Methylation patterns in the human muscle-specific enolase gene (ENO3)

Mina PESHAVARIA and Ian N. M. DAY*
University Department of Clinical Biochemistry, Level D, South Laboratory and Pathology Block, Southampton General Hospital, Tremuna Road, Southampton SO9 4XY, U.K.

The methylation status in the human-muscle enolase gene (ENO3) was assayed. Previous sequence data and MspI cleavage sites indicate the presence of a 5' CpG-rich island of at least 4 kb: none of 22 characterized MspI CCGG sites is methylated in any of muscle, sperm or brain DNA. However a complex pattern of complete and partial methylation of MspI sites that is different between tissues is observed within the ENO3 gene: events at one site may be specific to muscle DNA. The absence of methylation in the promoter region of the ENO3 gene makes it unlikely that methylation plays a causal role either in transcriptional events or in the divergence of enolase-isogene regulation. The role of tissue-specific methylation events within ENO3 remains to be determined.

INTRODUCTION

Enolase (EC 4.2.1.11) catalyses the glycolytic step interconverting 2-phosphoglycerate and phosphoenolpyruvate. Although this step appears to be at 'equilibrium' in vivo and is not a classical site of metabolic pathway regulation [1], tissue-specific isoforms are found and these display minor kinetic differences [2,3]. Additionally the absolute cellular level of enolase activity is 20-fold higher in muscle (per mg of total soluble protein) than in other tissues [1], possibly reflecting the heavy metabolic demands of skeletal muscle. The possible role of a wide range of isoenzyme systems and their cognate genes and their differential regulation have been extensively investigated. Instances of mechanistic value to the organism have been identified at the substrate, kinetic, macromolecular, translational and transcriptional levels and these roles become clear as a complete description of the system is obtained (for a recent overview, see [4]). Three major tissue-specific isoforms of enolase have been identified in mammals and birds: \(\gamma \) or neuron-specific enolase (NSE), expressed primarily in neurons; \(\beta \) or muscle-specific enolase (MSE), expressed in striated muscle; and \(\alpha \) or non-neuronal enolase (NNE) expressed in fetal and other adult cell types. A variety of rat and human NSE, NNE and MSE cDNA and genomic clones have been isolated ([5-13] and references therein), including most recently genomic clones representing human NSE [11] and MSE [12]. It has been established that there is transcriptional switching of the rat NSE gene during neuronal development [10] and earlier in vitro translation studies of chicken muscle have suggested a comparable event for the MSE gene during muscle development [14]. Extensive general information has emerged about myogenesis and muscle-gene expression, including the identification of master genes such as myoblast determination gene-1 (Myo D1) that can trigger undifferentiated cells to adopt a muscle phenotype [15]. A common pattern of regulation of the genes responsible for the phenotype involves transcriptional regulation by specific protein factors binding to specific motifs near the transcriptional start site [16-21]. In addition to these features of differential gene regulation, patterns of gene methylation can be correlated (either as a cause or as a consequence) with gene activity both in cell lines ([22] and references therein) and in vivo in tissues including muscle ([23] and references therein). This work set out to apply cloned human-genomic ENO3 to the analysis of methylation patterns in ENO3 in different tissues, using methylation-sensitive and insensitive restriction enzymes.

MATERIALS AND METHODS

Reagents

Radiochemicals and Hybond-N were from Amersham International (Amersham, Bucks., U.K.). Restriction enzymes and other DNA-modifying enzymes were either from Northumbria Biologicals Ltd., Cramlington, Northumbria, U.K. or from Anglian Biotech Ltd., Colchester, Essex, U.K. Chemicals and other reagents were from Sigma Chemical Co., Poole, Dorset, U.K. Cell culture reagents and plastics were from Gibco-BRL, Paisley, Scotland.

Preparation of probes and plasmid constructs

Restriction fragments representing regions of human ENO3 were isolated from the clone \(\lambda \)HGM, as described previously [12], using standard laboratory methods [24-27] for isolation, labelling to specific activities of \(10^5-10^6 \) d.p.m./\(\mu \)g and recloning.

Analysis of ENO3 methylation patterns

Genomic DNA was isolated [27] from post-mortem (average 24 h) samples of adult human liver, muscle and semen of healthy males [28]. Preliminary digests of genomic DNA with the enzyme(s) representing the in vivo ends of the restriction fragment that was to be used as the probe were followed by digestion using restriction enzymes that are differentially sensitive to methylation of their target sequences. Typically the probes were PstI fragments and the secondary digests were with the methylation-sensitive enzyme HpaII as against its isoschizomer, MspI, which is not sensitive to methylation at their common recognition sequence, 5'-CCGG [26]. A sample of 10 \(\mu \)g of digested genomic DNA was electrophoresed, either in standard agarose gels or in denaturing acrylamide gels, the latter to resolve size fragments.
Mspl sites are marked by a vertical bar and circle below the line of the gene. Coding exons are shown as solid boxes (■), non-coding exon (I) as a hatched box (□). Gaps indicate sequence that has not been determined (ND). The methylation status of the Mspl sites is coded as follows: open circles (○), unmethylated in all tissues examined; left-half-filled circles (●), partially methylated in tissues examined; right-half-filled circles (■), methylated in sperm DNA but not in brain nor in muscle DNA; lower-half-filled circles (◆), fully methylated in sperm and in brain DNA but partially unmethylated in muscle DNA.

Table 1 Summary of EN03 regions and probes used showing Mspl sites and methylation status

<table>
<thead>
<tr>
<th>Region/probe</th>
<th>Size (kb)</th>
<th>Region represented</th>
<th>Number of Mspl sites</th>
<th>Methylation status of Mspl sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>2.35</td>
<td>'Distal' upstream region</td>
<td>At least 11</td>
<td>Constitutively unmethylated</td>
</tr>
<tr>
<td>D</td>
<td>0.80</td>
<td>'Distal' upstream region</td>
<td>At least 7</td>
<td>Constitutively unmethylated</td>
</tr>
<tr>
<td>B</td>
<td>1.62</td>
<td>'Proximal' (0.7 kb) upstream region, TATA box, exon I, intron 1</td>
<td>4</td>
<td>Constitutively unmethylated</td>
</tr>
<tr>
<td>C</td>
<td>1.15</td>
<td>Exons II, III, IV, introns 2, 3</td>
<td>4</td>
<td>At least partially methylated in tissues examined</td>
</tr>
<tr>
<td>E</td>
<td>0.53</td>
<td>Exon V, introns 4, 5</td>
<td>2</td>
<td>Methylated in sperm DNA, but not in brain or in muscle DNA</td>
</tr>
<tr>
<td>H/A</td>
<td>1.66</td>
<td>Exons VI, VII, introns 6, 7</td>
<td>1</td>
<td>Fully methylated in sperm and in brain DNA, partially unmethylated in muscle DNA</td>
</tr>
</tbody>
</table>

from 50–500 bp. Electrobots were prepared, essentially as described by Church and Gilbert [29,30]. Identification of the smallest Mspl fragments (down to 50 bp) required careful attention to the specific activity of the probe, the blocking and hybridization conditions and the autoradiography procedure, as described previously [29,30]. All blots were prepared using Hybond-N and were probed at ‘high’ stringency [0.1× standard saline citrate (SSC; 1× SSC is 0.15 M NaCl and 0.015 M sodium citrate)/0.1% w/v SDS at 65 °C].

RESULTS

The nomenclature of genomic regions used as probes and their relationships to MsplI sites identified within the gene sequence [12] are illustrated in Figure 1. In outline, region B spans the near upstream region (0.7 kb), exon I and intron 1; regions G and D represent a further upstream region (3.15 kb) and regions C, E, A and H represent the gene interior. Further detail is presented in Table 1.

In Figures 2 and 3, probes B, G and D detect fragments in PstI–MspI double digests that represent a total of at least 20 Mspl sites (see Table 1). All of these sites are cleaved as well by PstI–HpaII in the three tissues examined, indicating a complete absence of methylation at CCGG sites within a 3.5 kb region upstream of EN03. The Mspl sites in B are all clustered within a CpG-rich region 5' to the TATA box, none falling within exon I or intron 1, therefore all of the unmethylated sites identified here fall upstream to the gene.

Figure 4 presents a more complex pattern, with differences observed between Mspl and HpaII digests of the same tissue and between HpaII digests of different tissues. The differences are as follows. (1) HpaII does not cleave the targets for probes C, E or H in sperm DNA, indicating that the respective 4, 2 and 1 Mspl sites within these targets in sperm DNA are methylated. (2) The single Mspl site in H is only cleaved by HpaII in muscle, and is not cleaved in brain or in sperm DNA. The cleavage was estimated (by eye) to be 30–50%, complete. (3) The two Mspl sites in E are not cleaved at all by HpaII in purified sperm DNA, but are fully cleaved by HpaII in brain and muscle DNA. (4) Region C is at least partially uncleaved by HpaII both in muscle and in brain DNA, indicating that all four Mspl sites in region C in each of these tissues are at least partially methylated. (5) The signal strength (per mol) is substantially weaker for target C than for H, perhaps reflecting the effect of pre-absorption of probe C (which contains Alu sequences) with total genomic DNA. Since the small subfragments of C cannot be identified reliably in brain and muscle MsplI tracks, the exact methylation status of target C in these tissues remains uncertain.
Methylation of human gene EN03

Figure 2. Analysis of the methylation of EN03: electroblots of digested human DNA, probed using EN03 region B

Electroblots of restriction-enzyme digests of human DNA after electrophoresis through 5% acrylamide [7 M urea, 0.5 x TBE (final concentration 0.044 M Tris, 0.044 M borate, 1 mM EDTA)], probed using EN03 region B, a PstI–PstI fragment (see Figure 1). The tissue of origin of the DNA is indicated (brain, muscle or sperm) and all tracks represent a double digest, first with PstI and then either with MspI (M) or with HpaII (H). Bands were identified from the known sequence [12] and hence the MspI restriction map of region B, the adjacent electrophoresis of an MspI digest of purified DNA representing region B and from end-labelled MspI-digested pUC18 size markers (sizes indicated). Both 5-day (a) and overnight (b) autoradiographs are presented so that both larger (e.g., 1282 nt) and smaller (e.g., 65 nt) fragments can be visualized. One faint band, present only in the brain tracks, reflects residual incomplete PstI digestion of DNA from this tissue.

Figure 3. Analysis of the methylation of EN03: electroblots of digested human DNA probed using (a) EN03 region G and (b) EN03 region D

Conditions and size markers are as in Figure 2. All the tracks represent double digests of human DNA with PstI followed by either MspI (M) or HpaII (H). The source tissue is as indicated. The fragments visualized have not been assigned at the sequence level. Note that no fragments differ between the MspI and HpaII tracks for a given tissue; slight differences between the tissues represent slight residual differences in PstI digestion between the tissues.

DISCUSSION

In sperm, brain and muscle genomic DNA, no methylated 5′-CCGG sites were identified at the 5′ end of the EN03 gene or upstream of it: 22 sites were examined within a 3.5 kb region (probes B, G and D; Figures 2 and 3). Genes in mammals are typically marked by a 5′ CpG island that is relatively spared from the CpG depletion that is typical of the rest of the genome [31–33]. It is thought that the hypermethylatbility of methylated CpG sites accounts for the general depletion of CpG that is found in mammalian DNA [34]. The mechanisms that maintain CpG islands are obscure, but a number of ‘housekeeping’ genes have been shown to possess constitutively unmethylated CpG sites around their 5′ ends [35]. It has been noted as well that CpG/GpC ratios in 5′ islands tends to be higher in ‘housekeeping’ genes than in tissue-specific genes [23]. We have presented summary data for human and rat enolase genes previously that show that the enolase gene family reinforces this observation ([36]; Table 1 in [37]). In a 919-bp region upstream of the transcriptional start site, the CpG/GpC ratios are as follows: for the human NNE gene, 0.95; for the human NSE gene, 0.54; for the human MSE gene, 0.54; for the rat NSE gene, 0.60; and for the rat MSE gene, 0.47 (the average ratio in mammalian DNA is approx. 0.25). Thus NNE, which is expressed in fetal tissues and in most adult tissues, is transcribed from a gene with essentially no CpG depletion in its 5′ CpG island, whereas the tissue-specific (neuronal and muscle) isogenes are approximately two-fold depleted in CpG in the corresponding region. In this work we have presented evidence that the human MSE gene is constitutively unmethylated at the CpG sites that were studied (that is, the 5′-CCGG sites) within its 5′ CpG island. Unless transient methylation takes place at some stage within the germ line, it is not clear how CpG depletion by the deamination of methyl-CpG could account for the divergence in the CpG/GpC ratios that is noted above for the human MSE gene as against the human NNE gene. However there may be other bulk or specific properties of these regions that influence their nucleotide and sequence content in ways that are different from the rest of the
Distinctive methylation methylases of transcriptional units displaying a pattern that in methylated muscle unmethylated events this site fibres II typical of the enolase gene(s).

With respect to methylation, the EN03 region is not methylated in sperm or brain DNA, since EN03 in brain DNA, 30-50% of sites are unmethylated in muscle DNA. Since EN03 is expressed in all human muscle fibres, albeit different levels in type I and type II fibres, but not expressed at all or in brain, this site represents the most direct correlation identified between methylation events and transcriptional events in EN03. Its methylation status in relation to development, fibre type and local chromatin structure would be of interest.

Thus the EN03 gene has some methylation properties that are not explained by current models and that may offer further insight into the evolution, structural disposition and expression of the mammalian enolase genes.

M. P. was the recipient of a Ph.D. Studentship from the Sir Halley Stewart Trust. Work in this laboratory is supported by the British Epilepsy Research Foundation and the Medical Research Council. We thank Mrs D. Brown for typing the manuscript and Professor Thompson for departmental facilities and space.

REFERENCES

Received 2 November 1992/23 December 1992; accepted 5 January 1993