RESEARCH COMMUNICATION

The opening of the inositol 1,4,5-trisphosphate-sensitive Ca\(^{2+}\) channel in rat cerebellum is inhibited by caffeine

Graham R. BROWN, Lee G. SAYERS, Christopher J. KIRK, Robert H. MICHELL and Francesco MICHELANGELI*
School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.

Ins\((1,4,5)P_3\) (Ins\(_P_3\))-induced Ca\(^{2+}\) release and \([\text{H}]\text{InsP}_3\) binding were measured in rat cerebellar microsomes in the presence or absence of caffeine. The quantal Ca\(^{2+}\) release was shown to occur in an apparently co-operative fashion with a Hill coefficient \((h)\) of 2.2. Half-maximal Ca\(^{2+}\) release was observed at 900 nm-Ins\(_P_3\). Addition of caffeine caused changes both to the concentration of Ins\(_P_3\) required to cause half-maximal Ca\(^{2+}\) release (3.9 \(\mu M\) at 50 mm-caffeine) and to the apparent co-operativity \((h = 1.0\) at 50 mm-caffeine). Under standard conditions for \([\text{H}]\text{InsP}_3\) binding, caffeine had no effect, and it had no effect on Ins\(_P_3\) metabolism. Cyclic AMP also had no effect on the quantal release induced by Ins\(_P_3\). These results are consistent with the view that caffeine affects the opening \((\text{Ca}^{2+}\) release) events rather than the ligand-binding events in the operation of the Ins\(_P_3\)-sensitive Ca\(^{2+}\) channel.

INTRODUCTION

Ins\((1,4,5)P_3\) (Ins\(_P_3\)) is a second messenger responsible for the release of Ca\(^{2+}\) from intracellular Ca\(^{2+}\) stores after receptor activation [1]. The Ca\(^{2+}\) channel, which is sensitive to Ins\(_P_3\), releases Ca\(^{2+}\) in a ‘quantal’ manner, with the amount of Ca\(^{2+}\) released dependent on Ins\(_P_3\) concentration [2]. This phenomenon may be due to regulation of the gating of this channel by changes in the intraluminal Ca\(^{2+}\) concentration [3] or due to heterogeneous populations of microsomes having different sensitivities to Ins\(_P_3\) and releasing their Ca\(^{2+}\) in an ‘all-or-none’ fashion [4].

Muscle contains a caffeine-sensitive Ca\(^{2+}\) channel that is distinct from the Ins\(_P_3\)-sensitive Ca\(^{2+}\) channel, which binds ryanodine with high affinity [5] and opens in the presence of millimolar concentrations of caffeine and micromolar concentrations of Ca\(^{2+}\) [6]. The use of antibodies raised against this caffeine-sensitive Ca\(^{2+}\) channel had led to the identification of a similar protein in non-muscle cells [7]. Caffeine also mobilizes Ca\(^{2+}\) in a variety of other non-muscle cells, including permeabilized and intact adrenal chromaffin cells [8,9]. This had led to the conclusion that a caffeine-sensitive Ca\(^{2+}\) channel exists in these cells, and recently these channels have been implicated in the propagation of Ca\(^{2+}\) waves observed in single cells that are stimulated by agonists which are coupled to Ins\(_P_3\) production [10].

A recent observation by Parker & Ivorra [11] has shown caffeine to be an inhibitor of Ins\(_P_3\)-mediated Ca\(^{2+}\) release in *Xenopus* oocytes. Here we report the effects of caffeine on Ins\(_P_3\)-induced Ca\(^{2+}\) release and \([\text{H}]\text{InsP}_3\) binding using rat cerebellar microsomes.

METHODS

Fluo-3 was obtained from Molecular Probes, Ins\(_P_3\) from Calbiochem, \([\text{H}]\text{InsP}_3\) from Amersham International and caffeine from Sigma; all other reagents were of analytical grade. The rat cerebellar microsomes were prepared as described in [12].

Ca\(^{2+}\) uptake and release

Ca\(^{2+}\) uptake and release were measured using fluo-3 as described elsewhere [13,14]. Rat cerebellar microsomes were suspended in a buffer containing 10 mm-potassium phosphate, 3.5 mm-potassium pyrophosphate, 250 nm-fluo-3, creatine kinase (10 \(\mu M\)/ml) and 10 mm-phosphocreatine, pH 7.2, and measurements were carried out at 37 °C. Typically, 0.2–0.3 mg of rat cerebellar microsomes/ml were added to a continuously stirred cuvette. Ca\(^{2+}\) uptake was initiated by the addition of 1.5 mm-MgATP, and the fluorescence change of fluo-3 was monitored in a Perkin–Elmer LS-50 fluorimeter, excitation being at 506 nm and detection of the fluorescence emission being at 526 nm. After ATP-dependent Ca\(^{2+}\) loading, further Ca\(^{2+}\) uptake was inhibited by the addition of 0.5 mm-sodium orthovanadate, which was prepared in alkaline solution and thus in an oligovanadate form that would not block Ins\(_P_3\) binding to the Ins\(_P_3\)-sensitive Ca\(^{2+}\) channel [27,28]. The absence of decavanadate in the orthovanadate solution was confirmed by the lack of any effect on \([\text{H}]\text{InsP}_3\) binding, in either the presence or absence of caffeine. Ins\(_P_3\) was added, and the maximum amount of Ca\(^{2+}\) release for each [Ins\(_P_3\)] monitored. Total Ca\(^{2+}\) accumulated within the microsomes was measured by permeabilization with 12.5 \(\mu M\) of ionophore A23187/ml.

Fluorescence intensity was related to [Ca\(^{2+}\)] by using the following equation [15]:

\[
[\text{Ca}^{2+}] = K_d \times (F - F_{\text{min}})/(F_{\text{max}} - F)
\]

where \(K_d\) is the dissociation constant for Ca\(^{2+}\) binding to fluo-3 (900 nm at 37 °C, pH 7.2 [14]). \(F\) is the fluorescence intensity of the sample and \(F_{\text{min}}\) and \(F_{\text{max}}\) are the fluorescence intensities of the sample in 1 mm-EGTA and 2.5 mm-CaCl\(_2\) respectively. Caffeine was preincubated with the microsomes for several minutes before ATP-dependent Ca\(^{2+}\) uptake was measured.

\([\text{H}]\text{InsP}_3\) binding

The effects of caffeine on Ins\(_P_3\) binding were assessed by displacement of \([\text{H}]\text{InsP}_3\) with between 40 nm and 3 \(\mu M\)...
radioactive InsP\(_2\). The binding procedure was similar to that described by Alderson & Volpe [16]. Briefly, 0.2 mg of rat cerebellum microsomes were suspended in a medium containing 50 mM-Tris/HCl, pH 8.3, 1 mM-EDTA and 100 mM-KCl in a final volume of 0.5 ml. Total binding was measured at 40 nm-[\(^{3}H\)]InsP\(_2\) and non-specific binding was measured in the presence of 10 mM non-radioactive InsP\(_2\). After a 10 min incubation on ice, the samples were centrifuged for 15 min at 15000 g and the pellet washed in distilled water. After drying, the pellets were solubilized in 0.25 ml of 10% (w/v) glycerol, 5% (v/v) 2-mercaptoethanol, 2.3% (w/v) SDS and 62.5 mM-Tris/HCl, pH 6.8, and sonicated. The radioactivity of the samples was determined by liquid-scintillation spectrometry.

Metabolism of InsP\(_2\)

In membrane preparations, in the absence of cytosol, the most likely route of metabolism of InsP\(_2\) is to Ins(1,4)P\(_2\) by the InsP\(_2\)-S-phosphatase. In order to assess the metabolism of InsP\(_2\) by cerebellar microsomes, samples were preincubated for 20 min at 37 °C in conditions identical with those used for Ca\(^{2+}\) uptake and release, including the addition of 0.5 mM-sodium orthovanadate. Either radiochemical amounts of [\(^{3}H\)]InsP\(_2\) or concentrations of up to 10 \(\mu\)M-InsP\(_2\) doped with 0.003 \(\mu\)Ci of [\(^{3}H\)]InsP\(_2\) were added 2 min after the vanadate. The reaction was terminated after 30 s with 200 \(\mu\)l of ice-cold 10\% (w/v) HClO\(_4\), neutralized with KOH, and products were separated on gravity-fed anion-exchange columns as described in [17]. The amounts of [\(^{3}H\)]InsP\(_2\) metabolized and [\(^{3}H\)]InsP\(_2\) formed were determined. To assess S-phosphatase activity under simulated 'intracellular' conditions, cerebellar microsomes were similarly incubated in 102 mM-KCl, 10 mM-NaCl, 0.1 mM-EGTA, 5 mM-MgSO\(_4\), 50 mM-HEPES, pH 7.2, and saponin (0.2 mg/ml) as described in [18].

RESULTS

Fig. 1 shows ATP-dependent Ca\(^{2+}\) uptake into, and InsP\(_2\)-induced Ca\(^{2+}\) release from, rat cerebellar microsomes. Upon addition of ATP, a rapid decrease in [Ca\(^{2+}\)] is observed as Ca\(^{2+}\) becomes complexed with ATP. This was confirmed through experiments where ATP was added to samples containing fluo-3 but devoid of microsomes (see [14]). The Ca\(^{2+}\)-uptake rate was 1.6 nmol/min per mg of cerebellar microsomal protein. Addition of 0.5 mM-sodium orthovanadate, which causes >80% inhibition of the Ca\(^{2+}\) pump [12], caused some release of Ca\(^{2+}\) due to passive leakage of the microsomes. Once a new steady state was established, where passive Ca\(^{2+}\) efflux was equal to Ca\(^{2+}\) influx, the monitored external [Ca\(^{2+}\)] remained steady throughout the remainder of the experiment. Orthovanadate was added so that Ca\(^{2+}\) uptake did not occur after InsP\(_2\)-induced Ca\(^{2+}\) release. Addition of InsP\(_2\) caused Ca\(^{2+}\) release from the cerebellar microsomes, the amount of release being dependent on the concentration of InsP\(_2\) added. The addition of ionophore A23187 caused complete release of the accumulated Ca\(^{2+}\). At maximally effective InsP\(_2\) concentrations (>20 \(\mu\)M), only about 20% of the total accumulated Ca\(^{2+}\) was released. This was deemed to be due to release of Ca\(^{2+}\) through the InsP\(_2\)-sensitive Ca\(^{2+}\) channel, as it was inhibited by heparin (results not shown).

Half-maximal InsP\(_2\)-induced Ca\(^{2+}\) release occurred at 900 nM-InsP\(_2\) (Fig. 2a). When these data are re-expressed as a Hill plot (Fig. 2b), they give an apparent k value of 2.2, similar to values previously measured in rat and canine cerebellar microsomes [14,19].

Fig. 1. ATP-dependent Ca\(^{2+}\) uptake and InsP\(_2\)-induced Ca\(^{2+}\) release from rat cerebellar microsomes monitored using fluo-3

MgATP (1.5 mM) was added to initiate Ca\(^{2+}\) uptake, which was inhibited by the addition of 0.5 mM-sodium vanadate. The Ca\(^{2+}\) release was measured at different InsP\(_2\) concentrations: 0.1 (trace a), 0.3 (trace b), 0.7 (trace c) or 10 (trace d) \(\mu\)M. Total Ca\(^{2+}\) release occurred with the addition of A23187 ionophore (12.5 \(\mu\)g/ml) (trace e).

Fig. 2. Inhibition by caffeine of InsP\(_2\)-induced quantal Ca\(^{2+}\) release from cerebellar microsomes

(a) The amounts of Ca\(^{2+}\) released as a function of InsP\(_2\) concentrations expressed as a percentage of the Ca\(^{2+}\) released by the addition of ionophore A23187. Samples were either preincubated with no caffeine (○) or in the presence of 10 mM-caffeine (□), 25 mM-caffeine (△) or 50 mM-caffeine (▽). Each data point is the mean ± S.D. of at least three determinations. (b) The data from (a) re-expressed as a Hill plot, where Y is the fractional response (amount of Ca\(^{2+}\) released/maximal amount of Ca\(^{2+}\) released by 20 \(\mu\)M-InsP\(_2\)).
Caffeine caused some quenching of the fluo-3 fluorescence, but did not affect the binding of Ca2+ to fluo-3. No caffeine-induced Ca2+ release was observed when caffeine was added to microsomes which had previously been loaded with Ca2+.

Fig 2(a) shows the effect of caffeine on Ins\textsubscript{P}\textsubscript{3}-induced Ca2+ release. It can be seen that addition of increasing amounts of caffeine reduced the amount of Ca2+ released by submaximal concentrations of Ins\textsubscript{P}\textsubscript{3}. However, this effect was overcome by raising the concentration of Ins\textsubscript{P}\textsubscript{3}. Half-maximal release of Ca2+ occurred at 900 nM-Ins\textsubscript{P}\textsubscript{3} in the absence of caffeine, but at 3.9 \mu{M}-Ins\textsubscript{P}\textsubscript{3} in the presence of 50 mM-caffeine. At concentrations of caffeine commonly used to elicit caffeine-induced Ca2+ release in muscle and non-muscle cells (i.e. 10 and 25 mM), half-maximal Ca2+ release occurred at 1.4 and 1.9 \mu{M}-Ins\textsubscript{P}\textsubscript{3} respectively. When the Ca2+-release curves are expressed as Hill plots (Fig 2b), it can be seen that the h value for Ca2+ release also changes from 2.2 in the absence of caffeine to 1.0 in the presence of 50 mM-caffeine. The inhibition by caffeine of Ins\textsubscript{P}\textsubscript{3}-induced Ca2+ release was also observed when Ca2+ uptake was partially inhibited by 50 mM-thapsigargin rather than orthovanadate, demonstrating that it was an effect of caffeine on the Ins\textsubscript{P}\textsubscript{3}-sensitive Ca2+ channel rather than secondary to an effect of orthovanadate.

Fig 3 shows that concentrations of up to 25 mM-caffeine had no effect on Ins\textsubscript{P}\textsubscript{3} binding to cerebellar microsomes. Higher concentrations of caffeine precipitated out of the sample under our experimental conditions, and therefore binding studies could not be carried out at 50 mM-caffeine.

Under the experimental conditions used for measuring Ca2+ uptake and release, between 6\pm2\% of the Ins\textsubscript{P}\textsubscript{3} was metabolized during 30 s, the period needed for the amount of Ca2+ released by Ins\textsubscript{P}\textsubscript{3} to approach its maximum level. This metabolism was unaffected by the presence of caffeine. However, under simulated 'intracellular' conditions, 73\% of the Ins\textsubscript{P}\textsubscript{3} was metabolized by the same microsome preparations over this time period (results not shown). It has previously been reported that ATP, pyrophosphate and vanadate, all of which are present in the medium during Ca2+ flux measurements, inhibit the metabolism of the Ins\textsubscript{P}\textsubscript{3} by the 5-phosphatase [18,20] (P. Hughes, personal communication).

DISCUSSION

Fluo-3 is an ideal monitor for measuring Ca2+ fluxes in muscle and non-muscle microsomes [13,14]. This method is also ideal for measuring both the rate and amount of Ca2+ released from microsomes after the addition of Ins\textsubscript{P}\textsubscript{3}. Because the maximal amount of Ca2+ release is dependent on the added Ins\textsubscript{P}\textsubscript{3} concentration, this process is referred to as quantal calcium release [2]. Here we have shown that Ins\textsubscript{P}\textsubscript{3}-stimulated quantal Ca2+ release is co-operative in nature (h = 2.2). It is not known why Ins\textsubscript{P}\textsubscript{3}-induced Ca2+ release is both quantal and co-operative, particularly as the kinetics of [3H]Ins\textsubscript{P}\textsubscript{3} binding do not show similar co-operativeivity [21]. Since the Ins\textsubscript{P}\textsubscript{3}-sensitive Ca2+ channel is believed to exist as a tetramer in the membrane [22], one possible explanation is that the opening of one channel in the tetramer may somehow facilitate the opening of adjacent channels.

The quantal release of Ca2+ induced by Ins\textsubscript{P}\textsubscript{3} is inhibited by caffeine, such that higher concentrations of Ins\textsubscript{P}\textsubscript{3} become necessary in order to cause the release of comparable amounts of Ca2+. The maximal amount of Ca2+ accessible to release by Ins\textsubscript{P}\textsubscript{3} remains unchanged (about 22\% of that sequestered by cerebellar microsomes). This might initially suggest competitive binding of caffeine at the Ins\textsubscript{P}\textsubscript{3}-binding site. However, the apparent co-operativity of Ca2+ release is dramatically changed by caffeine, whereas [3H]Ins\textsubscript{P}\textsubscript{3} binding is unaffected, so such an explanation is extremely unlikely. Moreover, the effect of caffeine on Ins\textsubscript{P}\textsubscript{3}-induced Ca2+ release is not due to changes in Ins\textsubscript{P}\textsubscript{3} metabolism. It is also unlikely to be due to caffeine-mediated changes in cyclic AMP concentrations, since, in agreement with other studies [11,23], we found that addition of 10 \mu{M} cyclic AMP had no effect on the Ins\textsubscript{P}\textsubscript{3}-induced quantal Ca2+ release (results not shown). Whatever the mechanism of the inhibition of Ins\textsubscript{P}\textsubscript{3}-induced Ca2+ release by caffeine, its occurrence means that extra caution must be exercised in the interpretation of the effects of caffeine on intracellular Ca2+.

At present, two models have been proposed to account for the phenomenon of quantal Ca2+ release. One model postulates the existence of an intraluminal Ca2+-binding site on the receptor, which regulates the opening of the Ins\textsubscript{P}\textsubscript{3}-sensitive Ca2+ channel [3]. The other model suggests that Ca2+ is released in an 'all-or-nothing' manner, with different Ins\textsubscript{P}\textsubscript{3}-sensitive Ca2+ stores having channels with different sensitivities to Ins\textsubscript{P}\textsubscript{3} [4]. In the present study we have shown that quantal Ca2+ release is normally co-operative, becoming non-co-operative upon the addition of caffeine. It is difficult to explain such changes in co-operativity solely in terms of distinct Ca2+ stores having different sensitivities to Ins\textsubscript{P}\textsubscript{3}. These results can be explained more readily by the intraluminal Ca2+-regulation model, with caffeine possibly affecting the regulation by intraluminal Ca2+. However, the two models are not mutually exclusive, since it may be envisaged that a heterogeneous population of Ca2+ stores may exist with different sensitivities to Ins\textsubscript{P}\textsubscript{3}, but which are also regulated by intraluminal Ca2+ concentrations. An analogy can be made to the ryanodine receptor in muscle, which shows a high sequence similarity to the Ins\textsubscript{P}\textsubscript{3}-sensitive Ca2+ channel [24]. This Ca2+ channel is also controlled by the intra- and extra-luminal Ca2+ concentrations [25], with caffeine modulating the effects of Ca2+; in this case, it enhances Ca2+ release [26].

The Medical Research Council, The Royal Society and the SmithKline (1982) Foundation are thanked for financial support, as is the Science and Engineering Research Council for a research studentship to L.S. Professor Graham Collingridge, Dr. Phillip Hughes and Mr. Matt Hodgkin are also thanked for helpful discussions.
REFERENCES

Received 18 November 1991/17 December 1991; accepted 6 January 1992