Molecular modelling of the domain structure of factor I of human complement by X-ray and neutron solution scattering

Stephen J. PERKINS,*‡ Kathryn F. SMITH* and Robert B. SIM†
*Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, Rowland Hill Street, London NW3 2PF, U.K., and †MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.

Factor I is a typical multidomain protein of the complement system. It regulates complement activation by proteolytic degradation of C3b or C4b in the presence of factor H, complement receptor type I, membrane cofactor protein or C4b-binding protein as cofactor. It is constructed from five presumed independently folded domains, namely a factor I module, a CD5-like domain, two low-density-lipoprotein receptor type A domains and a serine-protease domain. X-ray and neutron solution scattering was used to study the arrangement of these domains in factor I. Factor I was determined to be monomeric in solution, with an

\[
\frac{A_{20,70}^{1.4}}{c} = 12.3-14.1 \text{ nm}
\]

Its radius of gyration \(R_g\) was 3.96 nm by X-rays in a high positive solute–solvent contrast, and 3.84 nm by neutrons at infinite solute–solvent contrast. The cross-sectional radius of gyration \(R_{xs}\) was likewise found to be 1.64 nm by X-rays and 1.55 nm by neutrons. The \(R_g\) data were not noticeably dependent on the solute–solvent contrast, whereas the \(R_{xs}\) data showed a small dependence. The maximum dimension of factor I was determined to be 12.8 nm from the \(R_g\) and \(R_{xs}\) data, and 14–15 nm from the X-ray and neutron distance distribution functions. This length is too short to account for a linear arrangement of the domains in factor I. Small sphere models were developed for factor I in which the largest domain was modelled from the crystal structure for \(\beta\)-trypsin. The attachment of either an elliptical cylinder or a two-armed V-shaped structure to this domain to represent the remaining four small domains gave good scattering curve-fits for factor I, and were compatible with experimental sedimentation coefficients. The non-extended domain models for factor I imply that the steric accessibility of each domain will be reduced, and this may be important for its functional activity.

INTRODUCTION

Factor I is one of the six serine proteinases (SPs) involved in the activation and control of the complement system of immune defence. Its function is to regulate the formation of the C3 convertases by proteolytic degradation of the activated complement components C4b and C3b (Hourcade et al., 1989), and for this reason was earlier known as ‘C3b/C4b inactivator’ (Crossley, 1981). For cleavage of C3b (or C3u) and C4b (or C4u), a cofactor protein must first form a complex with C3b or C4b. Factor H acts as a cofactor for the cleavage by factor I of C3b, whereas C4b-binding protein (C4BP) is a requisite cofactor for C4b degradation, again enhancing cleavage by factor I of the \(\alpha\)' chain (Fujita et al., 1978; Gigli et al., 1979). The cell-surface protein complement receptor type I (CR1) is another cofactor for both C3b and C4b degradation that involves factor I (Fearon, 1979; Medof et al., 1982); another is the membrane cofactor protein (Hourcade et al., 1989). C4b is cleaved twice by factor I to form C4c and C4d, whereas C3b is cleaved twice in the \(\alpha\)' chain to form C3f and iC3b. Further breakdown of iC3b to C3dg plus C3c may be mediated by factor I, with CR1 (only) as cofactor, but it is possible that another protease may mediate this degradation step (Becherer et al., 1989). Factor I is unusual in that no proenzymic form exists and that it is not normally inhibited by any known protein protease inhibitor, nor by the commonly used SP inhibitors such as di-isopropyl fluorophosphate, benzamidine and phenylmethylene sulphonyl fluoride (Crossley and Porter, 1980; Ekdahl et al., 1990).

The complete cDNA-derived amino acid sequence of factor I has been established (Catterall et al., 1987; Goldberger et al., 1987). Factor I consists of a heavy chain (polypeptide \(M_r 35400\)) and a light chain (polypeptide \(M_r 27600\)), each of which has three putative N-linked glycosylation sites. The light chain (243 amino acids) consists entirely of an SP domain. Starting from the N-terminus, the heavy chain (318 amino acids) contains one region of sequence similarity known as the factor I module (FIM), another one corresponding to a CD5-like domain approx. 100 residues long, and two more to the class-A low-density-lipoprotein receptor (LDLr) domain (Haefliger et al., 1989; Disciplio and Hugli, 1989; Freeman et al., 1990; Schneider, 1989; Reid and Day, 1989; Sim et al., 1993). Another report suggesting a 60-residue similarity to the short consensus/complement repeat is not statistically valid (Goldberger et al., 1987; Haefliger et al., 1989; Sim et al., 1993). Another suggestion that residues 12–59 of factor I exhibited similarity with the epidermal-growth-factor domain has now been superseded by the recognition of the FIM as a distinct structural motif (Catterall et al., 1987; Reid and Day, 1989). Of particular interest is that the FIM and LDLr domains occur also in several of the late complement components that form the lytic membrane-attack complex.

Knowledge of the arrangement of the five domains recognized to date in the factor I sequence is essential for any proposed molecular mechanism for the function of factor I in the complement system. Surprisingly little structural information is available on factor I, apart from sedimentation coefficient and electron-microscopic data (Cooper, 1975; Disciplio, 1992). No information is available on the structure of the FIM, CD5 or LDLr domains. The use of both X-ray and neutron solution scattering is a powerful means for determining overall structures under conditions close to physiological, and is a valuable complement to other techniques such as electron microscopy and

Abbreviations used: FIM, factor I module; LDLr, low-density-lipoprotein receptor; SP, serine proteinase; C4BP, C4b-binding protein.

‡ To whom correspondence and requests for reprints should be addressed.
hydrodynamic studies (Perkins, 1988a,b). Use of the known crystal structures for the common SPs is a useful constraint on the interpretation of the scattering data [see the accompanying paper (Perkins et al., 1993)]. Here we determine the molecular dimensions of factor I in conditions close to physiological, and assess possible arrangements for the five domains within this structure. The structure of factor I can be compared with similar models for those of C4 and C4BP in order to assess the nature of the possible interactions between these proteins.

MATERIALS AND METHODS

Protein purification of factor I

Factor I was prepared from outdated human plasma (Regional Blood Transfusion Service, Oxford, U.K.), by the method of Hsiung et al. (1982) as modified by Sim et al. (1993). This procedure consists of extraction of factor I from plasma by passage over a column of MRC-OX21 [mouse anti-human factor I] monoclonal antibody) covalently bound to Sepharose. Factor I was eluted from the antibody column with a pH 11.5 wash or by the use of 3 M MgCl₂ at pH 6.8 and was subsequently purified to homogeneity by gel filtration on Sephacyrl S-200. As described for C3 and its fragments (Perkins and Sim, 1986), factor I was initially concentrated to about 2 mg/ml by ion-exchange on DEAE-Sephacel, using a step-elution procedure, and was then gel-filtered on a Sephacyrl S300/Ultrogel AcA34 column equilibrated in 12.4 mM sodium phosphate/200 mM NaCl/0.5 mM EDTA, pH 7.0. The gel-filtration step removed traces of aggregates and equilibrated the protein in the buffer used for scattering experiments. A final concentration step was done using B15 minicon concentrators (Amicon) (Perkins and Sim, 1986). The protein concentration (c) for solution scattering was calculated from the sample absorption at 280 nm using sequence data and the modified Wettlaufer procedure (Wettlaufer, 1962; Perkins, 1986).

Scattering data for factor I were collected using buffers containing 0.2 M NaCl, 12.5 mM sodium phosphate, with 0.1 mM, 0.5 mM or 1.0 mM EDTA, pH 7.0. For neutron experiments, samples were dialysed at 6 °C into their buffers containing 0, 80 or 100% ²H₂O for at least 36 h with four changes of buffer. For X-ray work, dialysis into 0% ²H₂O buffers was carried out likewise. The final dialysate was used for the buffer background run.

Neutron and X-ray solution scattering experiments

Neutron scattering data were obtained in three independent data collection sessions on Instrument D17 at the Institut-Laue-Langevin, Grenoble, France. The use of a sample–detector distance (SD) of 3.46 m and 1.40 m, a wavelength (λ) of 1.106 nm and detector–main beam angles of 0° or 20° resulted in a Q range of 0.07–3.21 nm⁻¹ (Q = 4πsinθ/λ; 2θ = scattering angle). Other experimental neutron data collection details are given in the accompanying paper (Perkins et al., 1993). Individual sample counting times typically ranged between 13 and 20 min in 100% ²H₂O buffers to between 50 and 200 min in 0% ²H₂O buffers.

After two preliminary sessions, final X-ray scattering data were obtained in two further sessions using the low-angle solution scattering camera at Station 8.2 (Towns-Andrews et al., 1989) at the Synchrotron Radiation Source, Daresbury, Warrington, U.K. Experiments were performed with beam currents in the range 128–253 mA and a ring energy of 2.00 GeV. Samples were measured for 10 min for protein concentrations that ranged between 1.0 and 4.1 mg/ml. The use of a 500-channel quadrant detector with SD values of 3.54 m and 4.16 m resulted in a usable Q range between 0.06 and 2.22 nm⁻¹, with considerably improved signal-to-noise ratios over twice the Q range compared with the use of a linear detector in the preliminary sessions with factor I. Other details of experimental X-ray data collection are given in the accompanying paper (Perkins et al., 1993).

Analysis of scattering data

Scattering theory in application to factor I is briefly summarized. At small Q values, analysis of the scattering curves by the Guinier equation gives the radius of gyration (Rg) (which is a measure of macromolecular elongation) and the forward scattered intensity at zero Q[1(0)] (which is a measure of composition) (Guinier and Fournet, 1955; Glatter and Kratky, 1982):

\[\ln[I(0)] = \ln[I(0)] - R_g^2 - Q^2/3 \]

This expression is valid for I(0) values in a Q range corresponding to Q·R_g values less than 1.5. Absolute or relative molecular masses (M_r) are obtained from the I(0)/c values, where c is the sample concentration (Kratky, 1963; Jacrot and Zaccarri, 1981). If one of the molecular dimensions is longer than the other two (by as little as 2:1:1), the radius of gyration of the cross-section R_x and the cross-sectional intensity at zero angle [I(0)]·Q^4 can be obtained from the Q range beyond that used in the R_g analyses (Pilz, 1982):

\[\ln[I(0)] = \ln[I(0)] - R_x^2 - Q^4/2 \]

Hjelm (1985) has considered the analysis of macromolecules with a non-uniform cross-section along their major axis. This shows that R_x and [I(0)]·Q^2 parameters can still be derived, although these now become the weight average of the individual R_x values and the mean [I(0)]·Q^2 value. This complication can be analysed by the use of the sphere modelling below to consider explicit arrangements of domains. The neutron and X-ray Guinier R_g and R_x analyses were performed jointly using a common interactive analysis and plotting program SCTPL3.

In neutron-contrast-variation studies, the protein matchpoint (at which factor I is invisible to neutrons) was obtained from plots of √(I(0)/cT_0) and √(I(0)/cT_1) against volume % ²H₂O (T_0, sample transmission; T_1, path length). The matchpoint was predicted from the amino acid and carbohydrate composition on the basis that the protein volume was unhydrated and there was 10% of non-exchange of the main-chain NH protons (Perkins, 1986).

Since glycoproteins are inhomogeneous in their scattering densities, the R_g and R_x data depend on the solvent scattering density. This dependence is described by the Stuhrmann equation (Ibel and Stuhrmann, 1976):

\[R_g^2 = R_{g,c}^2 + \alpha_g/\Delta \rho - \beta_g/\Delta \rho^2 \]

where R_{g,c} is the R_g at infinite contrast, \Delta \rho is the difference in scattering density (\rho) between the solute and solvent, \alpha_g is the radial inhomogeneity of scattering density fluctuations within the protein, and \beta_g corresponds to the distance between the centres of two components of very different scattering densities. \alpha_g is positive if the outermost scattering densities are higher than those nearer the centre. \beta_g is not usually measurable for glycoproteins. The analogous expression is valid for the neutron R_x data, with the corresponding Stuhrmann parameters denoted by R_{x,c}, \alpha_x and \beta_x. The X-ray data correspond only to high positive \Delta \rho values and cannot be analysed in this way.

Triaxial molecular dimensions are obtained from the Guinier and cross-sectional analyses. If factor I is assumed to be an
elliptical cylinder in shape, its length \(L \) is given by \(\sqrt{[12(R_s^3 - R_e^3)]} \) (Glatter and Kratky, 1982). Alternatively, \(L \) can be calculated from the intensity ratios, where \(L \) is derived from \(\eta \cdot |I(0)|/|I(Q)| \cdot Q_{\text{i}q,\text{o}} \) and this is not dependent on the assumed shape (Perkins et al., 1986). The two semi-axes, \(A \) and \(B \), of the elliptical cylinder are calculated by combining the dry (neutrons) or hydrated (X-rays) volume \(V \) \(V = \pi ABL \) with the \(R_{\text{max}} \), where \(R_{\text{max}}^2 = (A^2 + B^2)/4 \) for an elliptical cylinder. The hydrated volume is obtained on the basis of 0.3 g of water/g of glycoprotein and 0.0245 nm\(^3\) per water molecule (Perkins, 1986) [see the accompanying paper (Perkins et al., 1993)].

Indirect transformation of the scattering data in reciprocal space, \(I(Q) \), into those in real space, \(P(r) \), was carried out using the ITP81 program of Glatter (1982). This offers an alternative calculation of the \(R_{\text{g}} \) that is based on the full scattering curve, and gives the maximum dimension of the macromolecule \(L \) [for details, see the accompanying paper (Perkins et al., 1993)]. For factor 1, the neutron \(I(Q) \) contained 93 data points extending out to 3.01 nm\(^{-1}\) and was fitted with eight splines with the maximum assumed dimension \(D_{\text{max}} \) set as 18.0 nm, whereas the X-ray \(I(Q) \) contained 133 data points extending out to 2.23 nm\(^{-1}\) and was fitted with eight splines with \(D_{\text{max}} \) set as 20.0 nm.

Modelling of the overall structure of factor 1

Calculations of the full scattering curves for factor 1 using small Debye spheres followed standard procedures (Glatter and Kratky, 1982) in application to neutron and synchrotron X-ray scattering data (Perkins and Weiss, 1983; Perkins and Sim, 1986; Perkins et al., 1993). To constrain the simulations, the unhydrated volume of factor 1 was calculated from the composition using sequence data and the assumption that all six carbohydrate sites on factor 1 were occupied by either high mannose or tetra-antennary complex-type oligosaccharides respectively (total volumes of 92.1 nm\(^3\) or 104.1 nm\(^3\)) (Chothia, 1975; Perkins, 1986). The neutron and X-ray curve-modelling procedure used was that described in the accompanying paper (Perkins et al., 1993). The final Debye models were generated with each sphere volume set as that of the cube of side 0.54 nm (dry model) or 0.589 nm (hydrated model). Note that a good curve-fit does not lead to the determination of a unique structure as the result of the spherical averaging which is implicit in solution scattering.

Modelling of the sedimentation coefficient \((s_{20,w}) \) was based on the hydrated volume as in the X-ray curve-fitting. The frictional coefficient \((f) \) was calculated from:

\[
f = M_s(1 - \rho_{20,w}/N \cdot \rho_{20,w})
\]

where \(\rho_{20,w} \) is the density of water at 20 °C, \(N \) is Avogadro’s constant, and \(\rho \) is the partial specific volume. The calculation of \(f \) from sphere models was performed using the program GENDIA (Garcia de la Torre and Bloomfield, 1977a,b) and the hydrated X-ray scattering model (but with non-overlapping spheres of diameter 0.589 nm), as described in the accompanying paper (Perkins et al., 1993).

RESULTS AND DISCUSSION

Neutron scattering studies of factor 1

Neutron scattering was used to investigate the overall structure of factor 1 in ionic conditions close to physiological using 0, 80 and 100 % \(\text{H}_2\text{O} \) buffers. A concentration range of 1.3–4.5 mg/ml gave satisfactory counting statistics (Figure 1a), and no concentration effects could be detected in this range. Linear Guinier \(R_g \) plots were reproducibly observed in an acceptable \(Q \cdot R_g \) range between 0.3 to 1.3. Likewise linear cross-sectional Guinier \(R_{cs} \) plots could be obtained in an acceptable \(Q \cdot R_{cs} \) range of 0.7 to 1.2 (Figure 1c).

Analysis of the Guinier \(I(0) \) data for factor 1 is directly related to its composition. The total of 565 amino acid residues results in an \(M_r \) of 63300 for the protein component. For factor 1, higher \(M_r \) values of 88000–93000 have been measured from hydrodynamic data or SDS/PAGE (Cooper, 1975; Pangburn et al., 1977; Fearon, 1977; Crossley and Porter, 1980), and another, of \(M_r \) 75000, was measured using SDS/PAGE (Hsiung et al., 1982). The difference in \(M_r \) is attributed to carbohydrate; however, no accurate carbohydrate content is available. Pangburn et al. (1977) report that factor I is at least 10.7 % carbohydrate by weight. If six high-mannose oligosaccharide chains are present (each of assumed structure Man\(_4\)GlcNAc\(_2\)), these result in a final \(M_r \) of 74500, which is 15.0 % carbohydrate (w/w). If six tetra-antennary complex-type oligosaccharide chains are present, this gives an \(M_r \) of 85300, which is 25.7 % carbohydrate (w/w) and is close to the majority of biochemical determinations of the \(M_r \). It is, however, known that high glycosylation levels in a glycoprotein lead to aberrantly high-\(M_r \) values when visualized by SDS/PAGE (Gordon, 1975). The predicted \(M_r \) values of 74500–85300 thus define an error range within which the scattering analyses were performed.

![Figure 1: Guinier analyses of factor 1 by neutron and X-ray scattering](image-url)
The neutron \(M_\text{f} \) of factor I was calculated from the Guinier \(I(0)/c \) values measured in 0\% \(^2\text{H}_2\text{O} \), and this required the concentrations \(c \). The \(M_\text{f} \) values of 74500 and 85300 led to calculated \(A_{\text{enl}} \) values of 14.1 and 12.3 respectively. This range of \(A_{\text{enl}} \) values is more accurate than the previously assumed values of 10.0 (Crossley and Porter, 1980; Nagasawa et al., 1980) or 5.0 (Goldberger et al., 1984). The mean of four \(M_\text{f} \) determinations from \(I(0)/c \) was calculated to be either 72000 (starting from a sequence \(M_\text{f} \) of 74500) or 63000 (from a sequence \(M_\text{f} \) of 85300). Since the individual \(M_\text{f} \) determinations exhibited variability (which is caused by the high incoherent scattering background of \(^1\text{H}_2\text{O} \) and low sample concentrations), and the statistical error in the \(M_\text{f} \) determinations is \(\pm 27000 \), no choice between the \(M_\text{f} \) values was made. Both values are deemed to be consistent with the sequence \(M_\text{f} \) values, and show that factor I is monomeric in solution.

The analysis of \(I(0) \) values in different contrasts leads to the matchpoint determination of factor I, at which its mean scattering density is the same as the buffer. The matchpoint graph of \(\sqrt{[I(0)]/cT_\text{f}} \) versus the volume percentage of \(^2\text{H}_2\text{O} \) (not shown) was based on the following mean values: 0\% \(^2\text{H}_2\text{O} \), 0.304 \(\pm 0.056 \) (four values); 80\% \(^2\text{H}_2\text{O} \), \(-0.306 \pm 0.002 \) (three); 100\% \(^2\text{H}_2\text{O} \), \(-0.462 \pm 0.041 \) (six). The corresponding matchpoint graph using the \(\sqrt{[I(0)]/cT_\text{f}} \) data was based on the following values: 0\% \(^2\text{H}_2\text{O} \), 0.051 \(\pm 0.002 \) (three values); 80\% \(^2\text{H}_2\text{O} \), \(-0.046 \pm 0.001 \) (two); 100\% \(^2\text{H}_2\text{O} \), \(-0.069 \pm 0.005 \) (seven). These intensity data have been referenced to the incoherent scattering of water as an absolute standard. MINITAB linear regressions gave matchpoints of 40.1 \(\pm 1.7 \% \) \(^2\text{H}_2\text{O} \) for the \(I(0) \) data and 42.4 \(\pm 1.3 \% \) \(^2\text{H}_2\text{O} \) for the \([I(0)]/cT_\text{f} \) data. The calculation from the two compositions gave matchpoints of 42.5 \% \(^2\text{H}_2\text{O} \) and 43.1 \% \(^2\text{H}_2\text{O} \) for \(M_\text{f} \) values of 74500 and 85300 respectively. The satisfactory agreement of the observed and calculated matchpoint determinations show that factor I remains monodisperse in the three \(^2\text{H}_2\text{O} \) buffers employed in the present study.

The Stuhrmann analysis of the dependence of the \(R_\text{g} \) values on the solute–solvent contrast (Figure 2) resulted in a radius of gyration at infinite contrast \(R_{\text{g}-c} \) of 3.84 \(\pm 0.03 \) nm and a slope \(\alpha_{\text{g}} \) of 2(\(\pm 8 \)) \(\times 10^{-4} \), which is close to zero. Calculation of the elongation ratio or anisotropy \(R_{\text{g}}/R_{\text{g}} \) (where \(R_{\text{g}} \) is the radius of the sphere with the same dry volume as factor I) gave a value of 1.77 to 1.70 (\(\pm 0.01 \)). Since the \(R_{\text{g}}/R_{\text{g}} \) values for typical globular proteins are close to 1.28 (Perkins, 1988b), it is seen that factor I possesses an extended solution structure. This structural anisotropy is similar to that found with the complement components C3, C4, C5 and C9 which are moderately elongated in shape (Perkins et al., 1990; Smith et al., 1992).

The Stuhrmann analysis of the \(R_{\text{xs}} \) data (Figure 2) gave an \(R_{\text{xs}-c} \) value of 1.56 \(\pm 0.01 \) nm and a positive slope \(\alpha_{\text{xs}} \) of 1(\(\pm 2 \)) \(\times 10^{-4} \). The combination of the mean \(R_{\text{g}} \) and \(R_{\text{xs}} \) data in 0, 80 and 100\% \(^2\text{H}_2\text{O} \) gave lengths (\(L \)) of 12.2 \(\pm 0.1 \) nm, 11.9 \(\pm 0.1 \) nm and 12.3 \(\pm 0.6 \) nm in that order. The alternative calculation based on the ratio of intensities gave \(L \) values in good agreement, of 13.1 \(\pm 2.5 \) nm, 13.3 \(\pm 2.5 \) nm and 14.1 \(\pm 4.4 \) nm respectively. The mean \(L \) value is thus 12.8 \(\pm 0.8 \) nm. Use of the dry volume of 92.1 nm\(^3\) \((M_\text{f} \text{ of } 74500) \) resulted in mean axial dimensions \(L \times 2A \times 2B \) of 12.8 nm \(\times 5.7 \) nm \(\times 1.6 \) nm for factor I, where the S.D.s of 2A and 2B are \(\pm 0.6 \) nm and \(\pm 0.2 \) nm respectively. Use of the dry volume of 104.1 nm\(^3\) \((M_\text{f} \text{ of } 85300) \) gave similar dimensions within error of \(L \times 2A \times 2B \) of 12.8 nm \(\times 5.7 \) nm \(\times 1.9 \) nm. To a first approximation, factor I is seen to have an elongated cross-sectional shape.

Two full neutron scattering curves \(I(Q) \) in reciprocal space extending to \(Q = 3 \) nm\(^{-1} \) were transformed into distance distribution functions \(P(r) \) in real space (Figure 3a). The best \(P(r) \) analysis showed that the \(I(0) \) value from \(P(r) \) was within 1\% of the Guinier value, whereas the \(R_{\text{g}} \) was 10\% larger. The statistical errors of Figure 3(a) and the larger-than-expected \(R_{\text{g}} \) value suggest that the maximum dimension of factor I is at least 13.5 nm and that 18 nm is the upper limit. The \(P(r) \) curve is thus consistent with the \(L \) value of 12.8 \(\pm 0.8 \) nm from the Guinier analyses. The most frequently occurring distance within factor I is deduced from the maximum in \(P(r) \) to be at \(r = 3.2 \) nm.

The neutron contrast variation \(\alpha_{\text{g}} \) and \(\alpha_{\text{xs}} \) values can be compared with those for other glycoproteins after these have
been normalized on the basis of their proportionality to \(R_p^2 \) and \(R_{xx}^2 \). Using a panel of eight proteins of known \(\alpha_x \) values (lysozyme, myoglobin, \(\beta \)-trypsin, trypsinogen, \(\alpha_1 \)-acid glycoprotein, \(\alpha_2 \)-antitrypsin, C1 inhibitor and C9), \(\alpha_x \) for factor I is predicted to be \(47(\pm 22) \times 10^{-5} \). This is higher than the observed \(\alpha_x \) value close to zero. Using a panel of seven proteins of known \(\alpha_{xx} \) values (\(\alpha_2 \)-antitrypsin, C4, C4u, C4b, C5, C9 and factor H), \(\alpha_{xx} \) for factor I is predicted to be \(12(\pm 4) \times 10^{-5} \). This agrees well with the observed \(\alpha_{xx} \) value of \(11(\pm 2) \times 10^{-5} \). In terms of its average cross-sectional properties, the distribution of hydrophilic and hydrophobic residues in factor I is similar to that expected for elongated glycoproteins. The low \(\alpha_x \) of factor I is thus the result of a relatively even distribution of hydrophilic and hydrophobic residues along the longest axis of the macromolecule, as encountered for Clq of complement (Perkins et al., 1984) and also C3, C4 and C5 of complement.

Synchrotron X-ray scattering studies of factor I

As a corroboration of the neutron data, synchrotron X-ray scattering (corresponding to high positive solute-solvent contrasts) was used with factor I in the concentration range 1.5-4.1 mg/ml. Analyses of the ten time frames during selected sample runs showed that beam irradiation did not lead to time-dependent changes in the scattering curves of factor I. Linear Guinier \(R_g \) and \(R_{xx} \) plots within satisfactory \(Q-R_g \) and \(Q-R_{xx} \) ranges were obtained (Figures 1b and 1d). The \(M_r \) of factor I was determined to be 89000-78000 (± 7000) (six determinations for \(c \) between 2.1 and 4.1 mg/ml) by reference to four other proteins of known \(M_r \) and composition measured in the same beamtime session. This calculation is within error of the neutron \(M_r \) and the two possible sequence \(M_r \) values, and shows that the data correspond to monomeric, monodisperse factor I. The mean \(R_g \) was determined to be 3.96 ± 0.12 nm (eight determinations), and the mean \(R_{xx} \) was 1.64 ± 0.04 nm (ten). These values are within error of the neutron \(R_g \) and \(R_{xx} \) data measured in 0% \(^2\text{H}_2\text{O} \) buffers of 3.84 ± 0.11 nm and 1.66 ± 0.03 nm.

Combination of the overall and cross-sectional X-ray Guinier analyses lead to a length \((L) \) of 127.0 ± 0.6 nm from the \(R_{xx} \) and \(R_{xx} \) data, and one of 139.9 ± 0.8 nm from the ratio of intensities, which are both in good agreement with the neutron value 128 ± 0.8 nm. The molecular dimensions \(L \times 2A \times 2B \) of factor I were determined as 12.8 nm x 6.3 nm x 1.8 nm and 12.8 nm x 6.2 nm x 2.1 nm for \(M_r \) values of 74500 and 85300 respectively, of hydrated volume 122.6 nm³ and 138.9 nm³. Since the S.D.s of 2.4 and 2.8 were ± 0.2 nm and ± 0.1 nm respectively, these two results are within error of each other, and also agree with those of factor I by neutrons.

The X-ray \(P(r) \) curve gave a maximum dimension of factor I of 15 ± 1 nm, which is consistent with other determinations. The maximum in the X-ray \(P(r) \) curve is at \(r = 3.6 \) nm, which is slightly larger than, but within error (± 0.2 nm) of, the neutron \(P(r) \) maximum at 3.2 nm. This similarity reflects the low positive value of \(\alpha_x \) observed in Figure 2, and confirms the overall low inhomogeneity of scattering density within factor I. Larger differences between the X-ray and neutron \(P(r) \) in Figure 3(b) were seen only at large \(r \), where the precision of the \(P(r) \) calculation is reduced.

Scattering curve simulations for factor I

The full neutron and X-ray scattering curves for factor I were modelled using small spheres in order to assess possible arrangements of the five domains within factor I. Calculations were performed twice to assess the effect of the \(M_r \) values of 74500 and 85300.

Neutron curve-fitting was initially based on a simple elliptical cylinder to assess the overall dimensions of factor I (Figure 4a). Sphere models were constructed to follow the \(R_{xx} \) of 3.83 ± 0.11 nm and the approximate dimensions of 12.8 nm x 5.7 nm x (1.6-1.9 nm) (± 0.8-0.2 nm) derived from the Guinier analyses. For an \(M_r \) of 74500 (volume of 92.1 nm³), the testing of 29 models showed that good fits to the 100% and 0% \(^2\text{H}_2\text{O} \) data could be obtained with a 268-sphere model (cube side 0.70 nm; volume 91.9 nm³) in an array of 19 x 8 x 2 with dimensions of 13.3 nm x 5.6 nm x 1.4 nm. This model had an \(R_g \) of 3.85 nm. The goodness-of-fit (\(R \)) coefficient (Smith et al., 1990) was acceptable at 0.020 for the 100% \(^2\text{H}_2\text{O} \) curve and 0.021 for the 0% \(^2\text{H}_2\text{O} \) curve. A single-density model gave good curve-fits in both contrasts, in accordance with the low Stuhmann \(\alpha_x \) value. The relatively low \(M_r \) of factor I and the resulting poorer counting statistics for the 0% \(^2\text{H}_2\text{O} \) curve did not permit an assessment of whether two-density models would give improved curve-fits. For the \(M_r \) of 85300 (volume of 104.1 nm³), the above elliptical cylinder model was adapted by the addition of an extra segment of spheres in an array of 19 x 2 x 1 at the centre of the model to give a total of 304 spheres in place of 268 spheres. The dimensions of this model were very similar at 13.5 nm x 6.3 nm x 1.4 nm. This model had an \(R_g \) of 3.96 nm. It gave good curve-fits to both the 100% and 0% \(^2\text{H}_2\text{O} \) data with goodness-of-fit parameters (\(R \)) of 0.016 and 0.022 respectively.

Further sphere models for factor I were developed to take account of its five-domain structure. Its heavy chain was divided into four segments: i.e. Lys¹- Thr⁴⁸ for the FIM domain and a short N-terminal segment (plus two oligosaccharide sites), Ala⁴⁹-Thr⁴⁸ for the CD5 domain (plus one oligosaccharide), Gln¹⁷⁹-Cys³⁸⁷ for the first LDLr domain and Cys⁵²⁸-Arg⁵⁵¹ for the second LDLr domain and a C-terminal segment. The light chain Ile³⁵³-Val⁵⁶³ (plus three oligosaccharides) was assigned as the SP domain. The volumes of these five segments were 16.8, 17.5, 5.3, 11.7 and 41.1 nm³ respectively. If each segment was spherical in shape (the most compact shape possible), their diameters are 3.2, 3.2, 2.2, 2.8 and 4.3 nm respectively. If these five spheres were arranged in a linear structure, the sum of the diameters corresponds to a minimum overall length of 15.7 nm (or 16.2 nm for a total volume of 104.1 nm³). Since it is more likely that the five domains are non-spherical, this minimum length of 15.7-16.2 nm would be increased if all five domains were aligned within factor I with their longest axes co-linear with the major axis of factor I. Since factor I has a length of 13 nm, this shows that the five domains in factor I cannot be arranged as a linear structure.

The SP domain was modelled starting from the \(\beta \)-trypsin sphere model in the accompanying paper (Perkins et al., 1993) and the sequence alignment in the accompanying paper (Perkins and Smith, 1993). The \(\beta \)-trypsin model of 188 spheres was converted into the SP domain of factor I by adding 73 spheres. Of these, 39 spheres correspond to the three oligosaccharide chains at Asn¹⁴⁶, Asn¹⁷⁸ and Asn³⁸⁹. In the \(\beta \)-trypsin crystal structure, these correspond to Gly¹¹³, Ser¹⁴⁷ and Ser³⁸². All were located on the same face of the structure, away from the catalytic triad (Figure 4). All three were taken to be either the highmanose or the tetra-antennary complex types to correspond to the \(M_r \) values of 74500 and 85300. The remaining 34 spheres correspond to amino acid residues which were added to allow for three large sequence insertions between \(\beta \)-strands D and F, H and I, M and N, and one more at the C-terminus in \(\beta \)-trypsin, as well as several minor residue insertions and deletions. In summary, the volumes of the FIM, CDS, LDLr-1, LDLr-2 and SP domains correspond to 106, 111, 34, 74 and 261 spheres, in that
The factor I curve (continuous line) calculated from the model shown on the right is compared with the experimental curves (●) measured at 3.5 mg/ml in a 100% 2H2O buffer and at 4.7 mg/ml in a 0% 2H2O buffer on Instrument D17. Error bars due to data-counting statistics are shown when these are large enough to be seen. (a) Scattering-curve simulations are shown for a simple ellipsoidal model of factor I, based on 268 spheres of diameter 0.70 nm. (b) Simulations were based on a family of models in which an SP domain derived from the small-sphere model for β-trypsin was attached to an ellipsoid to represent the putative FIM, CD5, and two LDLr domains for a total Mr of 85,300. A total of 652 spheres (diameter 0.54 nm) was used. The putative location of three carbohydrate chains on the SP domain is marked by "dotted spheres" (○), as also in (e) below. (e) Simulations were now based on another family of models in which the SP domain is now attached to a V-shaped structure which represents the four remaining domains. A total of 668 spheres (diameter 0.54 nm) was used for a total Mr of 85,300.

Figure 4 Comparisons of the curve simulations for factor I with neutron scattering data

In one class of neutron models, factor I was considered as the association of the SP domain with an elliptical cylinder for the remaining FIM, CD5, LDLr-1 and LDLr-2 domains. For the Mr of 74,500 (volume 92.1 nm³), the elliptical cylinder was composed of 323 spheres. Testing showed that the most satisfactory curve-fit resulted from an array of 14 × 8 × 3 spheres (7.6 nm × 4.3 nm × 1.6 nm in size), totalling 585 spheres in all (Figure 4(b)). This resulted in an R₉ value of 3.72 nm. The R coefficient of the curve-fits was acceptable at 0.022 for the 100% 2H₂O data and 0.021 for the 0% 2H₂O data. For the Mr of 85,300 (volume 104.1 nm³), an array of 13 × 9 × 3 spheres (7.0 nm × 4.9 nm × 1.6 nm) gave the best fit with a total of 652 spheres. This gave an R₉ value of 3.77 nm. The R coefficients of the curve-fits were good at 0.015 for the 100% 2H₂O data and 0.022 for the 0% 2H₂O data.

In a second class of neutron models, factor I was considered as the association of the SP domain with a V-shaped for the other domains. The first arm was constructed from 108 spheres (the two LDLr domains) and the second arm contained 217 or 255 spheres (the FIM and CD5 domains). For the Mr:74,500 model, trial-and-error calculations showed that the most satisfactory curve-fits were obtained with an inter-arm angle of 10°, and that the two arms were best set as arrays of 14 × 4 × 2 and 18 × 4 × 3 spheres. The final model contained 590 spheres (volume 92.9 nm³), and had an R₉ value of 37.8 nm. The R coefficients of the curve-fits were good at 0.015 for the 100% 2H₂O data and 0.021 for the 0% 2H₂O data. For the Mr:85,300 model, the best curve-fit was obtained with arrays of 14 × 4 × 2 and 17 × 3 × 5 spheres. This model contained 668 spheres (105.2 nm³), and led to an R₉ value of 3.87 nm. The R coefficients of the curve-fits were also good at 0.011 for the 100% 2H₂O data and 0.023 for the 0% 2H₂O data.

For comparison with the X-ray scattering curves, the neutron models were hydrated assuming 0.3 g of water/g of glycoprotein. Good curve-fits in the Q range corresponding to the R₉ Guinier fits were obtained out to a Q of 0.4 nm⁻¹ (results not shown). The curve-fits deteriorated in the R₉ region of the scattering curve, which was contrast-sensitive in the neutron experiments (Figure 2). This discrepancy was thus attributed to the high (15.0–25.7%) carbohydrate content of factor I, since carbohydrate residues are electron-rich and make a relatively large contribution to X-ray scattering curves.

Simulations of hydrodynamic data for factor I

Hydrodynamic sedimentation data serve as an independent control of the structure of factor I. The sedimentation coefficient
calculated volumes \((s_0^0) \) of factor I has been reported to be 4.5 S at \(f/0.15 \) (Cooper, 1975). On the basis of the \(M_r \) values of 74,500 and 83,500, the calculated hydrated \(v \) of factor I for \(s_0^0 \) analyses is 0.714 ml/g and 0.708 ml/g respectively (Perkins, 1986). From hydrated volumes of 122.6 nm\(^3\) or 138.9 nm\(^3\), frictional ratios \((f/f_0) \) of 1.36 or 1.52 were determined.

Hydrodynamic spheres were used to calculate the value of \(s_0^0 \) directly from the hydrated-sphere model used for X-ray modelling. The ellipsoid, SP/ellipsoid and SP/V-shape models (Figure 4) gave predicted \(s_0^0 \) values of 4.9 S, 4.6 S and 4.3 S in that order for the 92.1 nm\(^3\) model. The \(s_0^0 \) values were 5.5 S, 4.8 S and 4.7 S respectively for the 104.1 nm\(^3\) model. Since the precision of the experimental data is usually considered to be \(\pm 0.3 \) S (Perkins, 1989), the second and third types of models are seen to be fully compatible with the experimental \(s_0^0 \) value of 4.5 S, irrespective of the presumed \(M_r \) for factor I, while the agreement for the ellipsoid model is at the limit of error. These agreements support the dimensions determined for factor I from the scattering analyses.

CONCLUSIONS

Factor I has a multidomain structure like many other complement proteins. The present study shows that its overall dimensions are not compatible with a fully extended arrangement of the five domains in solution. The overall length of factor I has been determined four times [from the Guinier data, \(P(r) \) analyses, scattering and hydrodynamic modelling] to be close to 13–14 nm.

It is gratifying that DiScipio (1992) independently reported a length of 13 nm by electron microscopy for factor I after we had completed the present study. A linear extended arrangement of factor I domains would be at least 15–16 nm in length, and would most probably be longer. Most of the other complement proteins studied so far possess extended domain structures (C1q, C1r, C1s, C1 inhibitor, C4BP, factor H and properdin) (Perkins et al., 1990). C9 is the only other complement protein studied by scattering to date to possess a non-extended domain structure (Smith et al., 1992).

The explicit consideration of possible domain arrangements in factor I was much assisted by the ability to model the largest one of the five in the light chain with spheres using its structural homology with \(\beta \)-trypsin. The two obvious possible arrangements for the four domains in the heavy chain are a zig-zag conformation with the long axes of the small domains arranged side-by-side (Figure 4b) or a V-shaped structure (Figure 4c). It is reasonable to expect that the FIM, CD5 and two LDLr domains are about 4 nm \(\times \) 2 nm \(\times \) 2 nm in size, by analogy to the short complement/consensus repeat in C4BP and the thrombospondin repeat in properdin (Perkins et al., 1986; Smith et al., 1991). A zig-zag conformation of four domains would be readily accommodated within the dimensions of 7–8 nm \(\times \) 4–5 nm \(\times \) 2 nm (Figure 4b). Alternatively a V-shaped structure would correspond to two LDLr domains of size about 8 nm \(\times \) 2 nm \(\times \) 2 nm located in the arm attached to the SP domain, and a pair of FIM and CD5 domains of size about 10 nm \(\times \) 2 nm \(\times \) 2 nm in the other arm (Figure 4c). It is not possible to discriminate between either of these possibilities by scattering, as they are equivalent in scattering. The electron-microscopic images obtained by DiScipio (1992) also do not distinguish between either of these possibilities. There, a bilobal structure with an overall length of 13.0 \(\pm \) 1.4 nm and lobes of 4.9 \(\pm \) 0.9 nm and 5.4 \(\pm \) 0.8 nm in diameter was observed, in which one lobe may be V-shaped in appearance. We have attempted to model factor I with two solid lobes joined by a linker of various lengths and sizes, but the curve-fits were not promising. It can nonetheless be concluded that factor I does not contain an extended linear conformation of domains. Structural studies at higher resolution will be required to determine more precise details.

Irrespective of the packing arrangement of the domains in factor I, the present study implies that the domains are arranged in such a way that steric factors will be important for functional activity. It is possible that direct interaction of factor I with a cofactor protein or with the C3b/C4b cofactor complex causes a change in exposure of the reactive-site region. A comparative view of these low-resolution structures is shown in Figure 5. It is not possible to predict from the modelling if the active site of the SP domain would be sterically masked by the domains in the elliptical cylinder or V-shaped segments in Figures 4(b) or 4(c). Work by Zhang et al. (1999) suggests a conformational change in factor I on interaction with C3b, although this does not lead to cleavage of C3b in the absence of a cofactor protein. Whether these changes correspond to gross conformational rearrangements involving domain movements starting from the structures shown in Figures 4(b) and 4(c), or to localized ones involving a few residues, is not known. The accessibility of the catalytic site on the SP domain is clearly of great significance for complement activation. It is possible that one of the functional roles of the multidomain complement structures is that they not only offer high specificity in the protein–protein interactions that are involved in complement activation, but also a simple means of altering the reactivity of the individual components by steric displacements of individual domains or residues within each domain.

Figure 5. Comparison of the dimensions of factor I with the complement components C4 and C4BP.

The scattering model of factor I (sphere diameter 0.54 nm) is shown in comparison with its cofactor complement component C4BP (sphere diameter 1.0 nm) and one of its substrates C4 (sphere diameter 0.8 nm) (Perkins et al., 1986, 1990). It should be noted that other scattering-equivalent models can offer equally satisfactory curve-fits to the data, and that the general form of these structures should not be over-rated.
We thank the Wellcome Trust and the Royal Society for support and the Science and Engineering Research Council for use of the Synchrotron Research Source (SRS) (Daresbury, Warrington, U.K.) and the Institut-Laue-Langevin (ILL) (Grenoble, France). Mr. A. S. Nealis and Mr. T. Dempsay (Royal Free Hospital School of Medicine), Dr. W. Bras (SRS) and Dr. A. de Geyer (ILL) are gratefully thanked for support and assistance, and Miss B. E. Moffatt likewise for expert technical assistance.

REFERENCES

García de la Torre, J. and Bloomfield, V. A. (1977a) Biopolymers 16, 1747–1761
García de la Torre, J. and Bloomfield, V. A. (1977b) Biopolymers 16, 1779–1793

Received 2 April 1993/18 May 1993; accepted 24 May 1993