Biochemical Journal

The Biochemical Society, London © 1993

Volume 289, part 1
1 January 1993

Editorial Board

Chairman
A. J. Turner • Leeds

Deputy Chairmen
G. H. Elder • Cardiff
S. J. Higgins • Leeds
M. A. Kerr • Dundee
K. Siddle • Cambridge
W. L. R. Stalmans • Leuven
V. A. Zammit • Ayr

Reviews Editor
W. H. Evans • London

Managing Editor
A. S. Beedle

A. Altken (London)
B. H. Anderton (London)
D. J. Anstee (Bristol)
G. Banting (Bristol)
T. Berg (Oslo)
N. J. M. Birdsell (London)
G. D. Birnie (Glasgow)
R. D. Burgoyne (Liverpool)
S. J. W. Busby (Birmingham)
A. M. Campbell (Glasgow)
S. Cockcroft (London)
A. P. Dawson (Norwich)
H. R. de Jonge (Rotterdam)
A. H. Drummond (Oxford)
J. Feeney (London)
D. A. Fell (Oxford)
M. A. J. Ferguson (Dundee)
S. J. Ferguson (Oxford)
J. B. C. Findlay (Leeds)
D. K. Grammer (Nashville)
D. G. Hardie (Dundee)
T. E. Hardingham (London)
D. Häussinger (Freiburg)
H. Holmsen (Bergen)
D. J. Hopper (Aberystwyth)
R. F. Irvine (Cambridge)
D. S. Latchman (London)
R. C. Leegood (Sheffield)
A. R. Lehmann (Brighton)
J. P. Luzio (Cambridge)
B. Mannervik (Uppsala)

D. Marsh (Göttingen-Nikolausberg)
S. B. Marston (London)
P. P. McCann (Kansas City)
J. G. McCormack (Edinburgh)
J. D. McGivan (Bristol)
M. A. McNurlan (Aberdeen)
I. A. Nimmo (Edinburgh)
Y. Nishizuka (Kobe)
R. H. Pain (Newcastle upon Tyne)
V. Pain (Brighton)
A. J. Paine (London)
P. Parker (London)
N. C. Price (Stirling)
C. G. Proud (Bristol)
H. Prydz (Oslo)
A. J. Rivett (Leicester)
S. P. Robins (Aberdeen)
S. B. Shears (Research Triangle Park)
M. L. Sinnott (Chicago)
A. R. Stabas (Durham)
B. E. Smith (Brighton)
J. B. Smith (Philadelphia)
A. K. Soutar (London)
F. A. Stephenson (London)
L. M. G. van Golde (Utrecht)
M. J. O. Wakelam (Glasgow)
M. Wallis (Brighton)
M. Watford (New Brunswick)
S. J. Weiss (Ann Arbor)
A. S. Whitehead (Dublin)

The Biochemical Journal is published and distributed by Portland Press Ltd on behalf of the Biochemical Society, and appears twice monthly.

Subscriptions department: Portland Press Ltd, P.O. Box 32, Commerce Way, Colchester CO2 8HP, U.K.

All rights reserved. Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act, 1988, this publication may be reproduced, stored or transmitted, in any forms or by any means, only with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms of permissions granted by copyright clearing houses such as the Copyright Licensing Agency (U.K.) or the Copyright Clearance Center (U.S.A.). The CCC item-fee code for this publication is 0264-6021/93/$5.00+0.00. Inquiries concerning reproduction outside those terms should be sent to the publishers at the above-mentioned address.

Although, at the time of going to press, the information contained in this publication is believed to be correct, neither the authors nor the editors nor the publisher assume any responsibility for any errors or omissions herein contained.

Second-class postage paid at Rahway, NJ, U.S.A. U.S. Postmaster: send address changes to Biochemical Journal, c/o Mercury Airfreight International Ltd, 2323 Randolph Avenue, Avenel, NJ 07001, U.S.A.

Cover illustration: computer graphic image of the protein myoglobin, the oxygen-storage molecule found in muscle. The structure of myoglobin was established in 1962 by M. F. Perutz and J. C. Kendrew. (Dr A. Lesk/Science Photo Library)
Instructions to Authors

General policy

The Biochemical Journal is the official journal of the Biochemical Society. It publishes papers in English in all fields of biochemical research, provided that they make a sufficient contribution to biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. A paper presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary work or inconclusive work will not be published. The Biochemical Journal will not publish material that has been wholly or largely published elsewhere, whether in a refereed journal or in an unrefereed symposium proceedings; equally, fragmentation into the least publishable units will not be considered.

Submission of a paper implies that it has been approved by all the named authors, that all persons entitled to authorship have been so named, that it reports unpublished work that is not under consideration elsewhere, and that the paper is acceptable for publication in the Biochemical Journal. The author or authors guarantee that they have obtained written permission for the publication of any fragmentary information that has been wholly or largely published, or that they are entitled to publish the entire data set. Authors with more than one affiliation will be listed under these affiliations so that each is identifiable. Authors will be required to sign an undertaking to this effect. Authors may suggest potential reviewers for their paper, but the journal is under no obligation to follow such suggestions. Authors may also specify the names of those they wish to be excluded from the review process, and such wishes are usually respected, unless, in the opinion of the journal, such a request unreasonably militates against the expertise available to it in that scientific area.

To allow the reviewers to assess possible overlap with previous work, all submitted papers must be accompanied by duplicate copies of the author's relevant published work and of all related papers in press or under editorial consideration in this or other journals.

The paragraphs below are a summarized version of the journal's complete instructions to Authors [Biochem. J. (1993) 289, 1–15], of which copies are available free of charge from the editorial office.

The following types of paper are included in the journal:

Papers are the normal form of publication, and may be of any length that is justified by their content. However, because of pressure for space in the journal, no paper, whatever its scientific merit, will be accepted if it exceeds the minimum length required for presentation in describing the experiments and clarity in interpreting them. As a guide, most Research Papers published in the Biochemical Journal are of between six and eight printed pages. A concise written paper tends to be published more rapidly.

Research Communications are short (maximum four printed pages) papers bringing particularly novel and significant findings to the attention of the research community. It is intended that a decision on acceptance or rejection will be made within 2 weeks of receipt. Publication of accepted Communications will follow within 2 months. Research Communications receive refereed full but accelerated reviews, and the criteria of "novelty and significance" are strictly enforced. Communications are not a path to accelerated publication of sound but expedient work.

BJ Letters are brief (two printed pages or less) items of scientific correspondence intended to provide an opportunity to discuss or expand particular points made in published work, to comment on or criticize work previously published in the Biochemical Journal, or to present a new hypothesis. They should not contain extensive new data (which would best be placed in a regular paper) and are not a vehicle for publication of preliminary results. If a letter is polemical in nature, a reply may be solicited from other interested parties.

Reviews will usually be solicited, although unsolicited reviews will be considered for publication. Prospective writers of reviews should first consult the Reviews Editor, via the editorial office, and should enclose a short (one typed page) summary of the area they propose to cover.

Procedure for submission

Before preparing papers for the journal, authors should consult a current issue to make themselves familiar with the general format, such as the use of cross-headings, layout of tables and figures and citation of references. Typescripts should be double-spaced throughout (particularly references and tables and figure legends) on numbered sheets of uniform size (preferably ISO A4) with wide margins. Output from low-quality dot-matrix printers is not acceptable. A full page of text in the Biochemical Journal contains approximately 1200 words; when calculating the printed length of papers, allowance must be made for the space occupied by tables and figures and the number of text words reduced accordingly. Either the Harvard system or the numerical system of references may be used. A reference to "published work" should be accompanied by the names of all persons concerned and a reference to a "personal communication" must be supported by written permission for the quotation from the person or persons concerned, both of these types of citation are permitted in the text only, not in the list of references.

Three copies of the typescript (four copies for Research Communications), with a brief covering letter to which should be attached an additional copy of the synopsis, should be sent to:

The Managing Editor
Biochemical Journal
59 Portland Place
London W1N 3AJ
U.K.
(telephone 071-637 5873; fax 071-323 1136; from overseas the international code for the U.K. is 44 and the leading 0 should be omitted).

The typescript should indicate the name, address, telephone number and fax number of the person to whom correspondence should be addressed. The top copy of the typescript should be marked as such and should have attached to it the original figures; for the other copies of the typescript, glossy prints (not photocopies) of the half-tone figures should be provided, but photos- copied line drawings will suffice. A short (page-heading) title of not more than 75 characters should be provided, and authors should indicate the preferred section in the table of contents for their paper:

Proteins • Enzymes • Carbohydrates and lipids • Gene structure and expression • Regulation of metabolism • Membrane biophysics • Receptors and signal transduction • Cell biology and development

Submission by fax

Research Communications and BJ Letters that do not contain half-tone figures may be submitted by fax to the number above. Only one copy of the typescript need be transmitted. Acknowledgment of receipt and the review decision will be returned by fax to the author. The current Instructions to Authors contains full details of this procedure.

Submission on diskette

Authors may submit a diskette containing the final version of the text; this should be in addition to, not as a replacement for, the required number of copies. If the paper is accepted, every effort will be made to use the diskette during typesetting, but this cannot be guaranteed. Authors wishing to submit their text in this way should consult the editorial office for advice before preparation of their paper. Submission of the final version of an article on diskette will become mandatory during 1994.

Subscription department

Portland Press Ltd
P.O. Box 32, Commerce Way
Camberley, GU16 7NB, England
(telephone 0206-793651; fax 0206-793931).

Advertise

Advertising is accepted in the Biochemical Journal. For information contact the Advertising Department, Portland Press Ltd, 59 Portland Place, London W1N 3AJ (telephone 071-580 5530; fax 071-583 1136).

Other information

The Biochemical Journal is published by Portland Press Ltd on behalf of the Biochemical Society. It is published twice monthly; in 1993 volumes 289–296 (three parts each) will appear. The subscription also includes the Biochemical Journal Reviews and an author and key-word index.

Subscription rates

Subscribers to the Biochemical Journal can subscribe additionally to Biochemical Society Transactions on a joint subscription at a reduced rate. Terms are cash with order (E sterling for subscribers other than in North America, or US$ equivalent at current rate of exchange), or against pro-forma invoice. Orders should be sent to the address below, or through your usual agent.

<table>
<thead>
<tr>
<th>Country</th>
<th>Annual rate (incl. two issues accompanies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>US$ 1195</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>US$ 1350</td>
</tr>
</tbody>
</table>

The subscription rates for North America and Japan include elements for airfreight and Accelerated Surface Post respectively. Subscribers may opt for air-mail delivery at additional cost; details are available on application.

Microfiche and back issues

102–288 of the Biochemical Journal are available on microfiche. Back issues are also available. Further details may be obtained from the address below.

P.O. Box 32, Commerce Way
Camberley, GU16 7NB, England
(telephone 0206-793651; fax 0206-793931).
<table>
<thead>
<tr>
<th>Index of Authors</th>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agius, L.</td>
<td>255</td>
<td>Fadil, T.</td>
<td>263</td>
<td>Liau, G.</td>
</tr>
<tr>
<td>Aihaud, G.</td>
<td>141</td>
<td>Falany, C. N.</td>
<td>233</td>
<td>Limatola, C.</td>
</tr>
<tr>
<td>Aksamawat, M.</td>
<td>185</td>
<td>Falany, J. L.</td>
<td>233</td>
<td>Lodge, J. K.</td>
</tr>
<tr>
<td>Allan, D.</td>
<td>307</td>
<td>Fasulo, J. M.</td>
<td>41</td>
<td>Lombard, C.</td>
</tr>
<tr>
<td>Amri, E.-Z.</td>
<td>141</td>
<td>Fertala, A.</td>
<td>195</td>
<td>Lorca, T.</td>
</tr>
<tr>
<td>Anaghi, J.</td>
<td>93</td>
<td>Fliegel, L.</td>
<td>101</td>
<td>Luly, P.</td>
</tr>
<tr>
<td>Anson, D. S.</td>
<td>241</td>
<td>Frati, L.</td>
<td>269</td>
<td>Magous, R.</td>
</tr>
<tr>
<td>Aspan, A.</td>
<td>87</td>
<td>Freeman, D. J.</td>
<td>185</td>
<td>Marie, J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fukui, Y.</td>
<td>227</td>
<td>Martini, I.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fulcari, R.</td>
<td>299</td>
<td>Masters, A. K.</td>
</tr>
<tr>
<td>Baillie, J.-P.</td>
<td>117</td>
<td>Gambarucci, A.</td>
<td>299</td>
<td>Mausolf, A.</td>
</tr>
<tr>
<td>Barbieri, C. L.</td>
<td>155</td>
<td>Garofalo, S.</td>
<td>247</td>
<td>Metsaranta, M.</td>
</tr>
<tr>
<td>Bardon, S.</td>
<td>141</td>
<td>Gates, R. E.</td>
<td>221</td>
<td>Milligan, G.</td>
</tr>
<tr>
<td>Bartlett, K.</td>
<td>161</td>
<td>Gmitter-Yellen, D.</td>
<td>71</td>
<td>Mock, W. L.</td>
</tr>
<tr>
<td>Bellomo, G.</td>
<td>299</td>
<td>Gomez, R.</td>
<td>25</td>
<td>Moir, A. M. B.</td>
</tr>
<tr>
<td>Benedetti, A.</td>
<td>299</td>
<td>Goodman, L. E.</td>
<td>25</td>
<td>Monia, B. P.</td>
</tr>
<tr>
<td>Bennett, C. F.</td>
<td>33</td>
<td>Gorin, P. A. J.</td>
<td>155</td>
<td>Morris, G.</td>
</tr>
<tr>
<td>Bertrand, B.</td>
<td>141</td>
<td>Görisch, H.</td>
<td>173</td>
<td>Morris, H. R.</td>
</tr>
<tr>
<td>Bhuiyan, A. K. M. J.</td>
<td>161</td>
<td>Grimaldi, P.</td>
<td>141</td>
<td>Mullaney, I.</td>
</tr>
<tr>
<td>Biehlicki, J.</td>
<td>241</td>
<td>Hagmann, J.</td>
<td>93</td>
<td>O'Regan, M.</td>
</tr>
<tr>
<td>Blench, I. P.</td>
<td>201</td>
<td>Hanks, S. K.</td>
<td>221</td>
<td>O'Rourke, E.</td>
</tr>
<tr>
<td>Bokoch, G. M.</td>
<td>17</td>
<td>Hartley, B. S.</td>
<td>201</td>
<td>Pacini, L.</td>
</tr>
<tr>
<td>Bonnahous, J.-C.</td>
<td>289</td>
<td>Haworth, R. S.</td>
<td>101</td>
<td>Pang, L.</td>
</tr>
<tr>
<td>Brookfield, D. E.</td>
<td>81</td>
<td>Hipkin, C. R.</td>
<td>87</td>
<td>Panico, M.</td>
</tr>
<tr>
<td>Brostrom, C. O.</td>
<td>71</td>
<td>Hopwood, J. J.</td>
<td>241</td>
<td>Patel, S. U.</td>
</tr>
<tr>
<td>Brostrom, M. A.</td>
<td>71</td>
<td>Hosoya, T.</td>
<td>109</td>
<td>Patton, G. M.</td>
</tr>
<tr>
<td>Buckley, N.</td>
<td>125</td>
<td>Iacomini, M.</td>
<td>155</td>
<td>Peak, M.</td>
</tr>
<tr>
<td>Cantos, G.</td>
<td>155</td>
<td>Ibrahimini, A.</td>
<td>141</td>
<td>Perez, M.</td>
</tr>
<tr>
<td>Chiang, M.-Y.</td>
<td>33</td>
<td>Jard, S.</td>
<td>289</td>
<td>Pouyssegur, J.</td>
</tr>
<tr>
<td>Comer, K. A.</td>
<td>233</td>
<td>Jones, C. G.</td>
<td>169</td>
<td>Prehm, P.</td>
</tr>
<tr>
<td>Crescenzi, F.</td>
<td>179</td>
<td>Kallen, K.-J.</td>
<td>307</td>
<td>Prockop, D. J.</td>
</tr>
<tr>
<td>Crooke, S. T.</td>
<td>33</td>
<td>King, L. E., Jr.</td>
<td>221</td>
<td>Quinn, J.</td>
</tr>
<tr>
<td>Dani, C.</td>
<td>141</td>
<td>Kimitito, A.</td>
<td>201</td>
<td>Quinn, P.</td>
</tr>
<tr>
<td>Decker, S. J.</td>
<td>283</td>
<td>Kler, R. S.</td>
<td>161</td>
<td>Ratcliffe, N. A.</td>
</tr>
<tr>
<td>DeClerck, Y. A.</td>
<td>65</td>
<td>Kuznetsov, G.</td>
<td>71</td>
<td>Reeve, A. E.</td>
</tr>
<tr>
<td>De Crombrugghe, B.</td>
<td>247</td>
<td>Langley, K. E.</td>
<td>65</td>
<td>Reichmann, P.</td>
</tr>
<tr>
<td>Desarnaud, F.</td>
<td>289</td>
<td>Lansing, M.</td>
<td>179</td>
<td>Rivett, A. J.</td>
</tr>
<tr>
<td>Diamond, A. G.</td>
<td>81</td>
<td>Larguer, R.</td>
<td>289</td>
<td>Robins, S. J.</td>
</tr>
<tr>
<td>Dodd, M. W.</td>
<td>125</td>
<td>Lee, Y.</td>
<td>65</td>
<td>Roche, S.</td>
</tr>
<tr>
<td>Durrant, H. J.</td>
<td>87</td>
<td>Lelig, S.</td>
<td>179</td>
<td></td>
</tr>
<tr>
<td>Dyck, J. R. B.</td>
<td>101</td>
<td>Lessard, P. D.</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Eaton, S.</td>
<td>161</td>
<td></td>
<td></td>
<td>Romani, A.</td>
</tr>
<tr>
<td>Eccles, M. R.</td>
<td>133</td>
<td></td>
<td></td>
<td>Rooney, J. E.</td>
</tr>
<tr>
<td>Eerola, I.</td>
<td>247</td>
<td></td>
<td></td>
<td>Rosati, R.</td>
</tr>
<tr>
<td>Elima, K.</td>
<td>247</td>
<td></td>
<td></td>
<td>Rosenberg, S. O.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sadler, P. J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Saltiel, A. R.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Savory, P. J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Swords, N. A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Takenawa, T.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tammori, F.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Titheradge, M. A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tomich, J. M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tosh, D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Travassos, L. R.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tripathy, S. K.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Turnbull, D. M.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Van Oberghen, E.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Van Oberghen-Schilling, E.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vouret-Craviari, V.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vuorio, E.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Walker, T. R.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wallace, B. A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wallis, N. G.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Watson, S. P.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weber, T. J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westerhausen, A.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wilson, P. J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wong, W. L.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yeaman, S. J.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yean, T.-D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Zammit, V. A.</td>
</tr>
</tbody>
</table>
Biochemical Journal

Volume 289, 1993

Editorial Board

Chairman
A. J. Turner • Leeds

Deputy Chairmen
G. H. Elder • Cardiff
S. J. Higgins • Leeds
M. A. Kerr • Dundee
K. Siddle • Cambridge
W. L. R. Stalmans • Leuven
V. A. Zammit • Ayr

Reviews Editor
W. H. Evans • London

Managing Editor
A. S. Beedle

<table>
<thead>
<tr>
<th>A. Aitken (London)</th>
<th>D. Marsh (Gottingen-Nikolausberg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. H. Anderton (London)</td>
<td>S. B. Marston (London)</td>
</tr>
<tr>
<td>D. J. Anstee (Bristol)</td>
<td>P. P. McCann (Kansas City)</td>
</tr>
<tr>
<td>G. Banting (Bristol)</td>
<td>J. G. McCormack (Edinburgh)</td>
</tr>
<tr>
<td>T. Berg (Oslo)</td>
<td>J. D. McGivan (Bristol)</td>
</tr>
<tr>
<td>N. J. M. Birdsall (London)</td>
<td>M. A. McNurlan (Aberdeen)</td>
</tr>
<tr>
<td>G. D. Birnie (Glasgow)</td>
<td>I. A. Nimmo (Edinburgh)</td>
</tr>
<tr>
<td>R. D. Burgoyne (Liverpool)</td>
<td>Y. Nishizuka (Kobe)</td>
</tr>
<tr>
<td>S. J. W. Busby (Birmingham)</td>
<td>R. H. Pain (Newcastle upon Tyne)</td>
</tr>
<tr>
<td>A. M. Campbell (Glasgow)</td>
<td>V. Pain (Brighton)</td>
</tr>
<tr>
<td>S. Cockcroft (London)</td>
<td>A. J. Paine (London)</td>
</tr>
<tr>
<td>A. P. Dawson (Norwich)</td>
<td>P. Parker (London)</td>
</tr>
<tr>
<td>H. R. de Jonge (Rotterdam)</td>
<td>N. C. Price (Stirling)</td>
</tr>
<tr>
<td>A. H. Drummond (Oxford)</td>
<td>C. G. Proud (Bristol)</td>
</tr>
<tr>
<td>J. Feeney (London)</td>
<td>H. Prydz (Oslo)</td>
</tr>
<tr>
<td>D. A. Fell (Oxford)</td>
<td>A. J. Rivett (Leicester)</td>
</tr>
<tr>
<td>M. A. J. Ferguson (Dundee)</td>
<td>S. P. Robins (Aberdeen)</td>
</tr>
<tr>
<td>S. J. Ferguson (Oxford)</td>
<td>S. B. Shears (Research Triangle Park)</td>
</tr>
<tr>
<td>J. B. C. Findlay (Leeds)</td>
<td>M. L. Sinnott (Chicago)</td>
</tr>
<tr>
<td>D. K. Granner (Nashville)</td>
<td>A. R. Slabas (Durham)</td>
</tr>
<tr>
<td>D. G. Hardie (Dundee)</td>
<td>B. E. Smith (Brighton)</td>
</tr>
<tr>
<td>T. E. Hardingham (London)</td>
<td>J. B. Smith (Philadelphia)</td>
</tr>
<tr>
<td>D. Häussinger (Freiburg)</td>
<td>A. K. Soutar (London)</td>
</tr>
<tr>
<td>H. Holmsen (Bergen)</td>
<td>F. A. Stephenson (London)</td>
</tr>
<tr>
<td>D. J. Hopper (Aberystwyth)</td>
<td>L. M. G. van Golde (Utrecht)</td>
</tr>
<tr>
<td>R. F. Irvine (Cambridge)</td>
<td>M. J. O. Wakelam (Glasgow)</td>
</tr>
<tr>
<td>D. S. Latchman (London)</td>
<td>M. Wallis (Brighton)</td>
</tr>
<tr>
<td>R. C. Leegood (Sheffield)</td>
<td>M. Watford (New Brunswick)</td>
</tr>
<tr>
<td>A. R. Lehmann (Brighton)</td>
<td>S. J. Weiss (Ann Arbor)</td>
</tr>
<tr>
<td>J. P. Luzio (Cambridge)</td>
<td>A. S. Whitehead (Dublin)</td>
</tr>
<tr>
<td>B. Mannervik (Uppsala)</td>
<td></td>
</tr>
</tbody>
</table>
INSTRUCTIONS TO AUTHORS: 1993

POLICY AND ORGANIZATION OF THE JOURNAL

General policy

The Biochemical Journal publishes papers in English in all fields of biochemical knowledge. Papers may include new results obtained experimentally, descriptions of new experimental methods of biochemical importance, or new interpretations of existing results. Theoretical contributions will be considered equally with papers dealing with experimental work. All work presented should have as its aim the development of biochemical concepts rather than the mere recording of facts. Preliminary, confirmatory or inconclusive work will not be published. The Biochemical Journal will not publish material that has been wholly or largely published elsewhere, even as a preliminary communication or in unrefereed symposium proceedings; equally, fragmentation of research into the ‘least publishable unit’ is discouraged.

Submission of a paper to the Biochemical Journal implies that it has been approved by all the named authors, that all persons entitled to authorship have been so named, that it reports unpublished work that is not under consideration for publication elsewhere, and that if the paper is accepted for publication the authors will transfer to the Biochemical Society the copyright of the paper, which will then not be published elsewhere in the same form, in any language, without the consent of the Society. Authors will be required to sign an undertaking to these effects.

The following types of paper are included in the journal.

1. Research Papers are the normal form of publication, and may be of any length that is justified by their content. Authors should, however, note that no paper, whatever its scientific merits, will be accepted if it exceeds the minimum length required for precision in describing the experiments and clarity in interpreting them. As a guide, most Research Papers are of between six and eight printed pages. A concise well-written paper tends to be published more quickly.

2. Research Communications are short (maximum four printed pages) papers bringing particularly novel and significant findings to the attention of the research community. It is intended that a decision on acceptance or rejection will be made within 2 weeks of receipt, and publication of accepted Communications will follow within 2 months. Research Communications receive full but accelerated reviewing and the criteria of “novelty and significance” are strictly enforced; Communications are not a path to accelerated publication of sound but non-urgent material. Authors must include in their letter of submission a brief statement of why they believe their Communication merits accelerated treatment.

3. BJ Letters are brief (two printed pages or less) items of scientific correspondence intended to provide an opportunity to discuss or expand particular points made in published work, to comment on or criticize work previously published in the Biochemical Journal, or to present a new hypothesis. They should not contain extensive new data (which would best be placed in a regular paper) and are not a vehicle for publication of preliminary results. If a letter is polemical in nature, a reply may be solicited from other interested parties.

4. Reviews will usually be solicited, although unsolicited reviews will be considered for publication. Prospective writers of reviews should first consult the Reviews Editor, via the editorial office, and should enclose a short (one typed page) summary of the area they propose to cover.

The interpretation of this policy is in the hands of the Editorial Board, who judge whether each paper submitted is acceptable in terms of science and presentation.

Editorial office

The editorial office, which is part of Portland Press, the publishing division of the Biochemical Society, is administered by the Managing Editor. He is concerned with all aspects of the processing, subediting and printing of the Biochemical Journal. The Managing Editor is responsible to the Chairman of the Editorial Board, who, on behalf of the Editorial Board, takes responsibility for the journal’s content. All correspondence concerning publication of the Biochemical Journal should be directed to the Managing Editor at the journal’s London address given on p. 3.

The Editorial Board and the Editorial Advisory Panel

Members of the Editorial Board, which is international, are appointed by the Executive Committee of the Biochemical Society on the recommendation of the Editorial Board. The composition of the Board is such that there is a wide range of expert opinion covering most areas of biochemical research.

The Editors are supported by an international panel of some 400 Editorial Advisers. These are independent reviewers, who are expert each in their own specific field of biochemistry, and who review up to ten papers a year for the journal. The close association of the Advisers with the journal means that a high standard of reviewing can be maintained.

Editors normally serve for a period of 5 years, although this may be extended for a further 2 years in some cases. The composition of the Advisory Panel is reviewed each year. The names of the members of the Editorial Board are published in each issue of the journal; those of the members of the Advisory Panel also appear from time to time.

Authors may suggest potential reviewers for their paper in the letter of submission, but the journal will usually regard such suggestions as a guide only and is under no obligation to follow them. Authors may also specify the names of those they wish to be excluded from the review process for a particular paper, and in such cases their wishes are usually respected, unless, of course, in the opinion of the journal such a request unreasonably excludes all the expertise available to it in that scientific area.

Handling of papers

Copies of submitted papers are sent simultaneously to a selected Adviser (or, rarely, to another independent reviewer) and to a relevant Editor. The Adviser (or other reviewer) assesses the paper and sends a report to the Editor by a date stipulated by the editorial office. The Editor will, in the meantime, have reached an independent judgement and, on receipt of the report, compiles a combined editorial report based on both opinions. In some cases, Editors will seek further advice from other scientists, and the report then reflects the views of all consulted. If the Editor and Adviser disagree, even after direct discussion, a second Editor is asked for an opinion and, if need be, a further
Adviser. This will also be done not infrequently when review of a paper demands expertise in more than one field of biochemistry. All papers are therefore seen by at least two independent scientists, and often by more. The time taken for review is monitored by the editorial office, so that the policy of the journal to give authors rapid decisions is sustained.

When a paper is judged to have scientific merit and thus to be basically acceptable, the editorial office sends an appropriate letter to the authors together with an editorial report containing comments for the authors' consideration. After revision by the author the paper is checked by an Editor before being finally prepared for press by the subeditors. After typesetting, proofs are supplied to authors (except for Research Communications and BJ Letters) for correction of printer's errors only. On publication, 50 free reprints are supplied per paper; more may be purchased at modest cost.

If a paper is to be declined, the reports and correspondence are seen by the Chairman or one of the Deputy Chairmen, who then writes an explanatory letter to the authors. Papers may be declined for several reasons. They may, in the opinion of the reviewers, be unsatisfactory scientifically in that the methodology is open to criticism or that the conclusions are not sufficiently supported by the evidence presented. They may contain material that is, in principle, of interest but which is not clearly expounded; many papers suffer from being overlong with the result that the salient points are not as clear to the reader(s) as to the author(s). They may be sound but only of peripheral biochemical interest and thus of more relevance to another discipline. Finally, and often most contentiously, they may represent an insufficient advance in knowledge. It cannot be overemphasized that, because of pressure for space in the journal, scientific soundness alone is not sufficient reason for publication of a paper: it must represent a definite and significant contribution to the field of study. Thus, in general, preliminary or confirmatory papers, or those reporting the existence of well-known biochemical processes in sources not previously studied, will not be accepted.

The Chairman's, or Deputy Chairman's, letter will set out the reasons why a paper is declined and will indicate whether this decision is a final one or whether suitable revision might improve the paper sufficiently for it to be reconsidered. In this latter instance, encouragement for resubmission does not imply that a revised version will necessarily be accepted. In all cases the decision of the Chairman of the Editorial Board will be final.

If a paper that is returned to the authors for amendment, for whatever reason, is not resubmitted within 3 months (1 month for Research Communications) it will be treated as a new paper and the date of receipt will be altered to the date of resubmission.

It is accepted that the reviewers may from time to time come to decisions that are not easily accepted by authors. This may be because of a conflict of opinion or, for example, and as frequently happens, because the authors' point is felt by the reviewers to be obscured by the presentation. The journal is always willing to hear from authors and to consider their views sympathetically. In rare cases, and if the reviewers and the Chairman agree, the usual anonymity of the reviewers may be set aside to allow discussion between all parties concerned.

SUBMISSION OF PAPERS

General requirements

The main way in which authors can contribute to shortening the time between receipt and publication of a paper is to follow the requirements and suggestions in these Instructions to authors, and to write in a concise style, although sufficient information must always be included to permit repetition of the experimental work and to support the conclusions that are drawn. Papers containing prolix or repetitive text or unnecessary figures or tables will always be returned for revision, with consequent delay in publication. Fragmentation of research into the 'least publishable unit' should be avoided, and authors considering the submission of a series of papers on the same topic, which usually involves some degree of repetition, should consider whether journal space could be saved without loss of clarity of presentation by appropriate combination of two or more papers.

The Biochemical Journal publishes papers in all fields of biochemistry; therefore, it is important that papers on specialized subjects should be written in such a way that their approach and conclusions are intelligible to the informed, but non-specialist, reader of the journal.

Format of papers

Before preparing papers, authors should consult a current issue of the journal to make themselves familiar with the general format, such as the use of cross-headings, layout-of tables and citation of references. Typescripts must be in double-spaced typing throughout (including the references and legends of tables and figures) on sheets of uniform size (preferably ISO A4) with wide margins. Pages should be numbered. Typescripts produced on low-quality dot-matrix printers may not be of an acceptable standard, particularly with respect to the superscripts and subscripts often found in scientific work.

The full title should be concise but informative enough for use in coding for information storage and retrieval. Papers should also be headed by the authors' names (preferably with one forename in full for each author, other forenames being given as initials) and by the name and address (including postal code) of the establishment(s) where the work was done. If there is more than one establishment involved in the work, authors' names should be linked to the appropriate establishment by the use of symbols *, †, ‡, §, ¶ and ‖; in that order. A short (page heading) title of up to 75 characters should also be suggested.

Separate papers in a series should not be numbered, but subtitles may be used.

The synopsis should be of less than 250 words (60 words for Communications) and normally only 3-4% of the length of the paper. It should be as informative as possible but should not contain inessential details or material not described in the body of the paper. References quoted in the synopsis should be given in full (names of all authors, year of publication, name of journal, volume number, inclusive pagination). No synopsis is required for Reviews or BJ Letters.

The main body of the paper should be divided into (a) introduction; (b) experimental, including materials and methods; (c) results; (d) discussion; (e) acknowledgements, including details of financial support; (f) references. It is often an advantage to combine (c) and (d) with gains of conciseness and clarity. The discussion section should not recapitulate the results, but only discuss their implications.

Authors may find it helpful to know that a full page of text in the Biochemical Journal contains approximately 1200 words. When calculating the printed length of papers, allowance must be made for the space taken up by insertions such as figures, tables and schemes, and this is best assessed by inspection of similar insertions in a recent copy of the journal. A quick method of estimating the printed length of typescripts is to add the number of pages (including references, but not figure or table
legends) to the number of figures and tables and divide the total by 4. This assumes double-spaced typing on A4 paper with normal margins.

Research Communications

Research Communications should be arranged in the usual style for a Biochemical Journal paper (synopsis, introduction, methods, results and discussion, with sufficient experimental detail to permit repetition of the work) and should not be longer than four printed pages of the journal (about 4000 words (24000 characters) of uninterrupted text, including references, but this number should be decreased to allow for the space taken up by figures and tables). Research Communications may be submitted by fax (unless they contain half-tone figures); in any case, provision of a fax number in the covering letter will enable the decision and any queries to be communicated to authors as quickly as possible.

Procedure for submission

Three copies (four copies for Research Communications) of the typescript should be submitted, together with a brief covering letter. The first page of the typescript should bear the name, address, telephone number and, if possible, fax (telecopier) number of the person to whom correspondence (including proofs) should be sent. An additional copy of the synopsis should be enclosed to facilitate selection of reviewers. The top copy, clearly marked as such and typed on one side of the paper only, should be accompanied by the original artwork (see p. 10 for advice on the preparation of figures). Photocopies of line drawings are acceptable for the other copies, which may be typed on both sides of the paper, but glossy prints (not photocopies) of all the half-tone figures must be provided. To allow the reviewers to assess possible overlap with previous work, all papers must be accompanied by duplicate copies of the author's relevant published work and of all related papers that are in press or under editorial consideration in this or other journals. Failure to do so may lead to delay in the evaluation of the paper.

Authors should state under which section in the contents list their papers should appear:

- Proteins
- Enzymes
- Carbohydrates and lipids
- Gene structure and expression
- Regulation of metabolism
- Membranes and bioenergetics
- Receptors and signal transduction
- Cell biology and development

Submissions by facsimile

To accelerate handling of Communications and Letters, particularly from outside the U.K., they may be submitted by fax (telecopier) and acknowledgement of receipt and the review decision will then be transmitted to authors by fax. The criteria for submission in this way are: (i) that the paper meets the length requirement for a Communication or Letter, (ii) that the whole submission (covering letter, double-spaced text, tables and figures and their legends, and any supporting material) should not exceed 20 pages of A4 paper, and (iii) that, because of the technical limitations of fax transmission and the requirement (see above) that original prints of half-tone illustrations should be provided for the reviewers, the paper does not contain such half-tones. Original artwork of papers submitted in this way should be retained by authors until they receive acknowledgement of receipt; it should then be sent to the editorial office by post or courier, quoting the manuscript reference number, together with a further copy of the typescript (required for the printer if the paper is accepted). If a fax-submitted paper is rejected, a copy of the decision letter and the artwork will be returned to the authors by post. Authors submitting by fax need transmit only one copy of their paper; they should also be sure to include a fax response number in their covering letter.

Submission of articles on computer diskettes

Authors who have prepared their typescripts on word processors may include a diskette containing the final version of the text with their submission; this should be in addition to, not as a replacement for, the required number of copies. Every effort will be made to use the diskette during typesetting, but this cannot be guaranteed. Authors wishing to submit their text in this way should contact the editorial office for advice before preparation of the article. Submission of the final version of an article on diskette will become mandatory during 1994.

Submission checklist

☐ Covering letter
☐ Master copy of typescript, double spaced on one side of the paper, containing:
- complete text in appropriate style, pages numbered
- names (including forenames) and addresses of authors
- name, address, telephone and fax numbers of corresponding author
- synopsis
- short (page heading) title
- abbreviations footnote
- acknowledgements
- checked references
- tables, with titles and legends
- figure legends, with titles
- original artwork
- copies of artwork, with lettering indicated

☐ Two (three for Research Communications) further complete copies of the typescript, with glossy prints of all half-tone figures. These copies may be double-sided.

☐ Additional copy of the synopsis
☐ Proposed section for Table of Contents
☐ Duplicate copies of relevant published work and all related papers in press or under editorial consideration
☐ Evidence of approval of personal communications
☐ Evidence of submission of nucleic acid sequences to an appropriate data bank

Addresses for correspondence

- All submissions, correspondence about papers, proofs and requests for permission to reproduce material should be addressed to:

 The Managing Editor
 Biochemical Journal
 59 Portland Place
 London W1N 3AJ
 U.K.
 telephone (U.K.) 071-637 5873
 (from overseas) +4471 637 5873
 fax (U.K.) 071-323 1136
 (from overseas) +4471 323 1136
NOMENCLATURE, STYLE AND CONVENTIONS

Abbreviations and symbols

Amino acids 4
Nucleosides, nucleotides and polynucleotides 5
Sugars 6
(Poly)phosphoinositides and their hydrolysis products 6
Animals 7
Biochemical nomenclature 7
Centrifugation 7
Density-gradient centrifugation 7
Ultracentrifuge data 7
Chemical nomenclature 7
Formulae 7
Ions 7
Naming compounds 7
Optically active isomers 7
Prefixes 7
Chromatography 7
Computer programs 8
Deposition of data 9
Electrophoresis 9
English style 9
Enzymes 9
Enzyme nomenclature 9
Enzyme units 9
Kinetic constants 9
Ethics 9
Animal experimentation 9
Human experimentation 9
Scientific publication 9
Experimental hazards 9
Footnotes 10
‘Homology’ 10
Illustrations 10
Titles and legends 10
Line diagrams 10
Bar diagrams 10
Sequence diagrams 10
Half-tone illustrations 10
Colour plates 10

Isotopes 10
Units of measurement 10
Isotopically labelled compounds 10
Isotopically substituted compounds 11
Micro-organisms 11
Molecular mass and the dalton 11
Nucleotide sequences 11
Physical quantities and units 11
Plants 12
Powers in tables and figures 12
Prefixes for multiples and submultiples of units 12
References 12
Harvard system 12
Numbering system 13
Both systems 13
Solutions 13
Description 13
Buffers 13
Spectra and spectroscopic data 13
Circular dichroism 13
Electron spin (paramagnetic) resonance 13
Fluorescence spectroscopy 14
Infrared spectroscopy 14
Mass spectrometry 14
Mössbauer spectroscopy 14
Nuclear magnetic resonance 14
Optical rotation 14
Visible and ultraviolet absorption spectroscopy 14
Statistical treatment of results 14
Tables 14
Unique biological materials 14
X-ray crystallography 15

Abbreviations and symbols

The abbreviations listed in Table 1 are ‘accepted’, may be used without definition, and may be used in the title or the page-heading title. Other abbreviations, the use of which should be kept to a minimum compatible with clarity and conciseness, should not be used in the title or page-heading title and should be defined together in a footnote on the title page. In devising such abbreviations and symbols, the recommendations of the Nomenclature Committee of IUBMB and the IUPAC–IUBMB Joint Commission on Biochemical Nomenclature should be followed as far as practicable. The sections following summarize a number of these recommendations; all of the symbols listed may be used without definition.

Amino acids

The full residue names or the three-letter symbols are preferred to the one-letter symbols in the text (e.g. a phenylalanine residue at position 231 should be symbolized Phe-231 or Phe83 rather than F231). Either system may be used in sequences.

Alanine Ala A
Arginine Arg R
Asparagine Asn N
Aspartic acid Asp D
Aspartic acid or asparagine (undefined) Asx B
Cysteine Cys C
Cystine (half) Cys or Cys —
Glutamine Gln Q
Glutamic acid Glu E
Glutamic acid or glutamine (undefined) Glx Z
Glycine Gly G
Histidine His H
Hydroxylysine Hyl —
Hydroxyproline Hyp —
Isoleucine Ile I
Leucine Leu L
Lysine Lys K
Methionine Met M
Ornithine Orn —
Phenylalanine Phe F
Proline Pro P
Serine Ser S
Threonine Thr T
Tryptophan Trp W
Tyrosine Tyr Y
Unknown or ‘other’ Xaa X
Valine Val V

In polymers or sequences the three-letter symbols should be joined by hyphens if the sequence is known, or by commas if it is not; e.g.:

Gly-Ile-Gly-Phe(Gly,Tyr,Val,Ser)Leu-Val-Ala

represents an undecapeptide composed of four amino acids whose sequence has been established, four of which is unknown and then three in known sequence. The glycine on the left carries the free amino group and the alanine on the right the free carboxyl group. The prefix poly or the suffix subscript n may accompany these symbols to indicate polymers [see Biochem. J. (1972) 127, 753–756].

Special considerations apply to the spacing and punctuation of the one-letter symbols [see Biochem. J. (1984) 219, 366–368].

Nucleosides, nucleotides and polynucleotides

The symbols for ribonucleosides are as follows (the prefix r should be used if there is possible ambiguity):

A Adenosine C Cytidine
G Guanosine T Ribosylthymine
I Inosine U Uridine
X Xanthosine Ψ 5-Ribosyluracil (pseudouridine)

The 2'-deoxyribonucleosides are designated by the same symbols preceded by d, e.g.:

dA 2'-Deoxyribosyladenine
dT 2'-Deoxyribosylthymine (thymidine)

The letter p (for terminal phosphate only) or a hyphen (for phosphodiester group only) to the left of a nucleoside symbol indicates a 5'-phosphate; to the right it indicates a 3'-phosphate, e.g.:

pA-G 5'-Phosphoadenylyl(3'-5')-guanosine or guanylyl(5'-3')-adenosine 5'-phosphate
A-Gp Adenylyl(3'-5')guanosine 3'-phosphate
d(A-T) Deoxyadenylyl(3'-5')thymidine
A-G-cyclic-p Adenylyl(3'-5')guanosine 2',3'-phosphate
or A-G > p

Table 1 Abbreviations for systematic or semi-systematic names, or for methods

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADP (CDP, GDP, IDP)</td>
<td>adenosine 5'-diphosphate (and similarly for cytidine, guanosine, inosine, uridine, xanthosine, thymidine)</td>
</tr>
<tr>
<td>AMP etc.</td>
<td>adenosine 5'-phosphate etc.</td>
</tr>
<tr>
<td>ATP etc.</td>
<td>adenosine 5'-triphosphate etc.</td>
</tr>
<tr>
<td>ATPase etc.</td>
<td>adenosine 5'-triphosphatase etc.</td>
</tr>
<tr>
<td>Bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>c.d.</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CHAPS</td>
<td>3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid</td>
</tr>
<tr>
<td>CM-cellulose</td>
<td>carboxymethylcellulose</td>
</tr>
<tr>
<td>CoA and acyl-CoA</td>
<td>coenzyme A and its acyl derivatives</td>
</tr>
<tr>
<td>cyclic AMP etc.</td>
<td>adenosine 3',5'-phosphate etc.</td>
</tr>
<tr>
<td>darsyl</td>
<td>5-dimethylaminonaphthalene-1-sulphonyl</td>
</tr>
<tr>
<td>DEAE-cellulose</td>
<td>diethylaminoethylcellulose</td>
</tr>
<tr>
<td>DNA, cDNA</td>
<td>deoxyribonucleic acid, complementary DNA</td>
</tr>
<tr>
<td>DNAse</td>
<td>deoxyribonuclease</td>
</tr>
<tr>
<td>EC50</td>
<td>concentration giving half-maximal response</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra-acetate</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetra-acetate</td>
</tr>
<tr>
<td>e.p.r., e.s.r.</td>
<td>electron paramagnetic or spin resonance</td>
</tr>
<tr>
<td>e.x.a.s.</td>
<td>extended X-ray absorption fine structure</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin-adenine dinucleotide</td>
</tr>
<tr>
<td>FMN</td>
<td>flavin mononucleotide</td>
</tr>
<tr>
<td>f.p.l.c.</td>
<td>fast protein liquid chromatography</td>
</tr>
<tr>
<td>g.l.c.</td>
<td>gas-liquid chromatography</td>
</tr>
<tr>
<td>G-protein</td>
<td>guanine-nucleotide-binding regulatory protein</td>
</tr>
<tr>
<td>GSH, GSGG</td>
<td>reduced and oxidized glutathione</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>h.p.l.c.</td>
<td>high performance liquid chromatography</td>
</tr>
<tr>
<td>ICP</td>
<td>concentration giving half-maximal inhibition</td>
</tr>
<tr>
<td>IgG etc.</td>
<td>immunoglobulin G etc.</td>
</tr>
<tr>
<td>i.r.</td>
<td>infrared</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>m.s.</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>NAD*, NADH</td>
<td>oxidized and reduced nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>NADP*, NADPH</td>
<td>oxidized and reduced nicotinamide adenine dinucleotide</td>
</tr>
<tr>
<td>n.m.r.</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>nt</td>
<td>nucleotide(s)</td>
</tr>
<tr>
<td>o.r.d.</td>
<td>optical rotary dispersion</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate-buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>P, Pp</td>
<td>phosphatase, pyrophosphatase</td>
</tr>
<tr>
<td>RNA, mRNA, rRNA, tRNA, ribonucleic acid, messenger RNA, nuclear RNA, ribosomal RNA</td>
<td>transfer RNA</td>
</tr>
<tr>
<td>RNAse</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>t.l.c.</td>
<td>thin-layer chromatography</td>
</tr>
<tr>
<td>u.v.</td>
<td>ultraviolet</td>
</tr>
</tbody>
</table>

Other points of attachment may be indicated by numerals, e.g.:

A2'-5'G2'p | Adenylyl(2'-5')guaanosine 2'-phosphate |
A-G-(mixed) | A mixture of A-Gp and A-G2'p |
2',3'-p | In sequences, oligonucleotides or polynucleotides the phosphate between nucleoside symbols is shown by a hyphen if the sequence is known, or by a comma if it is not, e.g. |
G-A-U(C4H2)U|Gp | indicates a heptanucleotide composed of three nucleotides of known sequence but with a trinucleotide of unknown sequence before the final Gp. The hyphens may be omitted. |
For sequences that are repetitive or obscure, shorter forms may be used [see Biochem. J. (1972) 127, 753–756], e.g.:

- poly(A) — a simple homopolymer of A
- poly(A),C
- poly(dA-T) or poly(dA-dT)
- poly(A,G,C,U)

The prefix co-poly or oligo may replace poly, if desired. An alternative form is, e.g., An for poly(A), where the subscript n may be replaced by numerals indicating actual size. Similarly, d(A-T)n, etc. may be used for poly(dA-dT) etc. It should be noted that no space follows the prefix 'poly'.

Associated (e.g. hydrogen-bonded) chains, or bases within chains, are indicated by a centre dot (not a hyphen or a plus sign) separating the complete names or symbols; non-associated chains are separated by a plus sign, and unspecified or unknown association by a comma; e.g.:

- poly(A)·poly(U)
- poly(G)-2poly(C) or G2C
- poly(dA-dC)·poly-(dG-dT) or (dA-dC)n·(dG-dT)n
- poly(A)+poly(U)
- poly(A),poly(U)

The abbreviations kb (kilobases), nt (nucleotide) and bp (base pair) may be used in discussions of nucleic acid sequences.

The use of a single symbol to designate a variety of possible nucleotides at a single position has become widespread over the past few years. The following set of symbols, applicable to both DNA and RNA, has been recommended. These symbols do not discriminate between DNA and RNA, and the symbol T is used at all positions where U might appear in the RNA. Sequences may be assumed to have a deoxyribose phosphate (DNA) backbone unless otherwise specified; in circumstances where confusion between DNA and RNA is possible the sequence may be prefixed with the lower-case letter d or r.

G guanine
A adenine
T thymine
C cytosine
R G or A
Y T or C
M A or C
K G or T

S G or C
H A or C or T
B G or T or C
V G or C or A
D G or A or T
N G or A or T or C

Sugars

These symbols are for use only in representing polymers or sequences and in tables and figures:

<table>
<thead>
<tr>
<th>Sugar</th>
<th>Symbol</th>
<th>Linkage</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ara</td>
<td>Arabinose</td>
<td>Glc</td>
<td>Glucose</td>
</tr>
<tr>
<td>dRib</td>
<td>2-Deoxyribose</td>
<td>Man</td>
<td>Mannose</td>
</tr>
<tr>
<td>Fru</td>
<td>Fructose</td>
<td>Neu</td>
<td>Neuraminic acid</td>
</tr>
<tr>
<td>Fuc</td>
<td>Fucose</td>
<td>Rib</td>
<td>Ribose</td>
</tr>
<tr>
<td>Gal</td>
<td>Galactose</td>
<td>Xyl</td>
<td>Xylose</td>
</tr>
</tbody>
</table>

When it is necessary to indicate furanose or pyranose, the letter f or p after the saccharide symbol may be used: e.g. Ribf for ribofuranose.

The following suffixes may be used, also without definition, to indicate derivatives:

- A for uronic acid (e.g. GlcA for glucuronic acid, GalA for galacturonic acid)
- N and NAc for 2-amino-2-deoxysaccharides and their N-acetyl derivatives (e.g. GlcN for glucosamine and GalNAc for N-acetylgalactosamine)

NeuAc or AcNeu suffices for N-acetylneuraminic acid.

Two systems (the extended or the condensed) exist for the representation of oligosaccharide chains. Either may be used.

In the extended system the configurational symbol (α or β) is included before the symbol for the monosaccharide, and is separated therefrom by a hyphen. The anomic symbol (α or β) is included before the configurational symbol and separated therefrom by a hyphen. Between the symbol (abbreviated name) of one monosaccharide group or residue and the next are placed two locants that indicate the respective positions involved in this glycosidic union. These locants are separated by an arrow (directed from the locant corresponding to the glycosyl carbon atom to the locant corresponding to the carbon atom carrying the hydroxyl group involved) and are enclosed in parentheses. The position of a branch is indicated above or below the main chain, with the numerals and an arrow indicating the glycosidic linkage:

\[
\alpha-D-Glc-(1 \rightarrow 4)-\alpha-D-Glc-(1 \rightarrow 4)-D-Manp
\]

The hyphens, except that separating the configurational symbol and the symbol for the monosaccharide, may be omitted.

In the condensed system the common configuration and ring size are implied in the symbol. Thus, Glc means D-glucopyranose; Fru, D-fructofuranose; and Fuc, L-fucopyranose. Whenever the configuration or ring size is found to differ from the common one, or is to be emphasized, this may be indicated by using the appropriate symbols from the extended system. The anomic descriptor indicates the configuration of the glycoside linkage, and is therefore placed before the locant if the direction of the bond is to the right, or after the locant if the direction of the bond is to the left. The two locants are separated by a hyphen. No hyphens are used between the symbol for the sugar and the parentheses indicating the glycosidic bond; such parentheses may be omitted in representing branched oligosaccharides, when parentheses are used to indicate the branches:

- Glcα1-4(Fucβ1-2)Glcβ1-4Man

The condensed form may be shortened further by (i) omitting locants of anomic carbon atoms, (ii) omitting the parentheses around the specifications of linkage, and (iii) omitting hyphens if desired:

- Glcα4(Fucβ2)Glcβ4Man

(Poly)phosphatidylinositides and their hydrolysis products

The following, and their various combinations with appropriate locants, need not be defined:

- Ptd phosphatidyl
- Ins 1D-myoinositol
- P phosphate
Multiple locants should be placed in parentheses, e.g. Ptd-Ins(4,5)P₂ symbolizes phosphatidylinositol 4,5-bisphosphate and Ins(1,4,5)P₃ symbolizes myo-inositol 1,4,5-trisphosphate (but note Ins₄P etc. for the monophosphate).

The alternative ('Chilton') forms (e.g. PIP₂ and IP₃) may be used if defined; one or the other form should be used consistently throughout a paper.

Animals

The full binominal Latin names should be included for all experimental animals other than common laboratory animals. The strain, and if possible the source, of laboratory animals should be stated. The source, and if possible the composition, of the diet of laboratory animals should be specified; this is particularly important in papers reporting the effects of dietary manipulation.

Biochemical nomenclature

As far as possible authors should follow the recommendations of the Nomenclature Committee of IUBMB and the IUPAC-IUBMB Joint Commission on Biochemical Nomenclature. These recommendations are listed, with references, in Table 2. The full text of the recommendations may also be found in the compendium Biochemical Nomenclature and Related Documents (second edition, 1992, ISBN 1 85578 005 4, Portland Press, London). Comments on the recommendations should be sent to the secretary of the Nomenclature Committee of IUBMB (Dr A. J. Barrett, Strangways Research Laboratory, Worts Causeway, Cambridge CB1 4RN, U.K.).

Centrifugation

When conditions for centrifuging are critical, sufficient information should be given for the procedure to be repeated. The quantitative composition of the suspension medium should be stated. The centrifuge rotor should be unambiguously identified and the temperature of operation stated.

The time of operation of the rotor at sustained plateau speed (ignoring initial rotor acceleration and deceleration periods) should be stated. The centrifugal field should be stated in multiples of g (9.81 m s⁻²), based on the average radius of rotation of the liquid. For example: 'The rotor was operated for 15 min at 2 °C and 10000 g (rₑ₂₅, 8 cm)'.

Density-gradient centrifugation

The make of centrifuge and rotor used, the temperature of the run and the composition of the gradients should be stated. Results should preferably be plotted against distance from rotor centre rather than against fraction numbers; it is then unnecessary to indicate top and bottom of the gradient. If fraction numbers are used, the top and bottom of the gradient should be indicated.

Ultracentrifuge data

Sedimentation coefficient (not constant), s; sedimentation coefficient corrected at 20 °C in water, sₑ₂₅,ₑ₂₅; sedimentation coefficient at zero concentration, s₀, sₑ₀,ₑ₀; Svedberg unit (10⁻¹³ s); S; partial specific volume, ν; diffusion coefficient, D, Dₛ, Dₑₑₑₑ etc. as for sedimentation coefficient. The temperature at which the sedimentation and diffusion measurements are made should be stated.

Chemical nomenclature

The IUPAC recommendations on chemical nomenclature should be followed; see IUPAC's Compendium of Chemical Terminology (1987, ISBN 0 632 01767 8, Blackwell Scientific Publications, Oxford) and source documents listed therein.

Formulae

Chemical symbols may be used for elements, groups and simple compounds, but authors are advised that the excessive use of chemical symbols may reduce the readability of a paper.

R, R', R'' (or R₁, R₂, R₃ if more than three) should be used to denote variable substituents in formulae.

C₁₀₉₈ acid is used to denote an acid containing 20 carbon atoms and C₃ or C₉ to denote the carbon number 3. C₁₈₊₋ C₁₈₋₁ etc. are used similarly to denote the number of double bonds in an unsaturated fatty acid.

Ions

These should be represented thus: Na⁺, Zn²⁺, Cl⁻, PO₄³⁻.

Naming compounds

All chemical names are run together except for those of acids, acetals, esters, ethers, glycosides, ketones and salts, which are printed as separate words; hyphens are used to separate numbers, Greek letters or some configurational and italic prefixes from words, e.g. m-dinitrobenzene, ββ-dimethyl-α-cysteine, 2-p-isopropylphenylheptane, ethyl methyl ketone (butan-2-one).

Optically active isomers

Names of chiral compounds whose absolute configuration is known may be differentiated by the prefixes R- and S- [see Pure Appl. Chem. (1976) 45, 11–30]. When the compounds can be correlated stereically with glyceraldehyde, serine or other standard accepted for a specialized class of compound, small capital letters D-, L- and D,L- may be used for chiral compounds and their racemates. Where the direction of optical rotation is all that can be specified, (+), (−) and (±), or dextro, laevo and 'optically inactive', are used.

Prefixes

Italics are used for certain prefixes, e.g. cis-, trans-, α-, m-, p-, dextro, laevo, meso, and also for O-, N- etc. to indicate an element carrying a substituent, e.g. Nα-acetylsulphanilamide. Italics are not used for alio, bis, cyclo, epi, iso, neo, or tris.

An alphabetical order will be followed for prefixes denoting substituents. Syllables indicating multiple substituents, e.g. di-, tri-, do not count in deciding the order.

Chromatography

The rate of movement of a substance relative to the solvent front in paper or thin-layer chromatography is best expressed as its Rₑ value, or, if relative to a reference compound, by its Rₑₑₑₑ value. Solvents should be described in the form butan-1-ol/acetic acid/water (4:4:1, by vol.) or butan-1-ol/acetic acid (4:1, v/v).

Elution diagrams for chromatographic columns should be shown with the effluent volume increasing from left to right. Units of concentration and volume must be shown clearly. Column (i.e. bed) dimensions should always be quoted, and where possible column void volumes (Vₑ) should be given.
Elution zone maxima may be characterized by elution volumes (V_e) or preferably by partition coefficients (a or K_p). The course of any eluent gradients used should be indicated clearly. Column calibration curves (e.g. plots of molecular mass against V_e or K_p) will not be published.

Computer programs

If the use of a computer program forms a significant and essential part of the work described in a paper, the program must be adequately documented, if not in the paper itself, then by
The recommendations of concise and medium, phoretic of EC should be followed (Diego). Also procedures. Requesters registered in the list of such deposited programs.

Deposition of data
Information (computer programs, evidence for amino acid sequences, spectra, etc.) supplementing papers in the Biochemical Journal may be deposited free of charge with the British Library Document Supply Centre (DSC), Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., where it will be stored in its original form. The supplementary material must in the first instance be sent to the journal with the parent paper, and not direct to the DSC. It may be subject to editing in the normal manner before being accepted for deposition and the authors will then be responsible for preparing camera-ready copy.

A memorandum on the preparation of material for data deposition is available from the Biochemical Journal editorial office on request.

Copies of supplementary publications may be obtained from the DSC. Requesters must quote the relevant supplementary publication number (e.g. SUP 12345) given in the paper in question. Registered DSC customers should use their normal request procedures. To others, supplementary publications will be available on a pro forma invoice basis. For details contact Customer Services (telephone 0937-546060/facsimile 0937-546333) at the address above.

Electrophoresis
Electrophoretic mobilities (m) and the composition of the electrophoretic medium, pH and temperature should be quoted. The operative voltage should be specified where possible. The symbol pI should be used for isoelectric point.

English style
The Biochemical Journal uses as a standard for spelling the Concise Oxford Dictionary of Current English (Clarendon Press, Oxford). For the technique of writing, authors may find it helpful also to consult The Complete Plain Words, by Sir Ernest Gowers (H.M.S.O. and Penguin Books, London). Authors are encouraged to employ their own style, although papers must be concise and should conform to normal English usage.

Enzymes
Enzyme nomenclature
The recommendations of the latest edition of Enzyme Nomenclature (1992, ISBN 0 12 227 165 3, Academic Press, San Diego) should be followed as far as possible. This includes the quoting of EC numbers.

Enzyme units
Units of the amount of enzyme should be defined in each paper, and this may be done in terms of the rate of reaction catalysed under conditions specified. The SI unit for the rate is 1 mol of substrate transformed/s (or, if necessary, 1 mol of measured product formed/s), and this gives the unit of the amount of enzyme that has been given the name of katal (symbol: kat). Units of the amount of enzyme may, however, be expressed in terms of the amount that can catalyse other rates, e.g. 1 μmol of substrate transformed/min.

Kinetic constants
Velocity constants for the forward and the backward reactions in the nth step of an enzymic reaction should be represented by k_{cat}^n and k_{cat}^{-n} respectively. The Michaelis constant is defined as $K_m = [S]$ when $v = V/2$, where v is the velocity of appearance of product or disappearance of substrate at a given substrate concentration [S] and V (or V_{max}) is the velocity when the enzyme is saturated with the substrate. When reactions with two substrates A and B are being considered $K_m^A = [A]$ when $v = V/2$ and $[B]$ has been extrapolated to infinity; a value for $[A]$ when $v = V/2$ a finite concentration (which must be specified) of B should be referred to as apparent K_m^A for A. K_m is the equilibrium constant of the dissociation of the substrate–enzyme complex. Catalytic-centre activity (not 'turnover number') is defined as the number of molecules of substrate transformed/s per catalytic centre.

Ethics
Animal experimentation
Experiments with animals should be performed in accordance with the legal requirements of the relevant local or national authority. Procedures should be such that experimental animals do not suffer unnecessarily. The text of papers should include experimental details of the procedures and of anaesthetics used. The Editorial Board will not accept papers where the ethical aspects are, in the Board’s opinion, open to doubt.

Information and advice about experiments involving animals are to be found in Guidelines on the Use of Living Animals in Scientific Investigations (1984), ISBN 0 9500213 1 8, obtainable from The Biological Council, c/o Institute of Biology, 20 Queensberry Place, London SW7 2DZ, U.K., price £1.50, post free.

Human experimentation
The Editorial Board agrees with the recommendations in the Report of the Medical Research Council for 1962–63 [Br. Med. J. (1964) ii, 178–180]. Authors should ensure that their work complies with these recommendations. A paper describing any experimental work with humans should include a statement that the Ethical Committee of the Institution in which the work was performed has approved it, and should state that the subjects have given informed consent to the work.

Scientific publication
Authors may like to refer to the 'Ethical Guidelines to Publication of Chemical Research’ formulated by the American Chemical Society [see Biochemistry (1986) 25, 9A–10A].

Experimental hazards
Authors should draw attention to any particular chemical or biological hazards that may be involved in carrying out the experiments described. It may be appropriate to describe relevant safety precautions taken for any hazard, or to include a statement that an accepted code of practice has been followed. In the latter case a reference to the relevant standards should be given.
Footnotes
These should be avoided, except in tables and in footnotes to the title page concerning abbreviations, the address for reprint requests, an author’s current address or a sequence database accession number (in that order). Reference is made by the symbols * † ‡ § ¶, in that order.

‘Homology’
The term ‘homologous’ has a precise meaning in biology of ‘having a common evolutionary origin’, but it has recently often been used in work on protein and nucleic acid sequences to mean simply ‘similar’. A group of experts has urged that the interests of clarity are best served by restricting use to the more precise definition [Reecck, G. R. et al. (1987) Cell 40, 667; Lewin, R. (1987) Science 237, 1570]. The Biochemical Journal agrees with these arguments and aims to preserve the distinction between ‘homologous’ and ‘similar’ in its pages.

Illustrations
Each illustration should be on a separate sheet and packed flat; each should bear the author’s name, the title (abbreviated if necessary) of the paper and the figure number on the back. Its approximate position should be indicated in the margin of the typescript. Illustrations constitute an expensive item of publication; their number should be kept to a minimum.

Titles and legends
Each illustration should be supplied with an informative title and an explanatory legend, starting on a new line and typed double-spaced. The title and legend should make the general meaning comprehensible without reference to the text. Conditions specific to a particular experiment should be stated. Reference to the text for general experimental details is permissible provided there is no ambiguity. All figure legends should be grouped in a section at the end of the text.

Line diagrams
Artwork should be supplied in a form (apart from lettering, which can be in ink or pencil) that can be reproduced directly by the printer. It is therefore essential for authors to adhere to the following instructions with regard to the preparation of line drawings for figures; otherwise their illustrations will have to be returned to them, with consequent delay.

Diagrams should be in black on white paper or card; if graph paper is used it must have pale blue guide lines. A line thickness obtained with a 0.4 mm Rotring pen (or equivalent) is desirable. All curves, lines and symbols should be drawn clearly, and of a line thickness and size that allows for a 40–50 % reduction in size on final printing. Axes should not extend appreciably beyond the curves, and it is often unnecessary for an axis scale to start at 0; only the part of the scale relevant to the curves should be given.

The preferred symbols for experimental points are O, □, △, ■, ▲. The same symbols must not be used on two curves where the points might be confused; subject to that limitation, however, the same symbols should, if possible, be used for the same entities throughout a paper. Individual curves may also be distinguished by distinctive line forms (e.g. ——— and ———-) or by single-letter labels or by brief explanatory labels (see below).

Illustrations for reproduction are reduced photographically and their width should not exceed 17 cm (for illustrations intended to be single-column width) or 35 cm (for illustrations intended to be double-column width). A margin of at least 3 cm is essential.

Final lettering on figures will be done by the printer. It is therefore sufficient for authors to insert clear guide lettering on a photocopy of the figure.

Authors are encouraged to use brief explanatory labels within a figure if it is thereby more readily understood and if the labels can be inserted without requiring a larger figure. The final lettering of such labels will, again, be done by the printer.

Bar diagrams
Simple bar diagrams recording only a few values will not be published. The information can be given more concisely as a table or as a sentence or two in the text.

Sequence diagrams
Amino acid and nucleotide sequences are often printed in a form that requires careful vertical alignment. Authors should submit such sequence diagrams in camera-ready form, thereby avoiding the misalignments that can be introduced by typesetting and obviating the need for proof-reading of large arrays of complex information. Such diagrams should be prepared with an electric typewriter or ‘letter-quality’ computer printer; any additional markings should be added carefully in black ink.

Half-tone illustrations
Half-tone illustrations will be reproduced on text paper. Glossy prints are required, and it is helpful if the prints supplied are trimmed to the intended reproduction size (i.e. to fit within the page area). Where the magnification is to be indicated (e.g. on electron micrographs), this should be done by adding a bar representing a stated length.

Colour plates
These are accepted when, in the opinion of the Editorial Board, they are essential to illustrate a particular scientific point. Authors will normally be required to pay the full cost of such plates (approximately £1000 per plate at 1993 prices).

Isotopes
Units of measurement
Where possible radioactivity should be expressed in absolute terms; the SI unit for radioactivity is the becquerel (symbol Bq), defined as 1 disintegration/s, but the curie (symbol Ci; 1 Ci = 3.7 × 1010 Bq) may also be used. Alternatively, radioactivity may be expressed as disintegrations (or counts) per unit of time, e.g. disintegrations/s (d.p.s.) or counts/min (c.p.m.).

Isotopically labelled compounds
The symbol for the isotope introduced is placed in square brackets directly attached to the front of the name (word), as in [14C]urea. When more than one position in a substance is labelled by means of the same isotope and the positions are not indicated (as below), the number of labelled positions is added as a right-hand subscript, as in [14C]glycolic acid. The symbol ‘U’ indicates uniform and ‘G’ general labelling, e.g. [U-14C]glucose (where the [14C] is uniformly distributed among all six positions) and [G-14C]glucose (where the 14C is distributed among all six positions,
but not necessarily uniformly); in the latter case it is often sufficient to write simply \(^{13}C \)glucose.

The isotopic prefix precedes that part of the name to which it refers, as in sodium \(^{13}C \)formate, iodo\(^{13}C \)acetic acid, l-aminol\(^{13}C \)methylocyclopentanol (\(\text{H}_2\text{N} \text{--} ^{14}\text{C} \text{H}_1 \text{--} \text{C}_6\text{H}_5 \text{--} \text{OH} \)), \(^{12}\text{C} \)napthyl\(^{13}C \)oic acid (\(\text{C}_8\text{H}_7 \text{--} ^{14}\text{C} \text{O} \text{H} \)), 2-acetamido-7-\(^{13}I \)-iodofluorene, fructose 1,6-[\(^{13}C \)glucose, 2\(H \)-[\(^{2}H \)pyrano, 5-\(^{14}C \)adenosynol\(^{13}C \)methionine. Terms such as \(^{13}I \)-labelled albumin' should not be contracted to \(' ^{13}I \)albumin' [since native albumin does not contain iodine (but \(^{13}I \)-albumin can be used)], and \(^{14}C \)-labelled amino acids' should similarly not be written as \(' ^{14}C \)amino acids' [since there is no carbon in the amino group].

When isotopes of more than one element are introduced, their symbols are arranged in alphabetical order, including \(^{1}H \) and \(^{3}H \) for deuterium and tritium respectively.

When not sufficiently distinguished by the foregoing means, the positions of isotopic labelling are indicated by Arabic numerals, Greek letters, or prefixes (as appropriate), placed within the square brackets and before the symbol of the element concerned, to which they are attached by a hyphen; examples are \([^{1}H \)ethanol (\(\text{CH}_3 \text{--} ^{1}\text{H} \text{--} \text{OH} \)), \([^{14}C \)aniline, \([^{7}C \)leucine (or \(\text{L} - ^{7}C \)leucine), \([\text{carboxyl} - 14C \)leucine, \([\text{Me} - 14C \)isoleucine, \([2,3-13C \text{malic anhydride, [6,7-14C} \text{]xanthopterin, [3,4,14C} \text{,}\text{2,3-14C} \text{,}\text{2,3-13H} \text{,13N} \)serine.

The same rules apply when the labelled compound is designated by a standard abbreviation or symbol, other than the atomic symbol, e.g. \(\gamma \text{[2,Q]ATP} \).

For simple molecules, however, it is often sufficient to indicate the labelling by writing the chemical formulae, e.g. \(^{14}CO_2 \), \(^{14}O \), \(^{13}C \)\(^{1}H \)\(^{2}O \)\(\text{not D} \text{ } \text{O} \), \(^{13}C \)\(^{1}H \)\(^{2}SO_4 \), with the superscripts attached to the proper atomic symbols in the formulae. The square brackets are not to be used in these circumstances, nor when the isotopic symbol is attached to a word that is not a chemical name, abbreviation or symbol (e.g. \(^{13}I \)-labelled).

Isotopically substituted compounds

The attention of authors is drawn to the distinction between 'isotopically labelled' and 'isotopically substituted' compounds [see \textit{Eur. J. Biochem.} (1978) \textbf{86}, 9--25].

Micro-organisms

In the title, in the synopsis and at the first mention in the text, micro-organisms should be given their full binominal Latin name, which will be printed in italics (e.g. \textit{Escherichia coli}). Each organism should preferably have been obtained from or deposited with a recognized collection of micro-organisms, and the collection number must be given. Alternatively, a strain number or name should be quoted; this should not be underlined. Names of ranks higher than genus (e.g. Eubacteriales, Lactobacillales), generic names used adjectivally (e.g. 'staphylococcal') and names of micro-organisms used colloquially (e.g. as in 'most lactobacilli behave thus') are not italicized. The first (i.e. generic) name should be spelt with a capital letter. Elsewhere in the text, single-letter abbreviations may be given for the generic name; if two genera with the same initial letter are studied, abbreviations such as \textit{Strep.} and \textit{Staph.} may be used.

Great care is needed in verifying the identities of micro-organisms, and authors should bear in mind that the value of their work may be limited if material is wrongly named. Many major culture collections of micro-organisms are able to verify identifications. Authors are urged to deposit new organisms in pertinent culture collections so that they may be readily available to other workers.

Recommendations on nomenclature in bacterial genetics have been proposed by M. Demerec, E. A. Adelberg, A. J. Clark and P. E. Hartman ([1966] \textit{Genetics} \textbf{54}, 61--76). Authors should follow these guide-lines wherever appropriate. Genetic designations for various micro-organisms are listed in \textit{Genetic Maps} (edited by S. J. O’Brien), Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

Molecular mass and the dalton

There are two preferred ways of specifying the mass of a biochemical entity. 'Relative molecular mass' \((M_r; \text{not 'molecular weight'}) \) is the ratio of the mass of a molecule to \(\frac{1}{12} \) of the mass of the nuclide \(^{12}C \); it is thus dimensionless. 'Molecular mass' is the mass of one molecule of a substance expressed in daltons (symbol Da) or atomic mass units; the dalton is defined as \(\frac{1}{12} \) of the mass of one atom of \(^{12}C \).

Thus a protein may be said to have a relative molecular mass of 50000 \((M_r = 50000) \) or a molecular mass of 50000 Da (more conveniently, 50 kDa), and may be referred to as the 50000-\(M_r \) protein or the 50 kDa protein. It is not correct to express \(M_r \) in daltons or to use K to represent \(M_r \) 1000 or 1 kDa. Either '\(M_r \)' or 'molecular mass (kDa)' should be used consistently throughout a single paper.

Nucleotide sequences

Authors should note that nucleotide sequences should be fully determined in both senses of the DNA. An explicit statement to this effect and a supporting diagram summarizing the sequence data would normally be sufficient evidence.

Authors of papers containing primary nucleotide sequence data are required to have deposited their data with the European Molecular Biology Laboratory Data Library (EMBL) or with an associated data library before their paper can be published. The database accession number provided by EMBL will be included in the published paper. Data can be deposited and an accession number obtained before submission of the paper; alternatively, on acceptance of a paper containing such data and where no accession number is provided, the editorial office will send the authors a data submission form. The authors should return the completed form, together with the sequence data in computer-readable format or as computer printout, direct to EMBL who will allot an accession number that can be written into the proofs of the paper.

A memorandum on data submission, and data submission forms, are available from the editorial office.

Physical quantities and units

The recommended SI symbols should be used for all physical quantities and units (see \textit{Quantities, Units and Symbols in Physical Chemistry}, 1988, ISBN 0 632 02591 3, Blackwell Scientific Publications, Oxford). A list of the most commonly used quantities and units appears in Table 3. Where a quantity is given in terms of non-SI units, the SI equivalent should generally also be stated, e.g. either '42 kJ/mol' or '42 kJ/mol (10 kcal/mol)', but not '10 kcal/mol' alone. However, distance measurements at the molecular scale may be given in terms of the ångström (Å) only.
Plants
The full binominal Latin names should be included for all plant species. Where appropriate, the variety and the source should be specified.

Powers in tables and figures
Care is needed where powers are used in table headings and in figures in order to avoid numbers with too many digits. The quantity expressed is to be preceded by the power of 10 by which its value has been multiplied. The units in which the quantity is expressed may not be multiplied by a power of 10; the unit may be changed by the use of prefixes, e.g. m, μ, n or p. For example: (i) an entry ‘2’ under heading 10⁶ k means that the value of k is 0.002; an entry ‘2’ under heading 10⁻² k means that the value of k is 2000; (ii) a concentration 0.00015 M may be expressed as 0.15 under heading ‘conc.’ (mM) or as 150 under heading ‘conc. (μM)’ or as 15 under heading ‘10⁶ × conc. (M)’ but not as 15 under heading conc. (M × 10⁻⁴); (iii) complex quantities are treated similarly; a value for 1/[S] of 200 M⁻¹ would appear as ‘2’ under the heading 10⁻³/[S] (M⁻¹) or as ‘0.2’ under the heading 1/[S] (mM⁻¹). Square brackets may conventionally be used to indicate concentration.

Prefixes for multiples and submultiples of units
These should be as follows:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Defined unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>pm</td>
<td>picometre</td>
</tr>
<tr>
<td>fm</td>
<td>femtometre</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
</tr>
<tr>
<td>da</td>
<td>dekametre</td>
</tr>
<tr>
<td>ha</td>
<td>hectometre</td>
</tr>
<tr>
<td>ka</td>
<td>kilometre</td>
</tr>
<tr>
<td>Mc</td>
<td>megametre</td>
</tr>
<tr>
<td>Gc</td>
<td>gigametre</td>
</tr>
<tr>
<td>Tc</td>
<td>terametre</td>
</tr>
<tr>
<td>Jc</td>
<td>jotametre</td>
</tr>
<tr>
<td>Zc</td>
<td>zetametre</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Symbol</th>
<th>Definition of unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>deca</td>
<td>da</td>
<td>10⁻¹</td>
</tr>
<tr>
<td>hecto</td>
<td>h</td>
<td>10⁻²</td>
</tr>
<tr>
<td>kilo</td>
<td>k</td>
<td>10⁻³</td>
</tr>
<tr>
<td>mega</td>
<td>M</td>
<td>10⁻⁶</td>
</tr>
<tr>
<td>giga</td>
<td>G</td>
<td>10⁻⁹</td>
</tr>
<tr>
<td>tera</td>
<td>T</td>
<td>10⁻¹²</td>
</tr>
</tbody>
</table>

* To be avoided where possible (except for cm).

References
The Harvard System or the Numbering System may be used for the citation of references in the text.

Harvard system
References should appear as follows: for papers written by one or two authors, as ‘(Low, 1989)’ or ‘Hooper and Turner (1989)’; for papers written by three or more authors as ‘Relton et al. (1983)’ or ‘(Hooper et al., 1987)’. Where more than one paper by the same author(s) has appeared in one year the reference should be given as ‘Hooper et al. (1990a,b)’.

At the end of the paper references should be listed in alphabetical order, except for papers by three or more authors (which are given in the text only as ‘et al.’), which should be grouped in chronological order after any other papers by the first author. The authors’ initials should be included, but not the title

Table 3: Physical quantities and their units

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Name of unit</th>
<th>Symbol for unit</th>
<th>Definition of unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity (of radioactive source)</td>
<td>becquerel</td>
<td>Bq</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>mole*</td>
<td>mol</td>
<td></td>
</tr>
<tr>
<td>Dose absorbed (of radiation)</td>
<td>gray</td>
<td>Gy</td>
<td>J·kg⁻¹</td>
</tr>
<tr>
<td>Electric capacitance</td>
<td>farad</td>
<td>F</td>
<td>A²·V⁻¹</td>
</tr>
<tr>
<td>Electric charge</td>
<td>coulomb</td>
<td>C</td>
<td>s·A</td>
</tr>
<tr>
<td>Electric conductance</td>
<td>siemens</td>
<td>S</td>
<td>A·V⁻¹</td>
</tr>
<tr>
<td>Electric current</td>
<td>ampere*</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Electric potential difference</td>
<td>volt</td>
<td>V</td>
<td>J·A⁻¹·s⁻¹</td>
</tr>
<tr>
<td>Electric resistance</td>
<td>ohm</td>
<td>Ω</td>
<td>V·A⁻¹</td>
</tr>
<tr>
<td>Energy</td>
<td>joule</td>
<td>J</td>
<td>m²·kg·s⁻²</td>
</tr>
<tr>
<td>Force</td>
<td>newton</td>
<td>N</td>
<td>J·m⁻¹</td>
</tr>
<tr>
<td>Frequency</td>
<td>hertz</td>
<td>Hz</td>
<td>s⁻¹</td>
</tr>
<tr>
<td>Illuminance</td>
<td>lux</td>
<td>lx</td>
<td>m⁻²·cd·sr</td>
</tr>
<tr>
<td>Length</td>
<td>metre*</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Luminous flux</td>
<td>lumen</td>
<td>lm</td>
<td>cd·sr</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>candela*</td>
<td>cd</td>
<td></td>
</tr>
<tr>
<td>Magnetic flux</td>
<td>weber</td>
<td>Wb</td>
<td>V·s</td>
</tr>
<tr>
<td>Magnetic flux density</td>
<td>tesla</td>
<td>T</td>
<td>V·s·m⁻²</td>
</tr>
<tr>
<td>Mass</td>
<td>kilogram*</td>
<td>kg</td>
<td></td>
</tr>
<tr>
<td>Plane angle</td>
<td>radian</td>
<td>rad</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>watt</td>
<td>W</td>
<td>J·s⁻¹</td>
</tr>
<tr>
<td>Pressure</td>
<td>pascal</td>
<td>Pa</td>
<td>N·m⁻²</td>
</tr>
<tr>
<td>Solid angle</td>
<td>steradian</td>
<td>sr</td>
<td></td>
</tr>
<tr>
<td>Temperature (Celsius)</td>
<td>degree Celsius</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Temperature (thermodynamic)</td>
<td>kelvin*</td>
<td>K</td>
<td>°C = K</td>
</tr>
<tr>
<td>Time</td>
<td>second*</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Volume</td>
<td>litre (cubic decimetre)</td>
<td>l</td>
<td>10⁻³ m³</td>
</tr>
</tbody>
</table>

* SI base unit
† These units do not belong to the International System of units, but may be used if defined.
‡ The Celsius temperature, T, is defined by T = T₀ − °C, where T₀ is thermodynamic temperature and T₀ = 273.15 K.
Table 4 Abbreviations for common buffers

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Chemical name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aces</td>
<td>2-(2-Amino-2-oxoethyl)aminoethanesulphonic acid</td>
</tr>
<tr>
<td>Ada</td>
<td>[(Carboxamidomethyl)(amino)]diacetic acid</td>
</tr>
<tr>
<td>Bes</td>
<td>2-(2-Hydroxyethyl)(amino)ethanesulphonic acid</td>
</tr>
<tr>
<td>Bicine</td>
<td>AN Bis(2-hydroxyethyl)glycine</td>
</tr>
<tr>
<td>Bistris</td>
<td>2-Bis(2-hydroxyethyl)(amino)-2-(hydroxymethyl)propane-1,3-diol</td>
</tr>
<tr>
<td>Hepes</td>
<td>4-(2-Hydroxyethyl)-1-piperazine-ethanesulphonic acid</td>
</tr>
<tr>
<td>Hepps</td>
<td>4-(2-Hydroxyethy1)-1-piperazinepropanesulphonic acid</td>
</tr>
<tr>
<td>Mes</td>
<td>4-Morpholine-ethanesulphonic acid</td>
</tr>
<tr>
<td>Mops</td>
<td>4-Morpholinopropanesulfonic acid</td>
</tr>
<tr>
<td>Pipes</td>
<td>1,4-Piperazinediethanesulfonic acid</td>
</tr>
<tr>
<td>Taps</td>
<td>3-(2-Hydroxy-1,1-bis(hydroxymethyl)(amino)-1-propanesulfonic acid</td>
</tr>
<tr>
<td>Tes</td>
<td>2-(2-Hydroxy-1,1-bis(hydroxymethyl)(amino)ethanesulfonic acid</td>
</tr>
<tr>
<td>Tricine</td>
<td>tricine (2-Hydroxy-1,1-bis(hydroxymethyl)(amino)propanesulphonic acid</td>
</tr>
<tr>
<td>Tris</td>
<td>2-Amino-2-hydroxyethylpropane-1,3-diol</td>
</tr>
</tbody>
</table>

of the paper. The style to be used is shown in the following examples.

Numbering system

References should be cited in the text by sequential numbers in square brackets, e.g. ["1"] , ["2–6"] , ["4,5,7–10"] etc. At the end of the paper references should be listed in numerical order in the same style as described for the Harvard system, preceded by the number. Thus:

Both systems

Names and initials of all authors, and first and last page numbers, should be provided for all references. Titles of journals should be abbreviated in accordance with the Chemical Abstracts Service Source Index (1907–1989 Cumulative) (1989) and subsequent Quarterly Supplements (American Chemical Society).

References to books and monographs should be in accordance with the following example.

References to a paper ‘in the press’ are permissible provided that it has been accepted for publication (the name of the journal and documentary evidence of acceptance must be provided):

References to ‘personal communication’ and ‘unpublished work’ are permitted in the text only, not in the list of references; for the former citation, documentary evidence from the person quoted showing agreement with the quotation must be provided. A reference to ‘unpublished work’ must be supported by the names and initials of all involved. The use of ‘in preparation’, ‘private communication’ and ‘submitted for publication’ is not allowed.

Most papers as submitted contain errors in the references; authors should check carefully correspondence between text and list, and the spelling of all names, in the final version of the paper. Failure to do so may lead to the paper being returned for correction, with consequent delay in publication.

Solutions

Description

Solutions should be described in terms of molarity (M). Fractional concentrations should be expressed in the decimal system, e.g. 0.25 M HCl (not M/4 HCl). The term % must be defined as w/w, w/v or v/v, e.g. 5 % (w/v) means 5 g/100 ml. For aqueous solutions of concentration less than 1%, w/v need not be inserted if it is clear that the concentration is stated in terms of weight of solute.

Incubation media such as Krebs–Ringer solution, Eagle’s medium, Waymouth’s medium etc. should be defined either by reference or by giving the composition.

The symbol for ionic strength (mol/l) is I.

Buffers

These must be specified so that readers can reproduce the conditions used by authors. It is often useful to give the complete composition of each solution, e.g. ‘0.09 M sodium acetate/0.01 M acetic acid, pH 5.6’ (which means that a single solution has these concentrations of these substances) at the first mention or in the Experimental section. A short designation, e.g. ‘0.1 M sodium acetate buffer, pH 5.6’, may be used elsewhere throughout the paper.

Table 4 lists accepted abbreviations for buffers; these need not be defined.

Spectra and spectroscopic data

Full spectra should be published when important or novel features are demonstrated; however, other spectra or spectral information may be deposited with the British Library Document Supply Centre (see the Deposition of Data section on p. 9).

The spectra for u.v. and visible absorption, fluorescence, circular dichroism and optical rotation should have a wavelength scale (e.g. nm or μm) whether or not a wavenumber scale (e.g. cm⁻¹) is given. Where possible, molar terms should be used in absorption, circular dichroism and optical rotation.

Circular dichroism

This is reported as the molar circular-dichroism absorption coefficient Δε = ε₁ - ε₉ [or the molar ellipticity, [θ]m (see below)]. For biopolymers, molar concentrations in terms of the mean residue Mr are generally used. Units of Δε are the same as for ε, i.e. litre·mol⁻¹·cm⁻² or M⁻¹·cm⁻¹.

Specific ellipticity [θ], molar ellipticity [θ]m and mean residue ellipticity [θ]m.r.e. are directly analogous to the terms used in optical rotation. The units of [θ] are as for [m]. Note that [θ]m = 3300 × Δε.

Electron spin (paramagnetic) resonance

Derivative spectra are given, unless otherwise stated; a scale of the magnetic-field strength (in mT) and/or g values should be given. Peaks are described as, e.g., ‘the g = 2 peak’.
Fluorescence spectroscopy

In reporting fluorescence excitation and emission spectra it should be stated whether intensities, \(F \), are relative, normalized or corrected (and the nature of the correction).

Fluorescence-polarization data and spectra are reported as polarization ratio, \(P \), or preferably anisotropy ratio, \(A \); both are dimensionless.

Infrared spectroscopy

Spectra are reported as percentage transmittance, \(T \), as a function of wavelength (given in nm) or frequency (given in cm\(^{-1}\)). When assigning bands the units need be given for the first value only and the description should be in the style, e.g. ‘(broad NH band)’.

Mass spectrometry

Spectra may be described as, e.g. ‘\(m/z 300 \) [\(M^+ \) (the molecular ion)], 282 (M'\(\rightarrow \)H\(_2\)O) etc.’. If parenthetic values are quoted for percentage peak heights, it should be stated what these values are relative to.

Mössbauer spectroscopy

The absorption (in \(\% \), arbitrary units or crude channel counts) is plotted against the Doppler velocity, \(v \) (in \(\text{mm/s} \)). The chemical shift, \(\delta \), in units of \(\text{mm/s} \) should be quoted relative to a specified standard (e.g. metallic iron at 290 K). The temperature should always be given and the applied magnetic field, if any, should be precisely described.

Nuclear magnetic resonance

N.m.r. chemical-shift data, \(\delta \), are expressed as parts per million (p.p.m.) and the reference compound must be quoted. The recommended convention is that downfield shifts are positively signed. Coupling constants are expressed in Hz.

For reporting structural n.m.r. data the style suggested is: ‘\(\delta \) (p.p.m.) (solvent) chemical-shift value [integration, peak type, coupling constant (in Hz), designation (resonant proton in italics)]’. E.g. ‘\(\delta \) (p.p.m.) [(\(^1\text{H} \))chloroform] 0.92 [6 H, d, J 6 Hz, \(\text{CH(CH}_3)_2 \)], 2.16 (2 H, t, J 7 Hz, \(\text{CH}_3\text{CH}(\text{CO}) \)’. Singlet, doublet etc. are abbreviated to s, d etc. without definition, but other descriptions, e.g. broad and overlapping, should be in full.

Optical rotation

This is reported as the specific rotation, \([\alpha]_2\)\(^\theta \), which is numerically equal to the rotation in degrees of a 1 g/ml solution with a pathlength of 1 dm (10 cm) at wavelength \(\lambda \) and temperature \(t \). The concentration (g/100 ml) and solvent are quoted, e.g. ‘\([\alpha]_2\)\(^\theta \text{ in CH}_3\text{OH} = -27.5^\circ \) (c 2 in methanol)’.

The corresponding molar expressions for the molar rotation, \([\alpha]_M\) = \([\alpha]_2\) \(\times M \), and \([\epsilon] = \([\alpha]_M\) \(\times 100 \), should be defined.

For biopolymers, the mean residue \(M_r \), is used, and \([\alpha]_M\) \(\text{cm}^2 \text{dmol}^{-1} \text{g}^{-1} \) is the mean residue rotation. Where a refractive-index correction is applied, \([\epsilon] \), the reduced mean residue rotation, is reported. Dimensions of \([\alpha] \) and \([\epsilon] \) are degrees cm\(^2\) dmol\(^{-1}\).

Optical rotatory dispersion is reported as the variation of \([\alpha] \) or \([\epsilon] \) with wavelength (or frequency).

Visible and ultraviolet-absorption spectroscopy

The general name for the quantity \(\log(I_o/I) \) is attenuation, and this reduces to absorbance when there is negligible scattering or reflection. The more general term attenuation should be used when scattering is considerable, e.g. when the quantity is measured to estimate the cell density of a culture. Otherwise the term absorbance should be used; neither should be called extinction or optical density. Symbols used are: \(A \), absorbance; \(D \), attenuation; \(a \), specific absorption coefficient (litre·g\(^{-1}\)·cm\(^{-1}\)\(\times \text{mol}^{-1}\)·cm\(^{-1}\)) (alternatively used \(A^\alpha_{1cm} \); \(c \), molar absorption coefficient (numerically equal to the absorbance of a 1 mol/litre solution in a 1 cm light-path) (use units of litre·mol\(^{-1}\)·cm\(^{-1}\) or M\(^{-1}\)·cm\(^{-1}\) and not cm\(^2\)·mol\(^{-1}\)). Wavelengths are given in (nm) as subscripts without units, e.g. \(A_{254} \). No equals sign need be given between \(c \) or \(A \) and its value.

Statistical treatment of results

Data from a sufficient number of independent experiments should be reported to permit evaluation of the reproducibility and significance of the results. When the object is to determine the value of a quantity or the statistical characteristics of a population, sufficient information is usually conveyed by the following: (i) the number of independent experiments (replicate measurements in an individual animal or preparation and results from pooled tissues etc. represent only one independent estimate); (ii) the mean value; (iii) the standard deviation (S.D.), the coefficient of variation or the standard error of the estimate of mean value (S.E.M.), as may be appropriate. It should be made clear whether the standard deviation or the standard error is used. A convenient form for inclusion in a table is, for example, 263 ± 2.5 (10), where the number in parentheses represents the number of values used in calculating the mean.

Tables

Each table should be supplied with an informative heading and an explanatory legend, starting on a new line and typed double-spaced. The heading and legend should make the general meaning comprehensible without reference to the text. Footnotes should be as few as possible, only being used where it is necessary to draw attention to a feature of a particular row, column or value. Conditions specific to the particular experiment should be stated. Reference to the text for general experimental methods is permissible provided that there is no ambiguity. The units in which the results are expressed, e.g. g/100 ml, should be given at the top of each column, and not repeated on each line of the table.

Tables should be typed on separate sheets and their approximate position in the text indicated. Words or numerals should be repeated on successive lines: ‘ditto’ or ‘..’ are not to be used.

Unique biological materials

It is expected that authors will make samples of unique biological materials (including cell lines, DNA clones and antibodies) available to academic workers who request them. Authors are urged to deposit cell lines of more than local interest with appropriate collections at national centres (e.g. in the U.K. at the National Collection of Animal Cell Cultures, Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wilts, SP4 0JG, and in the U.S.A. at the American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD 20852).
X-ray crystallography

Authors of papers describing structure determination by X-ray crystallography are encouraged to deposit, either with the British Library (see p. 9) or, preferably, with the Protein Data Bank (Brookhaven National Laboratory, Upton, NY 11973, U.S.A.), all of the structural data required to validate the proposed structure and its discussion. It should be stated in a footnote to the paper that the necessary data have been deposited. Under certain circumstances the Protein Data Bank may be asked not to release the data until after a date (no more than 4 years after acceptance of the paper) specified by the authors.

Further details of this procedure may be obtained from the editorial office.