Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation

Gerald M. COHEN,* Xiao-Ming SUN, Roger T. SNOWDEN, David DINSDALE and David N. SKILLET
MRC Toxicology Unit, MRC Laboratories, Woodmansterne Road, Carshalton, Surrey SM5 4EF, U.K.

Apoptosis, a major form of cell death, is characterized by chromatin condensation, a reduction in cell volume and endonuclease cleavage of DNA into oligonucleosomal length fragments. The detection of these fragments by gel electrophoresis, as a DNA ladder, is currently used as the major biochemical index of apoptosis. Here we report that key morphological changes of apoptosis can be dissociated experimentally from the DNA fragmentation produced by endonuclease activity. Internucleosomal cleavage of DNA is thus likely to be a later event in the apoptotic process.

INTRODUCTION

Apoptosis is a major form of cell death [1] found in the deletion of autoreactive T-cell clones in thymic maturation [2], in the senescence of neutrophils [3] and in target cells attacked by cytotoxic T-lymphocytes and natural killer cells [4-6]. It is characterized morphologically by chromatin condensation and by a reduction in cell volume [1,4,5,7]. These morphological changes have been associated with endonuclease cleavage of DNA into nucleosomal size fragments of 180-200 bp or multiples thereof [4,5,8] in many systems, including immature thymocytes exposed to glucocorticoids [8,9], γ-irradiation [10], the calcium ionophore A23187 [11] and anti-CD3 antibodies [12]. There has been a general tendency in the literature to equate this nucleosomal ‘ladder pattern’ with apoptosis [5]. In this study, we clearly demonstrate that key morphological changes of apoptosis precede internucleosomal DNA cleavage.

MATeRIALS AND METHODS

Materials

Dexamethasone, actinomycin D, cycloheximide, aurantricarboxylic acid, the dye Hoechst 33342, propidium iodide and Percoll were obtained from Sigma Chemical Co., Poole, Dorset, U.K. Foetal calf serum and RMI-1640 were from Gibco, Paisley, Scotland, U.K.

Thymocyte incubations

Thymocytes were isolated from Male Fischer 344 rats (4-5 weeks old) as described previously [13]. The resulting cell suspension was diluted with RPMI-1640 containing 10 % foetal calf serum to give a final cell suspension of (15-20) × 10^6 cells/ml. Incubations were carried out for 4 h at 37 °C under an atmosphere of 95 % air/5 % CO₂ in the presence of dexamethasone (0.1 µM).

Percoll gradients

Purified populations of normal and apoptotic thymocytes were prepared by discontinuous Percoll gradients as described previously [14].

Flow cytometry

Following culture, thymocytes (2 × 10^6 cells/ml) were incubated with Hoechst 33342 (1 µg/ml) in RPMI-1640 containing 10 % foetal calf serum at 37 °C for 10 min. The cells were cooled to 4 °C, centrifuged at 400 g for 5 min, resuspended in phosphate-buffered saline containing propidium iodide (5 µg/ml) and examined by flow cytometry [15].

Flow cytometric analyses were carried out at a flow rate of 200 cells s⁻¹ using an Ortho Cytofluorograph 50-H linked to a 2150 computer system. Hoechst 33342 and propidium iodide were excited using the 352 nm u.v. line of a krypton laser, and the resultant blue (400-500 nm) versus red (> 630 nm) fluorescence was recorded using linear amplification. The blue fluorescent cells were gated and displayed as a two-dimensional cyogram of fluorescence intensity versus forward light scatter. Sub-populations of cells were sorted at a flow rate of 800 cells s⁻¹ based on these parameters.

Gel electrophoresis and DNA fragmentation

Agarose gel electrophoresis was used to detect DNA laddering in whole cells (1 × 10⁶) by the method of Sorensen et al. [16]. DNA fragmentation was measured by the percentage of diphenylamine-reactive material present in the 13000 g supernatant fractions of lysed cells [8,17].

Electron microscopy

Suspensions (2.5 × 10⁶ cells) were fixed overnight in 2 % (v/v) glutaraldehyde in 0.1 m-sodium cacodylate buffer (pH 7.2). They were subsequently spun down in microcentrifuge tubes and the pellets were post-fixed for 1 h in 1 % (w/v) osmium tetroxide in buffer 0.1 M with respect to sodium cacodylate and 0.04 M with respect to potassium ferrocyanide. All pellets were stained en bloc for 1 h with 2 % aqueous uranyl acetate before being dehydrated through a series of ethanol concentrations and embedded in Araldite. Semi-thin (1 µm) sections were cut axially through all layers of each pellet to select areas for ultramicrotomy. Ultrathin sections were stained with lead citrate and examined in a Jeol 100-CX electron microscope.

RESULTS AND DISCUSSION

The introduction of apoptosis in immature thymocytes by glucocorticoids, such as dexamethasone and methylprednisolone, has been well characterized [8,9]. We have quantified the formation of apoptotic thymocytes, induced by dexamethasone (0.1 µM), by flow cytometric analysis of the differential blue

* To whom correspondence should be addressed.
Table 1. Dexamethasone-induced thymocyte apoptosis is inhibited by cycloheximide, actinomycin D and aurin, but not by zinc

Thymocytes were incubated for 4 h as described in the Materials and methods section, either alone or with dexamethasone (Dex; 0.1 μM) in the absence or presence of various reported inhibitors of apoptosis. The percentage of apoptotic cells was determined by flow cytometry following incubation with Hoechst 33342. Values are means ± S.E.M. for at least three separate determinations.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Apoptotic cells (%)</th>
<th>DNA fragmentation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>5.5 ± 1.7</td>
<td>9.1 ± 2.3</td>
</tr>
<tr>
<td>Dex</td>
<td>18.7 ± 4.3</td>
<td>33.7 ± 8.6</td>
</tr>
<tr>
<td>Dex + cycloheximide (10 μM)</td>
<td>6.3 ± 1.6</td>
<td>10.0 ± 1.4</td>
</tr>
<tr>
<td>Dex + actinomycin D (0.9 μM)</td>
<td>7.7 ± 1.7</td>
<td>13.1 ± 2.8</td>
</tr>
<tr>
<td>Dex + aurin (500 μM)</td>
<td>7.2 ± 2.2</td>
<td>18.3 ± 4.1</td>
</tr>
<tr>
<td>Dex + Zn²⁺ (1 mM)</td>
<td>21.1 ± 3.4</td>
<td>7.2 ± 2.8</td>
</tr>
<tr>
<td>Control + Zn²⁺ (1 mM)</td>
<td>7.2 ± 1.2</td>
<td>4.0 ± 1.2</td>
</tr>
</tbody>
</table>

Fig. 1. Zn²⁺ does not prevent the formation of apoptotic thymocytes by dexamethasone

Freshly isolated thymocytes were incubated for 4 h either alone (a) or with dexamethasone (0.1 μM) in the absence (b) or in the presence of either cycloheximide (10 μM) (c) or zinc acetate dihydrate (1 mM) (d). Normal (region 2) and apoptotic (region 1) thymocytes were separated by flow cytometry following incubation with Hoechst 33342 (1 μg/ml) and propidium iodide [15]. Non-viable cells, which included propidium iodide, were gated out. Apoptotic cells, with high blue fluorescence and low forward light scatter, were distinguished from normal thymocytes, with low blue fluorescence and high forward light scatter. Forward scatter gives an indication of size, i.e. apoptotic cells were smaller than normal cells.

Fig. 2. Zn²⁺ inhibits dexamethasone-induced DNA laddering in thymocytes

Thymocytes (20 × 10⁶ cells) were incubated for 4 h either alone or with dexamethasone (0.1 μM) in the absence or in the presence of Zn²⁺ (1 mM), and 1 × 10⁶ cells were taken for measurement of DNA ladder by agarose gel electrophoresis. Lane 1 contains molecular size standards of multiples of 123 bp. In unsorted thymocytes, dexamethasone (lane 3) caused an increase in DNA laddering compared with control cells (lane 2). This increase was totally inhibited in the presence of Zn²⁺ (1 mM) (lane 4). Apoptotic cells of high modal density and small diameter were examined by agarose gel electrophoresis after separation by isopycnic centrifugation on discontinuous Percoll gradients following incubation of cells for 4 h with dexamethasone either alone (lane 5) or in the presence of Zn²⁺ (lane 6). Viable thymocytes were sorted by flow cytometry as described in the legend to Fig. 1. In the presence of dexamethasone alone, sorted cells which exhibited high (lane 8) but not low (lane 7) blue fluorescence showed DNA ladderin, whereas in the presence of Zn²⁺ cells with neither low nor high blue fluorescence (lanes 9 and 10 respectively) exhibited DNA laddering.

In previous studies, the higher density of apoptotic compared with normal thymocytes has been utilized as the basis for their separation and purification by isopycnic centrifugation on discontinuous Percoll gradients [7,14]. Using this system, we obtained a discrete cell fraction having both a smaller mean diameter and a higher modal density than normal thymocytes following treatment of cells with dexamethasone (0.1 μM), either alone or in the presence of Zn²⁺ (1 mM). These cells were then examined by both electron microscopy and agarose gel electrophoresis. The cells with the lower modal density showed low blue fluorescence when incubated with Hoechst 33342, and the appearance of their euchromatin and heterochromatin was similar to normal thymocytes. Following incubation of thymocytes with dexamethasone alone, the high-density cells separated by Percoll gradients exhibited high blue fluorescence with Hoechst 33342. They also showed extensive DNA laddering (Fig. 2, lane 5) and the distinct morphological features of apoptosis (Fig. 3a) described by other groups [1,4,20]. These thymocytes demonstrated the characteristic chromatin condensation and cytoplasmic contraction of apoptosis. They exhibited a condensed cytoplasm containing apparently normal organelles, apart from dilated cisternae of the smooth endoplasmic reticulum, many of which were fused with...
the cell membrane. The nuclei were also shrunken, and although
the euchromatin retained its normal appearance, the hetero-
chromatin was condensed and usually coalesced against one pole
of the nuclear membrane (Fig. 3a).

Strikingly different results were observed in the high-density
cells obtained following incubation with dexamethasone in the
presence of Zn$^{2+}$. These thymocytes were also shrunken, with
some dilation of the smooth endoplasmic reticulum, but they
showed no evidence of DNA laddering (Fig. 2, lane 6). The heterochromatin in these cells was condensed and arranged in
several sharply defined clumps which abutted against the nuclear
membrane (Fig. 3b). A further clump was present in the centre of
many of these nuclei. The cell profiles were mostly regular but the
nuclear membrane, although usually intact, was often con-
voluted. The euchromatin retained its normal density but often
cluded one or more clusters of intensely stained nucleolar
remnants. Similar characteristics have been described, in various
cell types, as the earliest signs of apoptosis [20,21]. Thus in the
presence of Zn$^{2+}$ we appear to have halted the cells at a very early
stage of apoptosis, prior to the effects of the endonuclease.

Further support for this conclusion was obtained using cells
sorted by flow cytometry. These cells were obtained following
treatment with dexamethasone (0.1 μm) in the presence or absence
of Zn$^{2+}$ (1 mM) and subsequent incubation with Hoechst 33342. Normal
cells, exhibiting low blue fluorescence, showed no
evidence of DNA laddering (Fig. 2, lanes 7 and 9). However,
apoptotic cells, exhibiting high blue fluorescence, showed ex-
tensive internucleosomal DNA fragmentation following incu-
bation with dexamethasone alone (Fig. 2, lane 8) but not in the
presence of Zn$^{2+}$ (Fig. 2, lane 10). The inhibition of DNA
laddering by Zn$^{2+}$ may be due to inhibition of endonuclease
activity [9,19], but other possible actions of Zn$^{2+}$ cannot be
excluded [22].

Thus in the presence of Zn$^{2+}$, dexamethasone has induced cells
which are apoptotic according to a number of criteria including
cell density, cell size and morphological features, but which are
devoid of DNA laddering. To our knowledge this is the first time,
in thymocytes, that a clear dissociation has been observed
between the morphological features of apoptosis and DNA
laddering. A similar absence has been observed in some cases of
programmed cell death, for example in insect metamorphosis
and in normal limb development, but marked differences between
apoptosis and some other forms of programmed cell death have
been emphasized [23]. Originally apoptosis was defined mor-
phologically but it has now begun to be characterized bio-
chemically, in particular by measurement of DNA laddering
[4,5,8]. Our results indicate that assessment of apoptosis by
biochemical assays alone should be interpreted with caution.

This study supports the hypothesis that the induction of the
earliest morphological changes of apoptosis involves enzymes
other than the Ca$^{2+}$/Mg$^{2+}$-dependent endonuclease and that this
endonuclease is involved at later stages, when it is responsible
for internucleosomal fragmentation of the DNA [8]. It seems likely
that there are several mechanisms responsible for the initiation
of apoptosis which may exhibit both cellular and organ specificity
[4]. The identification of early key steps in apoptosis is essential
to the understanding of this important mechanism of cell death.

We thank Gill Stalley, M. Lee and S. Preston for technical assistance
and Gillian Zdaniecki for preparation of the manuscript.

REFERENCES
Received 1 June 1992/26 June 1992; accepted 2 July 1992