Structural investigation of the molybdenum site of the periplasmic nitrate reductase from *Thiosphaera pantotropha* by X-ray absorption spectroscopy

Brian BENNETT*,†, John M. CHARNOCK†‡, Heather J. SEARS§, Ben C. BERKS§, Andrew J. THOMSON*, Stuart J. FERGUSON||, C. David GARNER‡§ and David J. RICHARDSON**

Centre for Metalloprotein Spectroscopy and Biology, Schools of *Chemical and §Biological Sciences, University of East Anglia, University Plain, Norwich NR4 7TJ, †C.L.R.C. Daresbury Laboratory, Warrington, Cheshire WA4 4AD, ‡Department of Chemistry, University of Manchester, Manchester M13 9PL, and ||Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

INTRODUCTION

Molybdenum-containing enzymes are found in all forms of life from bacteria to higher plants and humans [1]. With the exception of the molybdenum nitrogenases, which bind a molybdenum-iron sulphur cofactor [2,3], all molybdenum enzymes contain one of a series of pterin–molybdenum cofactors based on a pterin–pyran tricycle (molybdopterin) [4–6]. A dithiolene group on the pyran ring provides bidentate sulphur ligation of the molybdenum atom.

Three distinct types of nitrate reductase, all containing a GMP conjugate of the molybdoenzyme cofactor (molybdopterin guanine dinucleotide; MGD), have been identified in bacteria [7]. Membrane-bound respiratory nitrate reductases [7–12] are involved in energy-conserving anaerobic electron-transport pathways. They are αβγ heterotrimers in which the MGD cofactor is bound by the α subunit. Four [Fe–S] clusters are bound by the β subunit [12,13], and two β-type haem groups are bound by the integral membrane quinol-oxidizing γ subunit [13]. The periplasmic respiratory nitrate reductases are water-soluble heterodimers of an MGD- and 1×[4Fe–4S]-containing subunit and a c-type cytochrome [7,14–17]. Assimilatory nitrate reductases are water-soluble monomeric cytoplasmic enzymes binding MGD and one or more [Fe–S] clusters [7,18]. A combination of primary structure analysis and Mo(V) EPR spectroscopy suggests that the molybdenum environments in the two water-soluble bacterial nitrate reductases are similar to each other but distinct from that in the membrane-bound nitrate reductase [7,16–18].

The periplasmic nitrate reductase of *Thiosphaera pantotropha* exhibits multiple Mo(V) EPR signals, of which the one denoted High-g Split is thought to be catalytically and physiologically relevant [16,19]. It was proposed that Mo(V) in this species has two –S– ligands arising from the cofactor dithiolene moiety and a third from a conserved Cys-181. The lack of either a Mo–OH or Mo–SH ligand was suggested by the lack of coupling of Mo(V) to a solvent-exchangeable proton. The presence of the cysteine-derived –S– ligand was suggested by the nature of the EPR signals of the dithionite-reduced enzyme [16]. The identity of further Mo ligands could not be ascertained from Mo(V) EPR spectroscopy. To obtain direct information regarding the ligand sphere of the molybdenum atom of the periplasmic nitrate reductase of *T. pantotropha* a molybdenum K-edge X-ray absorption spectroscopic (XAS) study has been undertaken.

** experimental

Nitrate reductase was purified as described previously [14] from periplasmic extracts of *T. pantotropha* strain M-6 (*narH::Tn5 [Km]*; [20]). The molybdenum content and catalytic activity of the enzyme as prepared were similar to earlier preparations [14,16]. All reagents used were of A.C.S. or AnalR quality. Exchange of enzyme into buffer was carried out by exhaustive dialysis in solutions of buffer salts prepared in AnalR grade water (Fisons). pH electrodes were thoroughly rinsed with AnalR water and, where KCl was not added, carefully dried with tissue before use to minimize any chloride anion transfer across the glass membrane.

Oxidation of enzyme samples for XAS was effected either by incubation with 10 mM KNO$_3$ or by additions of K$_2$Fe(CN)$_6$. The K$_2$Fe(CN)$_6$ was added to the enzyme as an equal volume of 2 mM K$_2$Fe(CN)$_6$ in buffer, and the enzyme was reconstituted by ultrafiltration (Centricon; Amicon). The process was repeated until the optical absorption of the ferricyanide-containing ultrafiltrate indicated that the enzyme had ceased to consume it. Reduction of the enzyme was effected using 10 mM Na$_2$S$_2$O$_3$. The nitrate-oxidized and dithionite-reduced samples were prepared in 50 mM Hepes/KOH, pH 7.4, containing 100 mM KCl. The ferricyanide-oxidized sample was prepared in the same buffer in the absence of added chloride. The Mo(V) contents of

Abbreviations used: MGD, molybdopterin guanine dinucleotide; XAS, X-ray absorption spectroscopy.

* Present address: Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, U.S.A.

** To whom correspondence should be addressed.
samples for XAS were determined by double integration of their EPR spectra and compared with those of a Cu–EDTA standard as in earlier work [16].

Molybdenum K-edge X-ray fluorescence spectra were recorded on frozen solutions at ~77 K on the 5T-wiggler magnet beamline, station 9.2 of the Synchrotron Radiation Source, Daresbury Laboratory, operating at 2 GeV with an average current of 150 mA. An Si(200) double crystal monochromator was used, with the second crystal offset to reject 50% of the beam in order to minimize harmonic contamination. The fluorescence was monitored using a liquid-nitrogen-cooled solid-state thirteenth-element Canberra detector. The monochromator was calibrated at the start of the run using a Mo foil, setting the position of the first peak of the derivative of the foil edge to 20002 eV. During multiple scanning of each sample the edge position did not vary. Each spectrum was collected over ~45 min with 25, 35 and 50 scans being recorded and summed for the ferrocyanide-oxidized, nitrate-oxidized and dithionite-reduced samples respectively.

The raw data were summed using the Daresbury program EXCALIB, and background subtraction was performed using EXBACK. The isolated k^2-weighted EXAFS data were analysed using EXCURV92 [21], employing the single scattering spherical wave approximation [22,23]. Phaseshifts were derived from ab initio calculations using Hedin–Lundqvist potentials and von Bart ground states [24]. The theoretical fits were obtained by adding shells of backscattering atoms around the central absorber atom and iterating the absorber-scatterer distances, r, the Debye–Waller type factors, $2\beta^2$, and the Fermi energy correction, E_F to get the best agreement with the experimental data.

RESULTS

Enzyme samples

The concentration of molybdenum centres in the samples was 0.4 mM in the ferrocyanide-oxidized sample and 0.07 mM in the nitrate-treated and dithionite-reduced samples. EPR analysis of the samples indicated that the ferrocyanide-oxidized and dithionite-reduced samples each contained <5% of the molybdenum as Mo(V). These samples were therefore essentially homogeneous in Mo(VI) and Mo(IV) respectively. As in earlier work [16], the Mo(V) content of the nitrate-treated sample was ~30%. Nevertheless, it would be expected that any Mo(IV) originally present in the sample would undergo turnover-linked oxidation so that the remaining ~70% of the molybdenum was present as Mo(VI) [16]. The very small Mo(V) EPR absorption of the dithionite-reduced sample was estimated to be due to approximately equimolar amounts of the High-g Split signal and a second signal denoted Pseudo Rapid Unsplit [16].

EXAFS of ferrocyanide-oxidized nitrate reductase

The fits of the ferrocyanide-oxidized nitrate reductase EXAFS to a number of models are compared in Table 1. The best fits were obtained assuming a co-ordination number of six. All of the data were fitted using scattering from atoms in the inner co-ordination sphere only (Mo=O, Mo=S, Mo–O and Mo–S–). Although there is some evidence in the Fourier transforms for shells at ~4 Å and at ~4.8 Å, attempts to model these with light atom backscatterers (for instance, C atoms in the cofactor) did not improve the fit sufficiently to justify the additional parameters and so were not included in the final fits. The best models are those with two Mo=O bonds at a distance of 1.73 Å. The best fits obtained for this species suggested two =O, three –S– and either a fourth –S–, –O– or –N– ligand. It should be noted here that EXAFS alone does not distinguish between oxygen and nitrogen atoms nor between sulphur and chlorine atoms. This sample was prepared in the strict absence of chloride, making it unlikely that there is any bound chloride. The data and fit with two =O and four –S– ligands are shown in Figure 1(a). The fit for the alternative with three –S– and one –O– or –N– ligand gave a very slightly lower residual, R, implying a similar-quality fit, but was indistinguishable by eye and, hence, is not shown. Reasonable fits could not be obtained (see Table 1) for models with only one oxo ligand (Figure 1b) or with an =O and a =S

<p>| Table 1 EXAFS residual R factors for various model fits |</p>
<table>
<thead>
<tr>
<th>Sample treatment</th>
<th>n</th>
<th>r (Å)</th>
<th>$2\beta^2$ (Å2)</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo=O</td>
<td></td>
<td></td>
<td></td>
<td>Mo=S</td>
<td></td>
<td></td>
<td>Mo=O</td>
<td></td>
<td></td>
<td>Mo=S</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K$_3$Fe(CN)$_6$ (Figure 1a)</td>
<td>2</td>
<td>1.73</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>K$_3$Fe(CN)$_6$ (Figure 1b)</td>
<td>1</td>
<td>1.75</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>K$_3$Fe(CN)$_6$ (Figure 1c)</td>
<td>1</td>
<td>1.72</td>
<td>0.006</td>
<td>1</td>
<td>2.00</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K$_3$Fe(CN)$_6$ (Figure 1d)</td>
<td>3</td>
<td>1.73</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>K$_3$Fe(CN)$_6$</td>
<td>2</td>
<td>1.73</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>1.8</td>
<td>1.73</td>
<td>0.015</td>
<td>1.1</td>
<td>2.13</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$ (Figure 2a)</td>
<td>2</td>
<td>1.73</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$ (Figure 2b)</td>
<td>2</td>
<td>1.73</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$ (Figure 2c)</td>
<td>3</td>
<td>1.71</td>
<td>0.027</td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$ (Figure 2d)</td>
<td>2</td>
<td>1.71</td>
<td>0.010</td>
<td>2</td>
<td>2.18</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>1</td>
<td>1.71</td>
<td>0.006</td>
<td>2</td>
<td>2.15</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>1</td>
<td>1.71</td>
<td>0.014</td>
<td>5</td>
<td>2.39</td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S$_2$O$_4^{2-}$ (Figure 3)</td>
<td>1</td>
<td>1.74</td>
<td>0.008</td>
<td>1</td>
<td>2.06</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S$_2$O$_4^{2-}$</td>
<td>1</td>
<td>1.77</td>
<td>0.008</td>
<td>2</td>
<td>2.09</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S$_2$O$_4^{2-}$</td>
<td>2</td>
<td>1.77</td>
<td>0.029</td>
<td>1</td>
<td>2.06</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S$_2$O$_4^{2-}$</td>
<td>1</td>
<td>1.74</td>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 \(k^3 \)-Weighted EXAFS (left panels) and Fourier transform (right panels) of the molybdenum centre of ferricyanide-treated nitrate reductase

(a) The calculated fit assumes two Mo\(\equiv\)O and four Mo\(-\)S ligands (Table 1). (b) The calculated fit assumes one Mo\(\equiv\)O, two Mo\(-\)O and three Mo\(-\)S ligands (Table 1). (c) The calculated fit assumes one Mo\(-\)S, one Mo\(\equiv\)O, one Mo\(-\)O and three Mo\(-\)S ligands (Table 1). (d) The calculated fit assumes three Mo\(\equiv\)O and three Mo\(-\)S ligands (Table 1). In each graph the solid lines are the experimental data and the dashed lines are the calculated simulations.
Figure 2 k^3-Weighted EXAFS (left panels) and Fourier transform (right panels) of the molybdenum centre of nitrate-treated nitrate reductase

(a) The calculated fit assumes two Mo=O and four Mo=S ligands (Table 1). (b) The calculated fit assumes two Mo=O, one Mo=O and three Mo=S ligands (Table 1). (c) The calculated fit assumes one Mo=O, two Mo=O and three Mo=S ligands (Table 1). (d) The calculated fit assumes two Mo=O, two Mo=O and two Mo=S ligands (Table 1). In each graph the solid lines are the experimental data and the dashed lines are the calculated simulations.
The EXAFS data on the ferricyanide-oxidized enzyme strongly suggests that nitrate-oxidized nitrate reductase contains one or two Mo–S groups. The exclusion of chloride from the ferricyanide-oxidized enzyme rules out the possibility that a –Cl ligand could be mistaken for an –S–. A sixth ligand could be –O–, –N– or –S–, but the EPR data [16] preclude –OH and –SH and argue against –N– on the basis of the absence of a 13N (I=1) superhyperfine interaction with Mo(V) [18].

Assuming that two of the Mo–S– groups are due to the dithiolene moiety of the cofactor, possible sources for a –O– and two –S– ligands need to be considered. A cysteine conserved in the assymmetric and periplasmic nitrate reductases (Cys-181 in the periplasmic nitrate reductase of T. pantotropha) (Figure 4) and conserved as Cys or selenoCys in the formate dehydrogenases is a strong candidate for a third –S– ligand [7,16,17] (see below). A second cysteine 21 residues downstream of the first, which is conserved in the periplasmic nitrate reductases (Figure 4), is a candidate for a fourth –S– ligand. Alternatively, a non-hydroxyl Mo–O– ligand could be due to a conserved serine residue three residues after the first conserved cysteine (Figure 4).

DISCUSSION

Ferricyanide-oxidized nitrate reductase

The EXAFS data on the ferricyanide-oxidized enzyme strongly suggest the presence of two =O ligands to Mo(VI) of the T. pantotropha periplasmic nitrate reductase. This contrasts with the uniquely low apparent =O content of the oxidized Escherichia coli membrane-bound respiratory nitrate reductase of 0.5–1.0 [25,26] and further highlights the differences between the molybdenum centres of the membrane-bound and periplasmic enzymes previously suggested by EPR [16] and analysis of the primary protein structures [17].

The EXAFS also suggests the presence of at least three –S– ligands. The exclusion of chloride from the ferricyanide-oxidized enzyme rules out the possibility that a –Cl ligand could be mistaken for an –S–. A sixth ligand could be –O–, –N– or –S–, but the EPR data [16] preclude –OH and –SH and argue against –N– on the basis of the absence of a 13N (I=1) superhyperfine interaction with Mo(V) [18].

Assuming that two of the Mo–S– groups are due to the dithiolene moiety of the cofactor, possible sources for a –O– and two –S– ligands need to be considered. A cysteine conserved in the assymmetric and periplasmic nitrate reductases (Cys-181 in the periplasmic nitrate reductase of T. pantotropha) (Figure 4) and conserved as Cys or selenoCys in the formate dehydrogenases is a strong candidate for a third –S– ligand [7,16,17] (see below). A second cysteine 21 residues downstream of the first, which is conserved in the periplasmic nitrate reductases (Figure 4), is a candidate for a fourth –S– ligand. Alternatively, a non-hydroxyl Mo–O– ligand could be due to a conserved serine residue three residues after the first conserved cysteine (Figure 4).

Dithionite-reduced nitrate reductase

Although > 95% of the molybdenum in the dithionite-reduced nitrate reductase samples was Mo(IV), we cannot be certain that there were not two Mo(IV) states, since EPR analysis of the small amount (< 5%) of Mo(V) in the dithionite-reduced sample revealed the presence of both High-g Split and Pseudo Rapid Unsplit signals. The relative amounts of the Mo(IV) analogues of these species is, however, unknown. If, as is proposed [16,19], the origin of the Pseudo Rapid Unsplit species is related to reduction of the pterin of the molybdenum cofactor, then the amounts of the Mo(IV) analogues of each of the Mo(V) EPR-signal-giving species would depend on the extent of reduction. Dithionite is a strong enough reductant to reduce essentially all of the molybdenum to Mo(IV) and would be expected to favour the production of a Pseudo Rapid Mo(IV) analogue.

Analysis of the EXAFS data on the dithionite-reduced nitrate reductase indicates that the species contains one =O group and...
Membrane-bound

ECNarG (200–241)	YASGAFLSSLIGTCSLFSYFWCDLPFAS... QCWGTQDVPE...
ECNarZZ (200–241)	YAAGTLYSSLGTCFLSFYWCDLPFAS... MWTQGTQDVPE...
BsNarG (204–245)	HAGSRFLSLIGGMLSMFSYFWADLPFAS... QIWQGTQDVPE...

Periplasmic

ECNapA (150–189)	YAASK.LKFGFMR.SNIDPRNAR5MASAVVGFMRTFQGMDP.MGYD.
HiNapA (149–188)	YAKRN.KLFGFMR.SNNVDPRNAR5MAVAFMTQFQGMDP.MCN.
TpNapA (159–203)	YAAT.KLFGFMR.SNNLDPRNAR5MAMTAFMTQFQGMDP.MCYD.
AerNapA (159–203)	YAAA.KLFGFMR.SNIDPRNAR5MASAAFGMTFQGMDP.MGYD.

Assimilatory

OcNarB (120–159)	YVQAO.KLMGCLG.TNNFADNSLQMSMSSAVYIQSGMD.GPPCYD.
AnaNarB (120–159)	YYIAQ.KLMGCLG.TNNFDNSLQMSMSASVGYIQSGMD.GPPCYE.
SynNarB (140–185)	YYIAQ.KLYGCMLG.TNNFDSNKLQMSMSSAVYISLCGLSD.GPPACEY.
ElectNarB (98–143)	AYLLG.KFASVGLQ.TKVIDYGRLELSMSAAATAANGTFQGMDRTWPL.
KsNarB (105–150)	YAAAN.KLMKFGIG.AANIDTSLQLMSSAVGYKAA.RSMTVQPSYE.

Figure 4 Alignment of the segment 3 [7] regions of the membrane-bound, periplasmic and assimilatory nitrate reductases

Implications from EXAFS of Mo(VI)- and Mo(IV)-containing nitrate reductase regarding the Mo(V) species of the enzyme

Since the EXAFS suggests the presence of only two oxo ligands in the Mo(VI) state and one oxo ligand in the Mo(IV) state(s), it is possible that reduction of Mo(VI) to Mo(V) is accompanied by reduction of one of the Mo(VI) enzyme to Mo(V). All of the Mo(V) species of the enzyme characterized thus far by EXAFS analysis are amenable to direct EXAFS analysis. However, since the nitrate-treated nitrate reductase sample contained around 30% Mo(VI) and 70% Mo(V), analysis of the EXAFS of this sample can be used to infer the structure of the Mo(V) ion. The optimum fit of the EXAFS data on the nitrate-treated enzyme included 1.8 oxo ligands. Assuming that the Mo(V) content of the 70% Mo(V) is one, this non-stoichiometric figure could be accounted for if the Mo(V) species in this sample is one, consistent with the scheme of reduction outlined above.

In desulpho xanthine oxidase and related enzymes the result of reduction of Mo(IV) is Mo(OH) which is 0.5 \(\overline{O} \) ligand (possibly zero) in the Mo(VI) Low-pH form and 0.5 \(\overline{O} \) ligand in the Mo(IV) Low-pH form [26]. The Mo(VI) of the periplasmic and Low-pH membrane-bound nitrate reductases have three/four \(\overline{S} \) ligands and four \(\overline{S} \) ligands respectively (this work and [26]). We suggest that the

Implications for Mo co-ordination in the periplasmic, assimilatory and membrane-bound nitrate reductases

The EXAFS of the periplasmic nitrate reductase has strongly suggested the presence of two \(\overline{O} \) ligands to Mo(VI) and one to Mo(IV). This clearly distinguishes the molybdenum site of the periplasmic nitrate reductase from that of the membrane-bound enzyme which has 1 \(\overline{O} \) ligand in the Mo(VI) Low-pH form and 0.5 \(\overline{O} \) ligand (possibly zero) in the Mo(IV) Low-pH form [26]. The Mo(VI) of the periplasmic and Low-pH membrane-bound nitrate reductases have three/four \(\overline{S} \) ligands and four \(\overline{S} \) ligands respectively (this work and [26]).
origin of these –S– ligands is different. In the periplasmic nitrate reductase Cys-181 (T. pantotropha numbering) is conserved in the segment 3 region proposed to form part of the Mo-binding site (Figure 4) [7,17]. This is also conserved as Cys or selenoCys in the MGD-dependent formate dehydrogenases [7]. EPR has clearly established that the Se of SeCys is an Mo ligand [29]. Therefore it is likely that the conserved Cys residue in the formate dehydrogenase and periplasmic nitrate reductases is also a Mo ligand. The presence of an Mo–S–Cys ligand in the periplasmic nitrate reductase has very poor sequence similarity with the formate dehydrogenases and periplasmic nitrate reductases is also clearly established that the Se of SeCys is an Mo ligand [29]. Thus we suggest that three –S–Mo(VI) –S– ligands arise from the pterin–pyran dithiolene (Figure 4). Comparison of the Mo(VI) –S– ligands suggests very similar coordination spheres [16,18]. There is comparison of the EPR signals from T. pantotropha periplasmic nitrate reductase and Azotobacter vinelandii assimilatory nitrate reductases suggest very similar co-ordination spheres [16,18]. However, the segment 3 region of the membrane-bound nitrate reductase has very poor sequence similarity with the periplasmic and assimilatory enzymes, and consideration of the recently published sequence from Bacillus subtilis [28] reveals that Cys-222 is not conserved (Figure 4). The tungstopterin aldhyde oxidase of Pyrococcus furiosis is liganded by the diithiolenes of two pterin–pyran cofactors, raising the possibility that dipterin ligation could also be present in the nitrate reductase [6]. Assuming that a cysteine –S– ligand is present, dipterin ligation (i.e. a total of five –S–) can be excluded for the periplasmic nitrate reductase because of the extremely poor fit of the EXAFS to more than four –S–. However, for the membrane-bound nitrate reductase, in the absence of a candidate cysteine –S–molybdenum ligand, four –S– ligands arising from dipterin ligation should still be considered.

We wish to thank A. Reilly for assistance in enzyme preparation of the enzyme and M. Hart for the molybdenum analyses. This research was supported by DRAL (EPSRC) grant 15/108 to C.D.G., J.C.C., B.B., B.C.B., D.J.R., E.M. Armstrong and A. Dinsmore and grant 83/C02012 from the BBSRC to D.J.R. and S.J.F.

REFERENCES

20 Binsted, N., Campbell, J., Gurney, S. J. and Stephenson, P. C. (1991) SERC Daresbury Laboratory EXCURV92 program

Received 7 February 1996; accepted 25 March 1996