The purification and characterization of a fatty acid binding protein specific to pig (Sus domesticus) adipose tissue

Michael K. ARMSTRONG,*§ David A. BERNLOHR,† Judith STORCH‡ and Steven D. CLARKE*

*Reproduction and Growth Physiology Research, Unit 7921, Building 25, Room 418, The Upjohn Company, Kalamazoo, MI 49001, U.S.A., †Department of Biochemistry, University of Minnesota, St. Paul, MN 55108, U.S.A., and ‡School of Public Health, Harvard University, Boston, MA 02115, U.S.A.

Western-blot analysis using antiserum to 3T3-L1-cell fatty acid binding protein (FABP) revealed that pig adipose tissue contains a 15 kDa protein immunologically similar to the murine protein. This 15 kDa protein was purified from pig adipose tissue by sequential application of Sephadex G-50 gel filtration, cation exchange and covalent chromatography on Thiol-Sepharose-4B. The purity of the pig protein was established by two-dimensional polyacrylamide-gel electrophoresis. Isoelectric focusing indicated that the pig adipose FABP (a-FABP) exists with two charge isofoms (pI 5.1 and 5.2), both of which persist after delipidation. The N-terminus of the purified pig a-FABP was blocked; however, cleavage with CNBr allowed recovery of a 12-amino-acid peptide which was identical with the murine a-FABP sequence (residues 36-48) at 10 of 12 positions. The pig a-FABP bound 12-(9-anthroyloxy)oleic acid saturably and stoichiometrically, with an apparent dissociation constant of 1.0 μM. Northern-blot analysis using the cDNA for the murine 3T3-L1 FABP revealed that the pig a-FABP was expressed exclusively in adipose tissue.

INTRODUCTION

The intracellular movement of lipids is thought to be aided by a family of low-molecular-mass (14–15 kDa) cytosolic proteins that bind hydrophobic ligands. FABPs have been purified from liver, small intestine, heart, mammary gland, peripheral nerve tissue and 3T3-L1 cells. The abundance of hepatic and intestinal FABPs is subject to hormonal and dietary control. The abundance of hepatic FABP increased after administration in vivo of oestrogen, cholestyramine, or diets with increased fat. Similarly, the abundance of intestinal FABPs was somewhat increased by peroxisome proliferators and increased dietary fat (reviewed by Bass, 1985). Relative to the regulation and adaptivity of a-FABP, feeding with a high-fat diet increased the storage of dietary fatty acids in pig adipocytes and reportedly also increased the palmitoyl-CoA binding activity of the low-molecular-mass protein fraction (St. John et al., 1987). Feeding β-agonists to cattle and sheep decreased the palmitoyl-CoA binding activity of the 14–16 kDa protein fraction in bovine adipose tissue, but increased the palmitoyl-CoA binding activity of the 14–16 kDa protein fraction of sheep adipose tissue (Miller et al., 1988; Coleman et al., 1988). However, conclusions regarding the tissue abundance of FABPs which are based on binding activity should be viewed cautiously, because: (1) a multiplicity of proteins in crude tissue extracts may bind the radiolabelled fatty acid, or its CoA ester, and cause FABP abundance to be underestimated (the non-specific binding component of the assay is often as high as 35–65% of the response); (2) the radiolabelled fatty acid, or its CoA ester, may not displace the ligand already bound to the FABP (thus causing FABP abundance to be underestimated); and (3) in micelle or liposome assays, the monomeric nonesterified fatty acid concentration cannot be accurately quantified. In addition, recent data (Bernier et al., 1988) suggest that 3T3-L1-cell a-FABP is regulated by covalent modification. Such modification may potentially alter the binding affinity of a-FABP for non-esterified fatty acids. These limitations make estimates of FABP concentration, based on binding assays, equivocal, and probably account for conflicting data in the literature regarding the effects of hormones and dietary fats on FABP concentration (Haq & Shrago, 1985; St. John et al., 1987; Miller et al., 1988; Coleman et al., 1988).

Accurate quantification of a-FABP concentration as affected by hormonal or dietary treatments requires the development of a specific immunological assay. A prerequisite for such an immunological approach is the purification of a-FABP. Pig a-FABP was selected for this study because: (1) the regulation of pig a-FABP may be important for understanding pig adipose metabolism, and hence changes in body composition; (2) pig aFABP plays a role in the growth-hormone-mediated decrease in the triacylglycerol content of pig adipose tissue (Evock et al., 1988); and (3) pig a-FABP could be used to study the regulation of fatty acid binding by such potential mechanisms as insulin-dependent tyrosine phosphorylation (Bernier et al., 1988).

MATERIALS AND METHODS

Purification

Pig back-fat (100 g) was obtained after slaughter and homogenized in 3 vol. of cold buffer (10 mM-sodium phosphate, 20 mM-NaCl, 1 mM-EDTA and 0.1 mM-phenylmethanesulphonyl fluoride, pH 7.4) with a Polytron homogenizer (Brinkman Instruments, Westbury, NY, U.S.A.) for 30 s at setting 10. The homogenate was centrifuged at 20000 g (4°C) for 30 min, and the non-fat infranatant solution was removed, adjusted to pH 5.0 with 12 mM-H₃PO₄, and incubated for 3–4 h at 4°C before ultra-centrifugation at 100000 g (4°C) for 60 min. The supernatant was concentrated 4-fold by ultrafiltration through a YM-5 membrane (Amicon, Danvers, MA, U.S.A.) and delipidated at 4°C on a 1 cm × 30 cm column (Bio-Rad, Richmond, CA, U.S.A.) packed with Lipidex-1000 (Packard Instrument Co., Downers Grove, IL, U.S.A.). Proteins eluted from the Lipidex column were diluted with 5 column vol. of buffer A (50 mM-

Abbreviations used: FABP(s), fatty acid binding protein(s); a-FABP, adipose-tissue FABP; PAGE, polyacrylamide-gel electrophoresis; 12AO, 12-(9-anthroyloxy)oleic acid.

§ To whom reprint requests should be addressed.

Vol. 267
sodium acetate, pH 5.0) and concentrated by ultrafiltration (YM-5 membrane) to approx. 3 mg/ml.

Approx. 20 mg of protein was applied to a pre-calibrated column (2.5 cm × 100 cm) of Sephadex G-50 (Pharmacia, Piscataway, NJ, U.S.A.) and eluted (20 ml/h) in buffer A. The protein absorbance in the column eluate was monitored at 280 nm, and the low-molecular-mass proteins were pooled and exhaustively delipidated by Lipidex column absorbance in the column eluate was monitored at 220 nm. The delipated eluate was applied to a 1 cm × 20 cm column of CM-Sephadex (Sigma Chemical Co., St. Louis, MO, U.S.A.), washed with 5 column vol. of buffer A, and the bound proteins were eluted with buffer A containing 500 mM-NaCl. The fractions containing pig FABP were identified by SDS/PAGE and Western-blot analysis. The FABP-containing fractions were pooled, dialysed against Western-blot buffer B with 470 A model protein detection was accomplished at room temperature, samples were separated by electrophoresis as described above described analysis Western-blot gradient gels with a 3.5 acetamide. The eluted protein fraction was dialysed and the low-molecular mass proteins were pooled and 3T3-L1 FABP

Electrophoresis Slab SDS/PAGE was performed in 1.5-mm-thick 9 cm × 6 cm gels with a 3.5 % acrylamide stacking gel and a 10–20 % linear gradient separating gel (Laemmi, 1970). Voltage (175 V) and temperature (18 °C) were held constant, and the separated proteins were made visible by silver staining (Morrisey, 1981).

Molecular-mass markers, prestained with Coomassie Blue, were purchased from Diversified Biotech, Newton Centre, MA, U.S.A.

Western-blot analysis For this, protein samples were separated by electrophoresis as described above and then transferred to nitrocellulose (Towbin et al., 1979) as modified by Burnette (1981). Transfer of low-molecular mass proteins was performed at 40 V for 16 h at 4 °C. Immunochromatographic detection was accomplished at room temperature by incubating the nitrocellulose in blocking buffer (3 % (w/v) gelatin in 20 mM-Tris/500 mM-NaCl, pH 7.5) for 30 min, followed by a 2–4 h incubation in rabbit anti-(murine FABP) serum diluted 1:1000 which had previously been prepared and shown to be monospecific (Bernlohr et al., 1984). Detection was accomplished by using goat anti-(rabbit IgG)-alkaline phosphatase conjugate (Immuno-Blot Kit from Bio-Rad). The pre-stained molecular-mass markers were visible immediately on transfer of the proteins to the nitrocellulose.

Isoelectric focusing and two-dimensional PAGE The pI values for the FABP isoforms were determined by flatbed electrofocusing at 10 °C in a polyacrylamide gel (5 % gel concentration, 3 % cross-linkage) containing a pH range of 4.5–6.0 (Multiphor System and Ampholine PAGPlate; LKB, Bromma, Sweden). Gels were silver-stained (Morrisey, 1981), and the apparent pI was determined with a surface pH electrode. Two-dimensional electrophoresis was performed by using non-equilibrium isoelectric focusing followed by SDS/PAGE (Bernier et al., 1987).

Protein hydrolysis and sequence analysis After purification from pig adipose tissue, 65 nmol of freeze-dried pig FABP (estimated from the A_{280} by assuming ε 1.53 × 10^4 M⁻¹ cm⁻¹) were redissolved in 70 % (w/v) formic acid, and peptides were generated by cleavage with CNBr (Aldrich Chemical Co., Milwaukee, WI, U.S.A.). Based on the number of methionine residues predicted from the murine FABP sequence (Bernlohr et al., 1984), a 100-fold molar excess of CNBr over protein was employed. Cleavage was carried out at room temperature for 24 h. After chemical degradation, the sample was freeze-dried, redissolved in 0.15 % (v/v) trifluoroacetic acid, and the peptide fragments were separated on a Perkin–Elmer Series 4 chromatograph fitted with a 250 mm × 4.6 mm-internals. Yvad TP-RPC4 column (The Separation Group, Hesperia, CA, U.S.A.). The eluents were: buffer C, 0.15 % trifluoroacetic acid; buffer D, 0.15 % trifluoroacetic acid in propan-2-ol/acetonitrile (7:3, v/v). The programmed gradient was 0–100 % D in 45 min. The flow rate was 1.0 ml/min and the column eluate was monitored at 220 nm.

N-Terminal amino acid sequence analysis was performed by automated Edman degradation with an Applied Biosystems model 470A gas-phase protein sequencer on-line to a model 120A amino acid phenylthiohydantoin analyser.

Fluorescence measurements and fatty acid binding Fluorescence spectra were obtained at 24 °C with an SLM 8000C fluorescence spectrophotometer. Excitation wavelengths were 280 and 383 nm for tryptophan and 12AO respectively. Emission intensities were estimated by integrating the area under the emission peak ± 10 nm.

Binding was determined by the quenching of protein tryptophan fluorescence and the enhancement of 12AO fluorescence on addition of fluorophore as previously described (Storch et al., 1989). The 12AO was added from concentrated ethanolic stock, and the final ethanol concentration was always less than 1 % (v/v). The 12AO fluorescence intensities were measured 3 min after probe addition, and binding affinities were established by fluorescence titration (Cogan et al., 1976) and tryptophan quenching (Vincent & Muller-Eberhard, 1985).

Tissue distribution To examine the tissue distribution of FABP by Western-blot analysis, samples of diaphragm, heart, intestine, kidney, liver, lung and adipose tissue were obtained from a barrow immediately after slaughter and homogenized as described above for purification. The crude homogenate protein (40 μg of protein/lane) was separated by SDS/PAGE and the presence of an immunoreactive protein identified as previously described.

The tissue specificity of a-FABP expression was also examined by Northern-blot analysis using 3T3-L1 FABP cDNA (Bernlohr et al., 1984). Samples of brain, heart, diaphragm, intestine, liver, lung and spleen were removed from a barrow immediately after slaughter and frozen in liquid N₂. Each tissue was homogenized in RNAzol (Cinna/Bioatecx, Friendwood, TX, U.S.A.) and the RNA was extracted as recommended by the manufacturer. The aqueous fraction containing RNA was extracted once with an equal volume of chloroform/butanol (4:1, v/v). RNA was precipitated from the aqueous fraction by adding an equal volume of propan-2-ol and incubating the samples at −20 °C for 45 min. RNA (10 μg) from each tissue was denatured with 2 M-glyoxal and size-fractionated by electrophoresis in a 1.5 % agarose gel. After electrophoresis, the gel was equilibrated in 40 mM-Tris/acetate/1 mM-EDTA, pH 8.0, for 15 min before electroblotting the RNA on to Zeta Probe (Bio-Rad, Rockville Centre, NY, U.S.A.). The transfer conditions were 60 V for 90 min at 4 °C in 40 mM-Tris/acetate/1 mM-EDTA, pH 8.0. The nucleic acids were cross-linked to the membrane by u.v. irradiation (3 min at 1200 μW/cm²) and hybridized to 32P-labelled 3T3-L1 FABP.
Pig adipose-tissue fatty acid binding protein

Fig. 1. A positive Western blot for FABP in 100000 g supernatant from pig adipose tissue (20 μg of protein) and purified FABP (1 μg) from 3T3-L1 cells

The blot was incubated for 4 h with rabbit anti-(3T3-L1 FABP) antiserum and developed as described in the Materials and methods section.

Fig. 2. Chromatography of protein (20 mg) from the high-speed-supernatant fraction of pig adipose tissue

The Sephadex G-50 column (2.5 cm × 100 cm) was eluted at room temperature with 50 mM-sodium acetate buffer (pH 5.0; 20 ml/h). Fractions (6.67 ml) were assayed by SDS/PAGE to determine which contained the relatively greatest amount of 15 kDa proteins. Inset: SDS/PAGE (10–20% acrylamide linear gradient) performed on fractions 11–14 and molecular-mass markers (MW: carbonic anhydrase, 29 kDa; cytochrome c, 12.4 kDa). Fractions 12–14 were pooled before further purification.

Fig. 3. CM-Sephadex ion-exchange chromatography of partially purified 15 kDa proteins

Proteins eluted from the column (1 cm × 20 cm) after addition of 0.5 M-NaCl to the buffer (50 mM-sodium acetate, pH 5.0) were collected as one fraction (10 ml). Inset: SDS/PAGE (10–20% linear gradient) shows molecular-mass (MW) markers (left) and the putative FABP (centre); the positive Western blot (far right) shows that the protein in greatest abundance immunoreacts with antisera developed against 3T3-L1 FABP. Prestained molecular-mass markers are visible on the Western blot; however, they were not immunoreactive.

cDNA. The murine FABP cDNA was radiolabelled by the random-primer method of Feinberg & Vogelstein (1983).

RESULTS

Western-blot analysis of the 100000 g supernatant demonstrated that pig adipose tissue contains a 15 kDa protein which immunoreacts with murine a-FABP antiserum (Fig. 1). Consequently, this antiserum was used to identify the putative pig a-FABP during purification.

Chromatography of the partially delipidated supernatant on a pre-calibrated Sephadex G-50 column resolved the low-molecular-mass proteins from the bulk of other protein in the sample. Fig. 2 (inset) shows that fractions 12–14 in fact contained an abundant 15 kDa protein. Western-blot analysis of these fractions revealed the presence of a 15 kDa protein which immunologically reacted with antiserum to 3T3-L1 FABP (results not shown). These fractions were pooled for further purification by CM-Sephadex ion-exchange chromatography. In order to retain the putative a-FABP on CM-Sephadex, the pooled protein fraction had to be further delipidated. This was accomplished by Lipidex 1000 chromatography at 37 °C as described in the Materials and methods section.

CM-Sephadex chromatography was a key step in the purification of the putative pig a-FABP. This ion-exchange procedure removed nearly 75% of the protein without loss of FABP.
Western-blot analysis of the proteins eluted from CM-Sephadex with buffer A indicated that FABP was absent from these fractions (results not shown). Upon addition of 0.5 M-NaCl to buffer A, a single 10 ml fraction, highly enriched with a 15 kDa protein, was eluted from the CM-Sephadex. Western analysis revealed that the 15 kDa protein was immunologically similar to 3T3-L1 FABP (Fig. 3).

The final step of the purification made use of the observation that 3T3-L1 FABP contained free thiol groups, i.e. Cys-2 and Cys-118 (Bernlohr et al., 1984). We speculated that the pig a-FABP would also contain these reactive thiol groups, and capitalized on this characteristic, by subjecting the CM-Sephadex eluate containing the putative a-FABP to covalent chromatography with Thiol-Sepharose-4B. The pig a-FABP did in fact bind to the Thiol-Sepharose-4B, and was subsequently eluted from it with buffer B containing 25 mM-dithiothreitol. A single 15 kDa protein was identified by SDS/PAGE, and this protein was immunoreactive with antiserum developed against 3T3-L1 FABP (results not shown).

The putative pig a-FABP bound to the fluorescent oleic acid analogue 12AO also indicated a ligand/protein molar ratio of 0.7:1 (Fig. 4a). Quenching of protein tryptophan emission by 12AO also indicated a ligand/protein ratio of approx. 1 (Fig. 4b). The reason for the emission quenching is likely to reflect energy transfer from the tryptophan to the anthroyloxy fluorophore (Storch et al., 1989). The apparent K_d for fatty acid binding obtained by fluorescence titration or tryptophan quenching was 1 μM. When 12AO binding was assessed at pH 6.5 (results not shown), the relative quantum yield was about 3-fold less than that observed at pH 8.0, but the apparent K_d was still 1 μM. Tryptophan quenching at pH 6.5 for the a-FABP was comparable with that at pH 8.0 (results not shown).

Results from the amino acid sequence further support a conclusion that the purified 15 kDa protein was a-FABP. CNBr cleavage of the purified porcine a-FABP yielded four peptide fragments as separated by h.p.l.c. Sequence analysis of the best-resolved fragment allowed placement of 12 amino acid residues corresponding to residues 37-48 of the 3T3-L1 FABP sequence (Fig. 5). Ten of the 12 amino acids in the pig peptide were identical in sequence with the 3T-L1 FABP.

Further characterization of the pig a-FABP by two-dimensional electrophoresis (non-equilibrium isoelectric focusing in the first dimension and SDS/PAGE in the second dimension)
Pig adipose-tissue fatty acid binding protein

from pig adipose tissue. To determine if this FABP was unique to adipose tissue, other pig tissues (diaphragm, heart, kidney, liver, lung and intestine) were analysed for the presence of an immunoreactive 15 kDa protein by Western-blot analysis. Immunoreactivity was found in diaphragm, kidney and heart as well as adipose tissue (results not shown). This could imply that the pig a-FABP was expressed in other tissues, or that an immunologically similar protein is expressed in these tissues. To evaluate these two possibilities, Northern-blot analyses of these pig tissues were conducted. Hybridization analysis revealed the pig a-FABP mRNA was specific to adipose tissue (Fig. 8). Hence, in pigs, the presence of immunopositive a-FABP in non-adipose tissues probably reflects cross-reactivity among the FABPs of heart, diaphragm, kidney and adipose tissue.

DISCUSSION

Our data demonstrate that pig adipose tissue contains a 15 kDa FABP which binds fatty acids with saturation kinetics, with an apparent K_d of approx. 1 μM and a stoichiometry of 1:1 FABP fatty acid. The affinity of a-FABP for fatty acids is similar to that reported for the heart FABP (Sacchettini et al., 1986; Paulussen et al., 1988), liver FABP (Bass, 1985; Storch et al., 1989) and 3T3-L1 FABP (Matarase & Bernlohr, 1988). The pig a-FABP appears to be similar to the 3T3-L1 FABP, as judged by its cross-reactivity with antisera prepared against the 3T3-L1 FABP (Fig. 1). More specifically, we found that the sequence of 10 amino acids in the 12-amino-acid peptide fragment from the pig a-FABP was identical with the sequence of residues 37-48 of the 3T3-L1 FABP (Bernlohr et al., 1984).

The pig a-FABP appears to be unique to adipose tissue, as judged by Northern-blot analysis of RNA from pig adipose tissue, brain, heart, diaphragm, intestine, liver, lung and spleen. Interestingly, Western-blot analysis with antisera raised against 3T3-L1 FABP revealed the presence of immunopositive FABP-like proteins in diaphragm, kidney and heart. Given the high abundance of a-FABP mRNA in pig adipose tissue, and yet the complete absence of cDNA hybridization in heart, kidney and diaphragm (Fig. 8), it seems unlikely that adipose contamination of these tissues would explain the degree of immunological cross-hybridization. Dempsey et al. (1986) have interpreted similar results for the tissue distribution of liver FABP to indicate that liver FABP is a secreted protein which is removed from the blood by various tissues. However, neither the adipose nor the liver FABP has a secretory leader sequence, i.e. a pre-form of FABP does not exist. Thus a more plausible explanation is the presence of an FABP within these tissues, which possesses a primary structure similar to that of pig a-FABP. This is particularly likely for the 20-30 amino acid residues of the N-terminal domain of the lipid-binding-protein multigene family (Sweetser et al., 1987). In support of this explanation, rat heart FABP has 62% sequence similarity with murine 3T3-L1 FABP (Sacchettini et al., 1986). Moreover, the 12-amino-acid sequence obtained from our pig a-FABP had a high similarity to residues 37-48 of rat heart FABP, and within this sequence 7 of 12 residues were identical. Finally, heart-like FABP has been found in both kidney and diaphragm.

Unlike the murine 3T3-L1 FABP, the pig a-FABP existed as two isoforms, as judged by isoelectric focusing and two-dimensional electrophoresis. Two-dimensional electrophoresis followed by Western blotting indicated that the two charge isoforms possessed pi values of 5.1 and 5.2. Multiple pi values for FABP within a tissue are commonplace (Ockner et al., 1976; Ketterer et al., 1976; Trulzsch & Arias, 1981; Takahashi et al., 1983; Glatz et al., 1985; Bass, 1985). One suggestion has been that fatty acid binding to the FABP alters the protein’s pi. In this respect, the

Fig. 7. Flat-bed isoelectrically focused gel (5% acrylamide, 3% cross-linkage, pH range 4.5-6.0) showing the two charge isoforms of putative pig FABP before delipidation by solvent extraction (a) and after solvent extraction (b)

pl was determined by using a pH-meter with a surface electrode, and the gel was silver-stained.

Fig. 8. Northern blot showing the pig tissue distribution of hybridizable mRNA (10 μg per lane) to 3T3-L1 FABP cDNA
isoforms of liver are interconvertible and become more basic after delipidation (Ockner et al., 1976; Ketterer et al., 1976; Trulzsch & Arias, 1981; Takahashi et al., 1983; Glatz et al., 1985; Bass, 1985). Lipidex chromatography and subsequent solvent delipidation of pig a-FABP had no effect on the isoelectric-focusing pattern (Fig. 7). An intriguing possibility exists that the two pI values represent differences in phosphorylation status. This speculation is based on reports that murine 3T3-L1 FABP is phosphorylated by insulin-dependent tyrosine kinase (Bernier et al., 1988). The phosphorylation of the 3T3-L1 FABP results in the appearance of two phosphorylated spots, one at pI 5.0 and one at pI 5.2. It will be of future interest to determine if the pig a-FABP is a substrate for tyrosine kinase and if the phosphorylation of a-FABP affects its affinity for non-esterified fatty acid.

In conclusion, our data indicate that pig adipose tissue contains a highly abundant FABP and its mRNA, and that the expression of this FABP is specific for adipose tissue. Furthermore, the pig a-FABP appears to have a single fatty-acid-binding site, with an apparent \(K_d \) of approx. 1 \(\mu M \). Although our data support the conclusion that the pig a-FABP is a member of the family of low-molecular-mass FABPs located in the brain, liver, heart, intestine and kidney, the regulation and physiological function of these proteins remain enigmatic.

We thank Dr. Bruce W. Jarvis for analysing pig a-FABP by two-dimensional SDS/PAGE and providing the photograph shown in Fig. 6(a). We also thank Heidi Zurcher-Neely and Dr. Alfredo Tomasselli for sequencing the peptide. M. K. A. and S. D. C. were supported in part by grant NIH R01 DK 39302.

REFERENCES

Received 19 September 1989/20 November 1989; accepted 6 December 1989