nm. When a plateau was reached, 1 mM NAD⁺ and mitochondrial 1,3-hydroxyacyl-CoA dehydrogenase (40 µg/ml) were added, and the reduction of NAD⁺ was followed by measuring the absorbance at 340 nm. No 3-hydroxyacyl-CoA dehydrogenase activity was detected. However, when 2-trans-octenoyl-CoA was incubated with crotonase (instead of MFP-2), which specifically produces 1,3-hydroxyoctanoyl-CoA, the 3-hydroxyacyl-CoA was rapidly dehydrogenated after addition of NAD⁺ and the mitochondrial 3-hydroxyacyl-CoA dehydrogenase (results not shown). These results demonstrate that MFP-2 catalyses the hydration of a 2-trans-enoyl-CoA to a D-3-hydroxyacyl-CoA. The high ratio of hydratase activity towards 3-hydroxyacyl-CoA dehydrogenase activity observed for MFP-2 [10] explains the
absence of visible D-3-hydroxyacyl-CoA dehydrogenase activity after the addition of NAD⁺.

Separation of the peroxisomal 2-enoyl-CoA hydratases from livers of clofibrate-treated rats

Malila et al. [24] purified a D-dehydrogenase consisting of a homodimer with a subunit molecular mass of 33.5 kDa from livers of clofibrate-treated rats. The enzyme was active essentially towards medium-chain fatty acids. Because we did not find any clear indication for the presence of this enzyme in livers from untreated rats, we suspected that the enzyme might be inducible by clofibrate treatment. We therefore purified peroxisomes from livers of clofibrate-treated rats and subfractionated the organelles into matrix, peripheral membrane and integral membrane proteins. D-3-Hydroxyoctanoyl-CoA was used to measure the D-dehydratase activity specifically. As in control rats, 70–80% of the hydratase and dehydratase activities were associated with the peripheral-membrane protein fraction for all substrates used (results not shown). The peripheral-membrane protein fraction was applied to a sulphinpropyl column as described for control rats. One large peak of hydratase and dehydratase activities (fractions 20–22) was observed with crotonyl-CoA, octenoyl-CoA hexadecenoyl-CoA and with 3-hydroxy-2-methylhexanoyl-CoA respectively (Figure 6), owing to the presence of the inducible MFP-1 (results not shown). The use of 24R,25R-varanoyl-CoA and D-3-hydroxyoctanoyl-CoA allowed the detection of a second peak of dehydratase activity that was eluted in fractions 17–21. Fractions 16–20 were combined and, after concentration, an aliquot was injected on a phenyl column (Figures 7A and 7B). The elution profile of the dehydratase activities was similar to that observed for a control liver: a first peak corresponding to the presence of MFP-1 (confirmed by gel electrophoresis and immunoblotting; data not shown) inactive towards 24R,25R-varanoyl-CoA and D-3-hydroxyoctanoyl-CoA, and two additional peaks (fractions 29–33 and 34–39) that specifically dehydrated 24R,25R-varanoyl-CoA and D-3-hydroxyoctanoyl-CoA. Gel electrophoresis and immunoblot analysis with antibodies against MFP-2 revealed the presence of MFP-2 and its C-terminal 45 kDa cleavage product in these two peaks (results not shown). As with control liver, a prominent band of 33 kDa was present in fractions 31–34. In a second experiment, an aliquot of the pooled fractions 16–20 from the sulphinpropyl column was injected on an alkyl column (Figure 7C). MFP-1 was not retained on the column and only one peak of D-3-hydroxyoctanoyl-CoA and 24R,25R-varanoyl-CoA dehydratase activity was eluted from the column in fractions 26–32. Gel electrophoresis of the eluate revealed the presence of MFP-2 and its cleaved 45 kDa polypeptide in these fractions. In
contrast, the 33 kDa protein was not retained on the column and was eluted in fractions 3 and 4 (results not shown), which did not show \(\alpha \)-dehydratase activity (Figure 7).

DISCUSSION

Each step of peroxisomal \(\beta \)-oxidation seems to be catalysed by several enzymes with distinct substrate specificities. In the present study we attempted to account for the 2-enoyl-CoA hydratases present in peroxisomes. Our results indicate that rat liver contains several enzymes with distinct substrate specificities. In the present study, we found that MFP-1 is most probably not involved in bile acid synthesis.

MFP-2 consists of an N-terminal short-chain alcohol dehydrogenase/3-hydroxyacyl-CoA dehydrogenase domain, a central hydratase domain and a C-terminal domain that shows homology with sterol carrier protein 2. A previous report from our laboratory [10] and the present studies demonstrate that a portion of MFP-2 is cleaved into an N-terminal part of 34 kDa that shows \(\beta \)-hydroxysteroid and \(\alpha \)-stereospecificity of MFP-1 and MFP-2 respectively imply that MFP-1 is involved in the degradation of straight-chain fatty acids and that MFP-2 is responsible for the \(\beta \)-oxidation of the side chain of cholesterol. In support of this contention are our observations that MFP-2 specifically dehydrates and dehydrogenates the physiological 24R,25R-varanoyl-CoA stereoisomer ([10], and present study). MFP-1 dehydrates and dehydrogenates the 24S,25S and 24S,25R stereoisomers of varanoyl-CoA respectively, so that the dehydratase and dehydrogenase activities of MFP-1 are not active on the same 25-stereoisomers. On the basis of similar findings, Xu and Cuebas [30] also concluded recently that MFP-1 is most probably not involved in bile acid synthesis.

MFP-2 is formed during purification, because we also found a polypeptide of similar size that displayed hydratase activity and cross-reacted with antibodies raised against MFP-2. We did not find this polypeptide, however, in freshly prepared tissue homogenates. Because antibodies against MFP-2 are now available and because the amino acid sequence of MFP-2 is known, it should be possible to verify how closely the enzymes purified by Li et al. [23] and Cook et al. [25] are related to MFP-2. In contrast, we did not find any indication of the presence of a 33.5 kDa \(\alpha \)-hydratase as reported by Hiltunen and colleagues [24]. One possibility might be that it is a degradation product of MFP-2 or its C-terminal cleavage product.

We acknowledge the technical help of S. Asselberghs. This work was supported by the ‘Fonds voor Geneeskundig Wetenschappelijk Onderzoek’ and the ‘Geconcerteerde Onderzoeksacties van de Vlaamse Gemeenschap’. M. D.-N. was supported by a Junior Fellowship from the University of Leuven.

REFERENCES

Received 10 July 1996/6 September 1996; accepted 17 September 1996