Sex-dependent inhibition by retinoic acid of thyroid-hormone action on rabbit reticulocyte Ca\(^{2+}\)-ATPase activity

Faith B. DAVIS, Terry J. SMITH, Paul J. DAVIS,* William D. LAWRENCE, A. John RYAN, Jr., Megan O. FARRELL and Susan D. BLAS

Endocrinology and Hematology Divisions, Department of Medicine, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Veterans Administration Medical Center and Erie County Medical Center, Buffalo, NY 14215, U.S.A.

The interaction was examined in vitro of retinoic acid and thyroid hormone with rabbit reticulocyte Ca\(^{2+}\)-ATPase. T\(_4\)-Thyroxine (T\(_4\)) (0.1 nm) stimulated female-source Ca\(^{2+}\)-ATPase activity (+21%; *P* < 0.03) and inhibited male-source enzyme (−20%; *P* < 0.05). Addition of retinoic acid (10 nm–1 μm) did not influence T\(_4\)-inhibitable male-source Ca\(^{2+}\)-ATPase, but caused a 52% loss of T\(_4\) effect on the female-source enzyme. Incubation of female-source membranes with testosterone caused the enzyme response to T\(_4\) and retinoic acid to become that of male-source membranes, and the male-source enzyme response was converted into the 'female' pattern by exposure to 17β-oestradiol. We postulate that a membrane-associated sex-steroid-dependent factor imparts a gender-specific interaction of thyroid hormone and retinoic acid on Ca\(^{2+}\)-ATPase, and that ultimately the factor is shed during erythrocyte maturation.

INTRODUCTION

Plasma-membrane Ca\(^{2+}\)-stimulatable Mg\(^{2+}\)-dependent ATPase (Ca\(^{2+}\)-ATPase, EC 3.6.1.3) activity is principally regulated by intracellular Ca\(^{2+}\) concentration, through the calmodulin-Ca\(^{2+}\) complex [1]. Ca\(^{2+}\)-ATPase activity in human and rabbit mature erythrocyte membranes is also stimulated in vitro by physiological concentrations (0.1 nm) of T-thyroxine (T\(_3\)) and 3,3',5-l-tri-iodothyronine (T\(_3\))[2–4]; stimulation of human erythrocyte Ca\(^{2+}\)-ATPase by endogenous thyroid hormone also occurs in vivo [5]. In contrast with observations made in mature erythrocyte membranes, rabbit reticulocyte membrane Ca\(^{2+}\)-ATPase activity responds to thyroid hormone on a sex-specific basis: female-source reticulocyte membranes have Ca\(^{2+}\)-ATPase activity that is stimulated in vitro by thyroid hormone, whereas male-source enzyme is inhibited [6]. This differential response is a function of ambient sex-steroid environment of the cell membranes in vivo and in vitro, rather than a genetic sex-determined feature of Ca\(^{2+}\)-ATPase. Enzyme stimulation by T\(_4\) in female-source reticulocyte membranes can be converted into thyroid-hormone-induced enzyme inhibition by incubating either membranes or whole reticulocytes with physiological concentrations of testosterone [6,7].

We have recently shown that retinoic acid, but not retinol, partially blocks thyroid-hormone activation in vitro of human mature erythrocyte membrane Ca\(^{2+}\)-ATPase activity [8]. The retinoic acid effect in this system demonstrates competitive inhibition of thyroid-hormone action on the enzyme. We have also determined that retinoic acid displaces [\(^{125}\)I]T\(_3\) and [\(^{125}\)I]T\(_4\) from human erythrocyte membrane binding sites [8].

In the present study we have examined the action of retinoic acid on the sex-specific response of rabbit reticulocyte Ca\(^{2+}\)-ATPase to iodothyronines, in order to establish whether the interaction of thyroid hormone and retinoic acid in this model is conditioned by the sex-steroid milieu at the membrane enzyme site.

MATERIALS AND METHODS

Hormones and reagents

T\(_4\), all-trans-retinoic acid, retinol, testosterone, 17β-oestradiol and Na\(_2\)ATP were obtained from Sigma, and [\(^{125}\)I]T\(_4\), (1250 μCi/μg) was from DuPont–New England Nuclear.

Induction of reticulocytosis and preparation of reticulocyte membranes

Reticulocytosis was induced in adult male and female rabbits by repeated venipuncture and removal of 40–45 ml of ear arterial blood, in accordance with our previously published schedule [6]. Reticulocyte membranes from 40 ml of heparinized blood containing 35–55% reticulocytes were prepared by hypo-osmotic lysis [2]. Membranes were washed twice in 0.9%, NaCl and twice in 10 mm-Tris/HCl, pH 7.45, and stored in that buffer at −70 °C until used within 72 h.

Ca\(^{2+}\)-ATPase activity

Enzyme activity was measured by our previously published method [2]. Activity was defined as the difference in ATP hydrolysis in the presence and absence of 20 μm free Ca\(^{2+}\), with liberated P, quantified by the Malachite Green method [9], as μmol of P/μg of membrane protein per 30 min assay period. Membrane protein was quantified by the method of Lowry et al. [10], with BSA as standard. Experimental results are reported as means ± S.E.M. of three independent experiments in each of which the results of duplicate samples were averaged (n = 3). Statistical significance was measured by one-way analysis of variance (ANOVA).

Effect of hormones or retinoids on membrane enzyme activity

Reticulocyte membranes were incubated at 37 °C with retinoic acid, retinol, T\(_4\), testosterone and/or 17β-oestradiol for 60 min before enzyme assay. Diluents were 1% ethanol for retinoids, testosterone and 17β-oestradiol, or 0 mm-Tris/HCl, pH 7.45,

Abbreviations used: Ca\(^{2+}\)-ATPase, Ca\(^{2+}\)-stimulatable Mg\(^{2+}\)-dependent ATPase; T\(_4\), l-thyroxine; T\(_3\), 3,3',5-l-tri-iodothyronine.

* To whom correspondence and reprint requests should be sent. Present address: Department of Medicine, Albany Medical Center, Albany, NY 12208, U.S.A.
for T₄ control samples of membranes contained diluent, but no hormone or retinoid. Ethanol (1%) had no effect itself on Ca²⁺-ATPase activity.

[125]I_T₄ binding studies

Reticulocyte membranes (0.5 mg/tube) were incubated for 60 min at 37 °C with [125]I_T₄ (80 pm) in 10 mM-Tris/HCl, pH 7.45, and unlabelled T₄, retinoic acid, testosterone (5 nM) or 17β-oestradiol (5 nM), as described previously [8]. Separation of bound from unbound ligand was by centrifugation at 16000 g for 10 min, followed by one wash of the pellet. All experiments were conducted in duplicate, and results presented are means ± S.E.M. of two experiments (n = 4). The diluent, 1% ethanol, had no effect on thyroid-hormone binding to reticulocyte membranes.

RESULTS

Reticulocyte-enriched membrane basal Ca²⁺-ATPase activity (without thyroid-hormone addition) was comparable in male- and female-source membranes: 1.02 ± 0.06 and 1.01 ± 0.02 μmol of P_i/mg per 30 min respectively. T₄ (0.1 nm) stimulated female-source membrane Ca²⁺-ATPase activity (+ 21%, P < 0.03) and significantly inhibited male-source enzyme activity (− 20%, P < 0.05).

In female-source reticulocyte-enriched membranes, T₄ stimulation of Ca²⁺-ATPase activity was inhibited by retinoic acid (10 nM–1 μM) in a dose-dependent manner (P < 0.003) (Fig. 1). The retinoic acid effect in these membranes was comparable with that obtained in human mature erythrocyte membranes obtained from either gender [8]. In contrast, retinoic acid (10 nM–1 μM) did not affect the inhibition of T₄ of Ca²⁺-ATPase activity in male-source reticulocyte-enriched membranes (Fig. 1). Retinol had no effect on male- or female-source reticulocyte Ca²⁺-ATPase, in either the presence or the absence of T₄ (results not shown). Stimulation of female-source reticulocyte membrane enzyme activity by T₄, and the blockade of that effect by retinoic acid, are shown in Fig. 2 (a). When female-source reticulocyte membranes were preincubated with testosterone (5 nM) before enzyme assay, T₄ inhibited Ca²⁺-ATPase activity (Fig. 2b), a response typical of male-source reticulocyte membranes (Fig. 2c). Addition of retinoic acid to testosterone-treated female-source membranes failed to influence the enzyme inhibition by T₄ (Fig. 2b), similar to the results observed in male-source reticulocytes (Fig. 2c). Conversely, enzyme inhibition by T₄ in male-source reticulocyte membranes was converted into the female pattern of response (enzyme stimulation) by preincubation of membranes with 17β-oestradiol (5 nM); this stimulation was inhibited by retinoic acid (Fig. 2d).

In the absence of exogenous T₄, retinoic acid (10 nM–10 μM) decreased membrane Ca²⁺-ATPase activity equally in male- and male-source reticulocyte membranes; this effect was concentration-dependent and not altered by either 17β-oestradiol or testosterone (results not shown). Mature erythrocyte membrane Ca²⁺-ATPase activity from male and female rabbits responded to T₄ and retinoic acid in a manner similar to that seen in human mature erythrocyte membranes [8], in that thyroid-hormone stimulation was inhibited by retinoic acid, and was unaffected by testosterone and 17β-oestradiol (results not shown).

The effects of retinoic acid, T₄ and sex steroids on labelled-T₄ binding to reticulocyte membranes are shown in Table 1. Non-radiolabelled T₄ and retinoic acid displaced tracer to a similar extent from both male- and female-source reticulocyte membranes. Non-specific binding of T₄ at a total T₄ concentration of 1 μM, was 46% of the binding with tracer alone. Retinoic acid (1 μM) displaced 88% of specific T₄ binding. The preincubation

![Fig. 1. Interaction of T₄ and retinoic acid on reticulocyte membrane Ca²⁺-ATPase activity from female and male rabbits](image)

Enzyme activities without hormone or retinoid were 1.02 ± 0.06 and 1.01 ± 0.02 μmol of P_i/mg per 30 min in male- and female-source membranes respectively. The change in enzyme activity with the addition of T₄ (0.1 nm) is shown on the ordinate. The control values C demonstrate enzyme stimulation by T₄ in female-source membranes, and inhibition by T₄ in male-source membranes. Retinoic acid (10 nM and 1 μM) inhibited the T₄-induced enhancement of Ca²⁺-ATPase in female-source membranes in a dose-dependent manner, but did not influence the inhibitory effect of T₄ in male-source membranes.

![Fig. 2. Interaction of T₄, retinoic acid and sex hormones on rabbit reticulocyte membrane Ca²⁺-ATPase activity](image)

Control enzyme activities were as given for Fig. 1. The ordinate shows the change in enzyme activity with addition of T₄ (0.1 nm). The female-source reticulocyte enzyme is stimulated by T₄ (a, ◦ within square); this stimulation is decreased by retinoic acid (10 nM and 1 μM). Female-source reticulocyte membranes exposed to testosterone (5 nM) show enzyme inhibition by T₄ (b, ○ within square), which is unaffected by retinoic acid. A similar response is seen with male-source reticulocyte membranes (c). Male-source membranes preincubated with 17β-oestradiol (5 nM) (d) display responses seen with female-source membranes.
This erythrocytes, preparation, membrane exposing sex-specific of the cell membranes is and response to the bilayer. that membrane, T4 [11-].

Of 17β-oestradiol (5 nm) with male-source membranes, or of testosterone (5 nm) with female-source membranes, for up to 60 min before binding assay, failed to alter the binding of tracer T₄ or its displacement of unlabelled T₄ or retinoic acid.

DISCUSSION

Rabbit reticulocyte membranes, but not those from mature erythrocytes, contain Ca²⁺-ATPase activity which manifests donor sex-specific response to thyroid hormone in vitro [6,7]. This response of reticulocyte membranes reflects the ambient concentration of oestrogen or androgen in the membrane milieu, and is not a trait conditioned in the erythroid cell line by gender of the cell donor [6,7]. We have previously shown that the thyroid-hormone response of Ca²⁺-ATPase can be altered by exposing intact reticulocytes to specific gonadal steroids before membrane preparation, or by exposing reticulocyte membranes to the steroids [6]. It is therefore evident that sex-steroid conditioning of the cell membranes is not lost during cell lysis and membrane preparation, including several washes, perhaps owing to solubilization of the hormones in the membrane lipid bilayer.

We have shown previously in the mature human erythrocyte that retinoic acid and thyroid hormone (either T₃ or T₄) interact at the plasma-membrane Ca²⁺-ATPase, and have suggested that inhibition by retinoic acid of thyroid-hormone-stimulatable Ca²⁺-ATPase is related to displacement by the retinoid of thyroid hormone from membrane binding sites [8]. The mature erythrocyte membrane in mammals is substantially different from that of reticulocytes, in terms of physical and biochemical characteristics [11-13]. Yet it is evident that T₄ and retinoic acid interact in the female-source reticulocyte in a manner similar to that seen in mature erythrocyte membranes. In the male-source reticulocyte membrane, T₄ inhibits Ca²⁺-ATPase activity, an effect which is not blocked by retinoic acid; this suggests that retinoic acid does not completely inhibit T₄ binding to the membrane, or that in androgen-conditioned membranes the retinoid does not have access to the site of interaction of T₄ with the membrane, or that in androgen-conditioned membranes the retinoid does not have access to the site of interaction of T₄ with the membrane, at or near the Ca²⁺-ATPase. With the addition to male-source membranes of oestrogen, however, T₄ stimulation of the enzyme, and the sensitivity of that effect to retinoic acid, are again apparent.

We speculate that an androgen-dependent factor exists in rabbit reticulocyte membranes which inhibits the action of thyroid hormone and its interaction with retinoic acid on the Ca²⁺-ATPase, and which is inactivated in the presence of oestrogen. Loss of the inhibitor during erythroid cell maturation would result in the similar responses of male- and female-source mature erythrocyte membrane Ca²⁺-ATPase to thyroid hormone and retinoic acid that we have seen, and is consistent with the evidence of others that during maturation of the reticulocyte a number of transport enzymes and receptors are shed [14-16]. An alternative explanation would be that an oestrogen-activated reticulocyte factor which permits thyroid hormone to stimulate Ca²⁺-ATPase, and which can be blocked by androgen in the reticulocyte membrane, becomes constitutive in mature erythrocytes of both sexes.

We have demonstrated no effect of 17β-oestradiol or testosterone on the binding of radiolabelled T₄ to male- or female-source reticulocyte membranes. We therefore conclude that these gender-specific actions of thyroid hormone and retinoic acid occur distal to the association of the ligands with their binding sites on reticulocyte membranes, and involve the interaction of a reticulocyte- and sex-steroid-specific factor which resides within the lipid bilayer of the plasma membrane.

We are grateful to Kim Dupere and Margaret Thompson for expert secretarial assistance. This work was supported in part by VA Merit Review Funding (T.J.S. and P.J.D.).

REFERENCES

Received 27 July 1990/26 October 1990; accepted 13 November 1990