Nucleotide sequence of a novel arylesterase gene from Vibrio mimicus and characterization of the enzyme expressed in Escherichia coli

Jei-Fu SHAW,*†§ Rey-Chang CHANG,† Kuang-Hsiang CHUANG,† Yu-Ting YEN,† Yng-Jiin WANG‡ and Fung-Gang WANG‡

†Institute of Botany, Academia Sinica, Taipei, Taiwan 115, Republic of China, †Department of Marine Food Science and Institute of Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan 202, Republic of China, and ‡Institute of Biomedical Engineering and Institute of Biochemistry, National Yang Ming Medical College, Taipei, Taiwan, 112, Republic of China

A gene coding for an arylesterase of Vibrio mimicus was cloned. Sequence determination reveals that the esterase gene has an open reading frame of 600 nucleotides which encodes a protein of Mr 22300. The deduced amino acid sequence contains a pentapeptide GDSLs (residues 27–31), which was also found in the phospholipid–cholesterol acyltransferase from Aeromonas hydrophila. Substitution of Ser-29 by alanine or cysteine in the cloned gene abolished the esterase activity in the tributyrin plate assay. On the other hand, the activity was not lost when Ser-31 was changed to alanine. The cloned gene was expressed in Escherichia coli, and the protein purified by a four-step procedure. The purified protein migrated on SDS/PAGE as a single band with an apparent Mr of 22100. This enzyme favoured the hydrolysis of several arylestes and was classified as an arylesterase (EC 3.1.1.2). N-Terminal analysis showed that Ser-20 was the first amino acid of the mature secreted protein, suggesting that the N-terminal 19 hydrophobic amino acids served as a signal peptide.

INTRODUCTION

Esterases (ester hydrolase) (EC 3.1.1) have become increasingly important in biotechnology [1]. They are widely distributed in nature and catalyse the hydrolysis of ester bonds. The characteristic properties such as substrate specificity, regioselectivity and enantioselectivity among various esterases allow wide applications of these enzymes. For example, arylesterases (EC 3.1.1.2) show a preferential substrate specificity for aromatic esters. In mammalian systems, arylesterases play an important role in the detoxification of organophosphorus compounds [2], and diagnosis of liver cirrhosis is made possible by measuring the decrease in serum arylesterase content [3]. In contrast, the physiological functions of microbial arylesterases remain largely unknown. As arylesterases are extracellular enzymes, it is possible that bacteria may use them as tools to obtain energy and essential nutrients from the environment or to detoxify xenobiotics. Bacterial arylesterases may also be used for industrial and environmental purposes, especially considering the fact that they have broad substrate specificities. Little is known about their genetics and biochemistry. An arylesterase gene from Pseudomonas fluorescens have been cloned and its gene product characterized [4]. The Ps. fluorescens enzyme is a typical arylesterase and does not contain an active-site serine. An esterase-producing strain of Vibrio mimicus has been isolated from a Taiwan shrimp aquaculture pond (H.-C. Chen, personal communication). This strain produces only one extracellular esterase which favours hydrolysis of aromatic esters over other substrates (J.-F. Shaw, R.-C. Chang, K.-H. Chuang, Y.-T. Yen, Y.-J. Wang and F.-F. Wang, unpublished work). In the present paper, we report the cloning and nucleotide sequence of this arylesterase gene and the expression, purification and characterization of the gene product. Our results suggest that it is a novel arylesterase which contains a putative active-site serine in a hydrophobic domain.

MATERIALS AND METHODS

Bacterial strains and plasmids

V. mimicus NTOU 66 was used as the DNA source for cloning of the esterase gene. The vector for the cloning experiment was phagemid pGEM3Zf(+) (Promega). E. coli JM83 and JM101 were the hosts for the recombinant plasmids (neither strain showed any extracellular esterase activity).

Media and growth conditions

E. coli and V. mimicus were grown in L-broth (10 g of peptone, 5 g of yeast extract and 10 g of NaCl per litre of water) at 37 °C and 25 °C respectively. When needed, ampicillin was added at a concentration of 50 μg/ml.

Recombinant DNA procedures

Plasmid DNA was prepared by the procedure of Klein et al. [5], and restriction digestions and ligation reactions were performed according to the manufacturer’s recommendations (Boehringer-Mannheim). Exonuclease III unidirectional deletion was carried out as described [6].

Construction of the V. mimicus genomic library

Chromosomal DNA from V. mimicus NTOU 66 was prepared by the method of Coleman et al. [7]. The DNA was partially digested with Sau3A, and the DNA fragments ranging in size from 2 to 6 kb were isolated after electrophoresis in agarose gel using a QIAEX gel extraction kit (Institute of Molecular Biological Diagnostic GmbH). The DNA fragments were ligated to the BamHI site of pGEM3Zf(+) and the ligated DNA was transformed into E. coli JM83. Ampicillin-resistant colonies were selected on tributyrin/agar plates [8] at 37 °C after 24 h incubation.

§ To whom correspondence should be addressed.

The sequence data reported in this paper have been submitted to the EMBL/Genbank/DDBJ Nucleotide Sequence Databases under the accession number X71116.
DNA sequence analysis

The DNA sequence was determined by a modified dideoxynucleic acid sequencing method [9] using the Sequenase version 2.0 kit (United States Biochemical).

Esterase purification

E. coli JM101 harbouring the plasmid pL662dHE was inoculated into a 500 ml culture of L-broth with 50 μg/ml ampicillin. Cells were grown at 37 °C for 48 h in 2-litre baffled flasks, and the culture media were aerated by rotary shaking at approximately 200 rev./min. Culture media were harvested after removal of cell debris by centrifugation at 6000 g for 30 min. The enzyme was precipitated by 40–70 %–saturated (NH₄)₂SO₄ fractionation. The crude enzyme was loaded on to a hydrophobic interaction column (Bio-Rad) pre-equilibrated with 25 mM disodium hydrogen phosphate/sodium dihydrogen phosphate buffer (pH 6.8) containing 2.4 M (NH₄)₂SO₄ (buffer A). After the column had been washed with buffer A, the bound proteins were gradually eluted with a 25 mM disodium hydrogen phosphate/sodium dihydrogen phosphate buffer, pH 6.8 (buffer B). The fractions with esterase activity were pooled and concentrated by Amicon YM2 membranes (1000 Mᵣ, cut-off point). The concentrated fractions were loaded on to an ion-exchange column (Mono Q; Bio-Rad) pre-equilibrated with buffer B. After the column had been washed with buffer B, the bound proteins were gradually eluted with a gradient of 0–1 M NaCl in buffer B. The activity-containing fractions were pooled and concentrated once more.

Protein concentration measurement, SDS/PAGE and gel-staining methods

Protein concentration was determined by a Bradford dye-binding procedure with BSA as standard [11]. Continuous SDS/PAGE was carried out using 5–20 % (w/v) gradient polyacrylamide slab gels [12]. Samples were preboiled for 5 min in loading buffer. Low-Μᵣ markers were purchased from Pharmacia. The gels were silver-stained [13] for proteins and activity-stained [14] for esterase.

pH-stat method

The pH-stat method [15] was carried out at pH 8.0 with a Radiometer pH-stat titration system (PHM 61 standard pH-meter, TTT 80 titrator and ABU 80 autoburette; Copenhagen, Denmark).

The esterase activity of the enzyme was assayed by using p-nitrophenyl esters of fatty acids as substrates. Detailed procedures are described in [10].

N-Terminal sequence determination

Purified enzyme was dialysed, freeze-dried and N-terminal amino acid analysis was performed (by the Southern Instrument Center, National Cheng-Kung University, Tainan, Taiwan) using an Applied Biosystems 477A gas–liquid–solid-phase protein sequenator equipped with an Applied Biosystems 610A data-analysis system.

Site-directed mutagenesis

Site-directed mutagenesis of the cloned esterase gene was performed by the strategy of overlap extension using PCR as described by Higuchi et al. [16]. The first round of PCR was carried out with the primer combinations of 5'-flanking primer and mutant primer-2 or 3'-flanking primer and mutant primer-1. The reaction products from the two PCRs were purified from agarose gel to remove template and primer DNAs. They were mixed at a molar ratio of 1:1 and used as DNA templates for the second-round PCR. The second PCR was performed using 3'- and 5'-flanking oligonucleotides as primer pairs. The oligonucleotide primers used were: 5'-flanking primer: 5'-CATCTT-TAAGGATCCTTAATTGTTCTTG-3'; 3'-flanking primer: 5'-TTCCGAGCTCAAAAATTAGAG-3'; mutant primer: for Ser-29 to Ala-29 mutation: primer-1: 5'-GTTCCTTTGTGATGCTTGAGTG-GGCTGCT-3'; primer-2: 5'-AGCCGCACCTCAAGGCGATCACCAGAAGC-3'; for Ser-29 to Cys-29 mutation: primer-1: 5'-GTTCCTTTGTGATGCTTGAGTG-GGCTGCT-3'; primer-2: 5'-AGGCGGCACTCAAGGCGATCACCAGAAGC-3'; for Ser-31 to Ala-31 mutation: primer-1: 5'-GTGTGATAGCTTGCGTGCGGCTATCAA-3'; primer-2: 5'-TTGATAGCAGCGTCAGGCTATCAAAC-3'; primer-2: 5'-TTGATAGCAGCGTCAGGCTATCAAAC-3'.

Chemicals

All chemicals were purchased from commercial sources and were of reagent grade.

RESULTS AND DISCUSSION

Cloning of the *V. mimicus* esterase gene

V. mimicus NTOU 66 was shown to have extracellular esterase activities (H.-C. Chen, personal communication). To initiate the isolation of the esterase gene, a genomic library was constructed in vector pGEM3Zf(+), transformed into *E. coli*, and grown in agar plates containing tributyrin as substrate. The plates were prepared by pouring a mixture containing 1.5 % (w/v) agar, 1 % (v/v) tributyrin and ampicillin (50 μg/ml) in L-broth medium into a Petri dish. Among 6000 ampicillin-resistant clones grown on tributyrin/agar plates, two clear halo-forming clones were identified. One of these, designated pL662, was chosen for further analysis.

Restriction mapping of plasmid pL662 revealed the presence of a 2.6 kb DNA insert (results not shown). The esterase expression, as indicated by the size of the halos on tributyrin/agar plates, was independent of the orientation of the 2.6 kb insert DNA in pGEM3Zf(+) (results not shown). Moreover, the activity remained relatively invariant with or without the presence of isopropyl β-D-thiogalactoside, an inducer for the lac promoter located upstream from the multiple cloning sites. These data suggest that the expression of the cloned *V. mimicus* DNA in *E. coli* may be under the control of its own promoter.

Plasmid pL662 was subjected to a series of deletion analyses, as shown in Figure 1. One of the clones, pL662dHE, carrying a 0.77 kb *V. mimicus* DNA fragment, was shown to express higher esterase activity in *E. coli* than the parental pL662 clone.

Nucleotide and deduced amino acid sequences of the cloned esterase gene

The nucleotide sequence (Figure 2) of the 0.77 kb *V. mimicus* DNA fragment in pL662dHE was determined. This sequence contains a single open reading frame at positions 162 to 761; a protein of 200 amino acid residues and a Mᵣ of 22264 may be deduced from the coding region. The isoelectric point of this fragment was calculated to be 4.9. The N-terminal region of the deduced sequence contains a segment of 19 consecutive hydro-
phobic amino acids which may serve as a signal peptide [17]. Upstream from the translation start site at base 152 is the sequence 5'-AGGTGT-3' which may function as a Shine-Dalgarno sequence [18].

Sequence comparison of the cloned esterase with other known esterases failed to reveal any significant similarity. Structural data from the X-ray crystallography of several lipolytic enzymes indicate the presence of a catalytic triad of either Ser, His, Asp or Ser, His, Glu [19–21]. Similar constellations of these residues were found in many serine proteases and are known as the charge-transfer relay system important for catalysis [22]. A comparison of the amino acid sequences in a variety of lipases and esterases indicates that most of the lipases share an active-site serine-containing consensus motif GXSXG which is often preceded by four hydrophobic amino acids [23]. Although the cloned V. mimicus gene did not contain the GXSXG sequence, a search for the conserved nine-amino-acid segment reveals the presence of a similar but not identical sequence -LLVLGDSLS-

![Diagram](image-url)

Figure 1 Construction of plasmid pL662dHE

Thick lines, DNA segments originating from the chromosomal DNA of *V. mimicus*; thin line, DNA segment originating from pGEM3Zf(+).

The deduced amino acid sequence is shown beneath the nucleotide sequence. A potential Shine–Dalgarno (SD) sequence and the putative signal peptide sequence are indicated. The deduced amino acid sequence similar to several esterases and an acyltransferase (see Table 1 for details) is boxed. The stop codon is indicated by an asterisk. The HindIII site and the SacI site in the multiple cloning region of pGEM3Zf(+) are indicated. This gene is cloned in the opposite direction to the vector.

![Diagram](image-url)

Figure 2 Nucleotide and deduced amino acid sequences of the cloned *V. mimicus* esterase

The deduced amino acid sequence is shown beneath the nucleotide sequence. A potential Shine–Dalgarno (SD) sequence and the putative signal peptide sequence are indicated. The deduced amino acid sequence similar to several esterases and an acyltransferase (see Table 1 for details) is boxed. The stop codon is indicated by an asterisk. The HindIII site and the SacI site in the multiple cloning region of pGEM3Zf(+) are indicated. This gene is cloned in the opposite direction to the vector.

In order to evaluate the importance of the serine residue in the pentapeptide GXSXS, we constructed mutated genes by overlap-extension strategies using PCR as described in the Materials and methods section. Substitution of the middle serine (Ser-29) by alanine or cysteine abolished the ability of the transformant to form a halo in the tributyrin plate assay, indicating loss of enzymic expression in the Ser-29-mutated esterases. In contrast,
Table 1 A comparison of a nine-amino acid conserved sequence among esterolytic enzymes

Abbreviations: VmA, V. mimicus arylerase; AhA, A. hydrophila phospholipid–cholesterol acytransferase; PaA, Ps. fluorescens arylerase; PkC, Ps. fluorescens carboxylesterase; DpE, Drosophila pseudoobscura esterase; PL, Pseudomonas fragi lipase; SLp, Staphylococcus aureus lipase; SHl, Staphylococcus hyicus lipase; RML, Rhizomucor mhei lipase; RLh, rat hepatic lipase.

<table>
<thead>
<tr>
<th>Species and enzyme</th>
<th>Amino acid sequence and position</th>
<th>Hydrophagy indices</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>VmA</td>
<td>23-31 LLVGLDLSS</td>
<td>13.9</td>
<td>This study</td>
</tr>
<tr>
<td>AhA</td>
<td>10-18 IVMFGDLSS</td>
<td>11.7</td>
<td>24</td>
</tr>
<tr>
<td>PkA*</td>
<td>-</td>
<td>10.6</td>
<td>4</td>
</tr>
<tr>
<td>PkC</td>
<td>108-116 IFLAGFSQG</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>DpE</td>
<td>205-213 VLLVGHSSAG</td>
<td>13.0</td>
<td>26</td>
</tr>
<tr>
<td>PaL</td>
<td>77-85 VNLIGHSSQ</td>
<td>2.7</td>
<td>8</td>
</tr>
<tr>
<td>SLp</td>
<td>406-414 VHLLGHSSG</td>
<td>6.1</td>
<td>27</td>
</tr>
<tr>
<td>SHL</td>
<td>363-371 VHLLGHSSG</td>
<td>5.4</td>
<td>28</td>
</tr>
<tr>
<td>RML</td>
<td>138-146 VAVTHSGL</td>
<td>8.5</td>
<td>29</td>
</tr>
<tr>
<td>PL</td>
<td>200-208 VLVSGHSL</td>
<td>10.4</td>
<td>30</td>
</tr>
<tr>
<td>RhL</td>
<td>76-84 VHLIGYSLG</td>
<td>10.2</td>
<td>31</td>
</tr>
</tbody>
</table>

* Consensus sequence was not found in PkA.

Table 2 Purification profile of V. mimicus esterase

One unit of enzyme activity is defined as the formation of 1 μmol of p-nitrophenol from p-nitrophenyl butyrate/min [10].

<table>
<thead>
<tr>
<th>Purification steps</th>
<th>Total activity (units)</th>
<th>Total protein (mg)</th>
<th>Specific activity (units/mg)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernatant</td>
<td>242.60</td>
<td>116.80</td>
<td>2.09</td>
<td>100.0</td>
</tr>
<tr>
<td>(NH₄)₂SO₄ fractions</td>
<td>542.10</td>
<td>247.00</td>
<td>2.20</td>
<td>22.4</td>
</tr>
<tr>
<td>(40−70%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrophobic interaction column</td>
<td>153.73</td>
<td>67.04</td>
<td>2.03</td>
<td>6.3</td>
</tr>
<tr>
<td>Mono Q column</td>
<td>112.61</td>
<td>4.96</td>
<td>22.70</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Figure 3 Tributyrin plate assay of the Ser-29 and Ser-31 mutated esterases

Site-directed mutagenesis of the cloned lipase was performed as described in the Materials and methods section. The mutated clones were transformed in E. coli and grown in agar plates containing the esterase substrate, tributyrin. The halo-forming clones indicate expression of esterase activity. 1, pGEM3Zf(+) vector control; 2, wild-type clone; 3, S29A mutant; 4, S29C mutant; 5, S31A mutant.

the conversion of the C-terminal serine in the pentapeptide (Ser-31) into alanine did not affect expression of the esterase (Figure 3). These results suggest that the middle serine (Ser-29) of the pentapeptide may very well serve as the active-site serine of the cloned esterase.

An arylerase gene from Ps. fluorescens has been cloned and its gene product characterized [4]. This enzyme is a typical arylerase which shows a preferential substrate specificity for aromatic esters. The enzyme was not inhibited by di-isopropyl fluorophosphate, a serine hydrolase inhibitor. Sequence analysis failed to reveal the presence of a GXSXX consensus motif in the protein. These findings indicate that the Pseudomonas arylerase may not have an active-site serine [4,36], which is in clear contrast with our findings for the V. mimicus enzyme.

The mechanism of arylerase action has been proposed to include the formation of a thioester intermediate [37]. For the V. mimicus esterase, only one cysteine was found and it is located in the putative signal peptide of the protein, which would exclude the possibility that the enzyme is a cysteine esterase. Furthermore, results from the present study strongly imply that the enzyme is a serine esterase. The lack of cysteine residue in the mature Vibrio esterase suggests that the protein is a relatively flexible molecule, the tertiary structure of which depends on weaker non-covalent interactions. The conformational flexibility may allow the arylerase to pass more freely through the cell wall. This is consistent with the observation that many extracellular bacterial proteins contain a low level of cysteine [38].

Purification of the V. mimicus esterase from an E. coli clone

The E. coli JM101 clone harbouring plasmid pL662dHE showed the highest extracellular esterase activities and was used as a source to purify this enzyme. The specific activity of the purified enzyme increased to 22.70 units/mg, representing an overall purification of 10.1-fold (Table 2). The purified enzyme was homogeneous as judged by the presence of a single protein band with an apparent Mr of 22100 on SDS/PAGE (Figure 4). This Mr is very close to that predicted from the DNA sequence and is the same as that of arylerase from V. mimicus NTou 66 (results not shown). It appears that a similarly processed arylerase was produced in the E. coli clone.

Characterization of the cloned esterase

The V. mimicus esterase purified from E. coli harbouring pL662dHE was used for several biochemical analyses as follows. First, a pH−activity profile for the enzyme was investigated using tributyrin as substrate, and the optimal pH was found to be 7–9 (Table 3). Secondly, enzyme activities at various temperatures were analysed with p-nitrophenyl butyrate as substrate, and the optimal temperature was found to be 50 °C (Table 4). Thirdly,
the ability of the enzyme to hydrolyse esters of fatty acids of various chain length was studied; esters of octanoate, decanoate and laurate were clearly favoured (Table 5). Finally, a broad

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
Substrates & Relative activity (\%) \\
\hline
\(p\)-Nitrophenyl acetate & 14 \\
\(p\)-Nitrophenyl butyrate & 18 \\
\(p\)-Nitrophenyl hexanoate & 40 \\
\(p\)-Nitrophenyl octanoate & 75 \\
\(p\)-Nitrophenyl decanoate & 100 \\
\(p\)-Nitrophenyl dodecanoate & 77 \\
\(p\)-Nitrophenyl myristate & 30 \\
\(p\)-Nitrophenyl palmitate & 20 \\
\(p\)-Nitrophenyl stearate & 3 \\
\hline
\end{tabular}
\caption{Relative activities of the purified \textit{V. mimicus} esterase}
\end{table}

the substrate survey for the enzyme was carried out (Table 6), and it was found to preferentially hydrolyse several aryl esters. On the basis of this substrate specificity, the enzyme is classified as an arylesterase. These biochemical properties are similar to those of partially purified extracellular arylesterase from \textit{V. mimicus} (J.-F. Shaw, R.-C. Chang, K.-H. Chuang, Y. T. Yen, Y.-J. Wang and F.-F. Wang, unpublished work). This suggests that the cloned gene encoded the extracellular esterase of \textit{V. mimicus}.

\textbf{N-terminal determination}

We determined the N-terminal amino acid residues up to the 10th cycle, and this showed that the first amino acid was serine and the entire sequence determined was SEKLLVLGDS- which corresponds to codons 20–29 in the open reading frame. These
results strongly suggest that the first 19 amino acids of the deduced sequence are indeed a signal sequence.

V. mimicus NTOU 66 isolated from a Taiwan freshwater pond was kindly provided by Professor Hsing-Chen Chen, Department of Marine Food Science, National Taiwan Ocean University, Keelung, Taiwan, Republic of China. We thank Dr. Chien Chen for his valuable suggestions during the preparation of this manuscript. This research was supported by a grant from the National Science Council, Republic of China (NSC 82-0418-B-001-112-BA) to J.F.S.

REFERENCES

10 Amano Technical Bulletin for Lipase G Assay, Amano Pharmaceutical Co. Ltd., Nagoya, Japan

Received 2 June 1993/21 September 1993; accepted 12 October 1993