Cathepsin G binding to human platelets

Evidence for a specific receptor

Mary A. SELAK* and J. Bryan SMITH
Department of Pharmacology, Temple University Medical School, 3400 North Broad Street, Philadelphia, PA 19140, U.S.A.

We have shown previously that purified human neutrophil cathepsin G is a strong platelet agonist. We now demonstrate that cathepsin G exhibits saturable, reversible binding to human platelets which is characteristic of binding to a specific receptor. At room temperature, cathepsin G displayed apparent positive cooperativity of binding, as indicated by sigmoidal binding curves and a Hill coefficient greater than unity. By contrast, binding curves conducted with native enzyme at 0.5 °C displayed a much smaller degree of sigmoidicity, and binding studies performed with phenylmethanesulphonyl fluoride-treated enzyme at 22–25 °C exhibited hyperbolic binding curves. The concentrations of cathepsin G required to give half-saturation ($S_{0.5}$) with inhibitor-treated enzyme or with native enzyme at either room temperature or 0.5 °C were all similar, suggesting that sigmoidal binding curves did not result from an alteration in the affinity of the binding sites for cathepsin G. However, platelets bound approximately twice as many molecules of native enzyme as molecules of phenylmethanesulphonyl fluoride-treated cathepsin G per cell. From these observations it can be inferred that the apparent positive co-operativity may in part reflect the exposure of binding sites due to the proteolytic activity of cathepsin G. However, this conclusion is not supported by experiments conducted with subsaturating cathepsin G concentrations, which demonstrated that ligand binding did not show an expected increase at longer time intervals. Measurement of Ca$^{2+}$ mobilization and cathepsin G binding in the same platelet suspensions demonstrated that elevations in cytosolic free Ca$^{2+}$ concentration had achieved near-maximal levels in the presence of 15 μg of cathepsin G/ml, whereas maximal binding was observed at approx. 35 μg/ml, indicating that only a fraction of the total binding sites need be occupied to elicit platelet activation. Pretreatment of platelets with forskolin or phorbol 12-myristate 13-acetate (PMA) decreased cathepsin G binding by approx. 60% and 40% respectively, indicating that the receptor may be desensitized or down-regulated by phosphorylation due to protein kinases. Since forskolin and PMA could diminish receptor availability by activating negative feedback mechanisms, inhibition of negative signal-transduction pathways could conversely play a role in the up-regulation of cathepsin G binding. In any event, these results show that cathepsin G is an agonist that must bind to platelets to initiate processes associated with cell activation, and suggest a role for cathepsin G in platelet function.

INTRODUCTION

Although thrombin is the most potent known stimulus for platelet activation, the mechanism by which it elicits platelet responses is not completely understood. Stimulus–response coupling appears to require the binding of thrombin to specific receptors and thus resembles an agonist–receptor interaction (Dettwiler & Feinman, 1973; Tollesen et al., 1974; Harmon & Jamieson, 1986; Jandrot-Perrus et al., 1988). On the other hand, thrombin is a proteinase whose interaction with platelets shows characteristics of an enzyme-catalysed reaction (Martin et al., 1975; Dettwiler, 1981). We have demonstrated previously that human neutrophil cathepsin G, like thrombin, is a strong platelet agonist that does not depend on either ADP release or thromboxane synthesis for its action (Selak et al., 1988) and is capable of stimulating the secretion of lysosomal enzymes, liberation and metabolism of arachidonic acid and formation of phosphatic acid (M. A. Selak & J. B. Smith, unpublished work). Because cathepsin G resembles thrombin in its ability to activate platelets and because both agonists possess enzymic activity, it was of interest to determine if a platelet receptor exists for cathepsin G and, if so, to study the characteristics of binding of the enzyme to its receptor. We have therefore studied the binding of 125I-labelled cathepsin G to platelets by measuring free and bound cathepsin G after separation of platelets by centrifugation through oil. We have observed that cathepsin G exhibits rapid, saturable, reversible binding to platelets. Observations characteristic of a specific receptor. We also present data suggesting that the platelet cathepsin G receptor, and hence signal transduction pathways mediated by it, are subject to regulation.

MATERIALS AND METHODS

Materials

Indomethacin, N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide (SAAPPN), methoxy succinyl-Ala-Ala-Pro-p-p-nitroanilide, benzoyl-Arg-p-nitroanilide, trypsin, imi-

Abbreviations used: PMA, phorbol 12-myristate 13-acetate; PMSF, phenylmethanesulphonyl fluoride; SAAPPN, N-succinyl-Ala-Ala-Pro-Phe-p-p-nitroanilide; $S_{0.5}$, concen. required to give half-saturation of binding; B_{max}, maximum binding-site density.

* To whom correspondence should be addressed.
pramine, phenylmethanesulphonyl fluoride (PMSF) and phorbol 12-myristate 13-acetate (PMA) were obtained from Sigma. 5-Hydroxy[side chain-2,14C]tryptamine creatinine sulphate, [14C]sucrose and 125I were obtained from Amersham. Dow–Corning silicone oils DC550 and DC200 were purchased from William F. Nye, Inc. (New Bedford, MA, U.S.A.), and Iodo-Gen was purchased from Pierce Chemical Co. Fura-2 acetoxymethyl ester was purchased from Molecular Probes, ZK36374 was from Berlex (a subsidiary of Schering), and forskolin was purchased from Calbiochem.

Purification of cathepsin G and elastase

Human neutrophil cathepsin G and elastase were isolated according to the published methods of Baugh & Travis (1976) and Travis et al. (1978) as described previously (Selak et al., 1988) using sequential Aprotinin-Sepharose and carboxymethyl-Sephadex chromatography. Protein concentration was determined using the bicinchoninic acid (BCA) protein assay (Pierce) using bovine serum albumin as standard, as well as by absorbance at 280 nm.

Preparation of 125I-cathepsin G

Purified cathepsin G was iodinated at 4 °C by an Iodo-Gen procedure followed by gel filtration on a Sephadex G25 column to separate free and protein-bound 125I. Iodination was terminated when the specific radioactivity of the 125I-cathepsin G was approx. 8 μCi/μg. More than 93% of the total radioactive protein in the iodinated cathepsin G was precipitable by 10% trichloroacetic acid. The iodinated product was stored in aliquots at -70 °C and generally used within one month of iodination.

PMSF-inhibited unlabelled and 125I-labelled cathepsin G were prepared by incubating cathepsin G for 90 min at 22 °C in the presence of 1.25 mM-PMSF. After confirming the complete absence of cathepsin G enzymic activity by monitoring the hydrolysis of SAAPPN, free and protein-bound inhibitor were separated by chromatography on a Sephadex G25 column. Column fractions were monitored for the presence of radioactivity by using a gamma counter and for protein by absorbance at 280 nm, and appropriate fractions containing inhibitor-treated enzyme were again assayed for enzymic activity. Inhibitor-treated enzyme was periodically assayed before use in binding assays to confirm that proteolytic activity had not regenerated (Means & Feeney, 1971).

Characteristics of 125I-cathepsin G

Immunoreactivity and biological and enzymic activities were used to evaluate the integrity of 125I-cathepsin G. The immunoreactivity and electrophoretic properties of iodinated cathepsin G were indistinguishable from those of the unlabelled protein. Autoradiography of 125I-cathepsin G following electrophoresis in a non-denaturing acid gel system demonstrated that all four isoenzymes were radioiodinated and comigrated with unlabelled cathepsin G. In a typical iodination, the specific enzyme activity of 125I-cathepsin G for SAAPPN hydrolysis was diminished by approx. 9%. Biological activity, assessed by Ca2+ mobilization and dense granule release in fura-2-loaded and 5-hydroxy[14C]tryptamine-labelled platelets, was essentially unchanged. Moreover, no apparent difference was observed between the binding characteristics of native and iodinated cathepsin G when they were compared using cathepsin G of different specific radioactivities. 125I-Cathepsin G was mixed with unlabelled cathepsin G to obtain solutions of different specific radioactivities, and each solution was used to measure cathepsin G binding. Only if labelled molecules bound in exactly the same way as unlabelled molecules would these solutions show identical binding characteristics.

Preparation of platelets

Human blood was collected into acid/citrate/dextrose from healthy volunteers who had not taken aspirin during the previous 10 days (Aster & Jandl, 1964). Platelet-rich plasma was prepared by centrifugation at 180 g for 15 min. Platelets were collected by centrifugation at 500 g for 20 min and gently resuspended in Hepes-buffered saline composed of 145 mM-NaCl, 5 mM-KCl, 1 mM-MgSO4, 0.5 mM-Na2HPO4, 10 mM-glucose, 10 mM-Hepes, pH 7.4, and 5 mg of fatty-acid-free bovine serum albumin/ml. The platelet concentration was adjusted to 2 x 10^5/ml and the cells were kept at ambient temperature (22–25 °C). In some experiments, 2-fold-concentrated platelet-rich plasma was incubated at 37°C for 30 min with 3 μM-fura-2 acetoxymethyl ester dissolved in dimethyl sulphoxide. The volume of dimethyl sulphoxide never exceeded 0.5% (v/v). When labelling was complete, the platelets were collected by centrifugation and resuspended at a final concentration of 2 x 10^5/ml in Hepes-buffered saline with bovine serum albumin.

Binding of cathepsin G to platelets

In a typical binding experiment, 100 μl aliquots of platelets were incubated at 22–25 °C for 5 min with various concentrations of 125I-cathepsin G. Duplicate samples contained a 20–25-fold excess of unlabelled ligand (either native cathepsin G or PMSF-treated cathepsin G) to correct for non-specific binding. All data shown represent specific binding curves obtained after subtraction of non-specific binding from the total bound radioactivity. In time-course experiments, after incubation of appropriately expanded volumes for a specified time, 100 μl aliquots were removed and centrifuged in a Microfuge through 150 μl of a fresh mixture of silicon oils (5 parts DC550/1 part DC200) in microsediment tubes with narrow bore extended tips (Sinha et al., 1984). The tips containing the platelet pellets were cut off and the supernatants and tips were counted for radioactivity separately in a gamma counter. The amount of trapped unbound radioligand in the pellets was estimated using [14C]sucrose and found to represent less than 0.1% of the total radioactivity. In some experiments, platelets were preincubated for 5 min either with 10 μM-forskolin or with 100 ng of PMA/ml. In the assays performed on treated cells, the concentration of inhibitor was maintained during the binding assays.

Fluorescence measurements and estimation of cytosolic Ca2+

Portions of fura-2-loaded platelets in Hepes-buffered saline were routinely used to monitor Ca2+ mobilization at ambient temperature in the presence of nominal exogenous Ca2+. Fluorescence measurements were conducted at 22–23 °C in a Perkin–Elmer Model LS-5 fluorimeter using quartz cuvettes. Platelet suspensions were magnetically stirred for 10 s after addition of
Cathepsin G and for the final 15 s before removal of aliquots for binding analysis 5 min after adding agonist. Fura-2 fluorescence signals were obtained using an excitation wavelength of 340 nm (5 nm slit width) and an emission wavelength of 510 nm (10 nm slit width). \(F_{\text{min}} \) was determined following the addition of digitonin in the presence of EGTA and Tris base, and \(F_{\text{max}} \) was achieved by the subsequent addition of excess Ca\(^{2+}\). Cytosolic free Ca\(^{2+}\) concentrations were calculated using a \(K_d \) of 224 nm (Gryniewicz et al., 1985) after correction for extracellular dye.

Measurement of platelet secretion

5-Hydroxy[\(^{14}\)Cl]tryptamine- and fura-2-loaded platelets were collected 5 min after addition of cathepsin G. Secretion was stopped in formaldehyde/EDTA according to the method of Costa & Murphy (1975), and samples of the supernatants were added to scintillation fluid (Liquidscint, National Diagnostics). In each set of experiments, the total 5-hydroxytryptamine content of platelets was measured by adding platelet suspension to the stopping solution from which a sample was transferred directly to the counting solution. Release of 5-hydroxytryptamine was expressed as a percentage of the total 5-hydroxytryptamine content.

Measurement of cathepsin G, elastase and trypsin enzymic activity

Cathepsin G, elastase and trypsin activity were measured spectrophotometrically at 37 °C using SAAPPN, methoxysuccinyl-Ala-Ala-Pro-Val-p-nitroanilide and benzoyl-Arg-p-nitroanilide respectively as substrates, according to the methods of Nakajima et al. (1979) and Erlanger et al. (1961). In some cases, the enzymic activity of cathepsin G was also measured at 0.5 °C.

SDS/polyacrylamide-gel and acid-gel electrophoresis

SDS/polyacrylamide-gel electrophoresis (12 % gels, non-reduced) was conducted according to the procedure of Laemmli (1970) and acid-gel electrophoresis (15 % gels, non-denaturing) was performed as described by Blackshear (1984). Proteins used as calibration standards for SDS/polyacrylamide-gel electrophoresis were obtained from Bethesda Research Laboratories Life Technologies, Inc. and included lysozyme (\(M_f \), 14300), \(\beta \)-lactoglobulin (18400), carbonic anhydrase (29000), ovalbumin (43000), bovine serum albumin (68000), phosphorylase \(b \) (97400) and myosin heavy chain (200000).

RESULTS

Characteristics of cathepsin G binding at 22–25 °C

Initial experiments were conducted to determine if \(^{125}\)I-cathepsin G binds to platelets and to establish the time required for maximum binding. Shown in Fig. 1 is a representative time course for cathepsin G binding to platelets. These experiments established that maximal binding was achieved within 5 min at room temperature (22–25 °C). (Unless otherwise indicated, all subsequent binding assays were conducted at room temperature for 5 min.) The reversibility of cathepsin G binding to platelets was examined by measuring the dissociation of bound \(^{125}\)I-cathepsin G when a high concentration of unlabelled cathepsin G was added to the reaction mixture. The dissociation rate constant \((k_1 \) for the representative data shown in Fig. 1) was determined to be 0.1 min\(^{-1}\) on addition of a 25-fold excess of unlabelled enzyme to the reaction mixture 10 min after addition of the radioligand (arrow), 625 \(\mu \)g of unlabelled cathepsin G/ml (○) or an equal volume of buffer (●) was added. Portions of the cell suspension were removed at the times indicated and centrifuged in microsediment tubes through a mixture of silicon oils. The tips containing the platelet pellet were cut and both tips and supernatants were counted separately for radioactivity in a gamma counter.

![Fig. 1. Time course and reversibility of \(^{125}\)I-cathepsin G binding to platelets](image)

Binding was initiated by addition of 25 \(\mu \)g of \(^{125}\)I-cathepsin G/ml to platelets (2 \(\times \) 10\(^8\)/ml) suspended in Hepes-buffered saline containing 0.5 % fatty-acid-free bovine serum albumin and maintained at 23 °C. At 10 min after addition of the radioligand (arrow), 625 \(\mu \)g of unlabelled cathepsin G/ml (○) or an equal volume of buffer (●) was added. Portions of the cell suspension were removed at the times indicated and centrifuged in microsediment tubes through a mixture of silicon oils. The tips containing the platelet pellet were cut and both tips and supernatants were counted separately for radioactivity in a gamma counter.

Fig. 1. Time course and reversibility of \(^{125}\)I-cathepsin G binding to platelets

Binding was initiated by addition of 25 \(\mu \)g of \(^{125}\)I-cathepsin G/ml to platelets (2 \(\times \) 10\(^8\)/ml) suspended in Hepes-buffered saline containing 0.5 % fatty-acid-free bovine serum albumin and maintained at 23 °C. At 10 min after addition of the radioligand (arrow), 625 \(\mu \)g of unlabelled cathepsin G/ml (○) or an equal volume of buffer (●) was added. Portions of the cell suspension were removed at the times indicated and centrifuged in microsediment tubes through a mixture of silicon oils. The tips containing the platelet pellet were cut and both tips and supernatants were counted separately for radioactivity in a gamma counter.
value for \(S_{0.5} \) (the concn. giving half-saturation of binding) of \((663 \pm 159) \times 10^{-7}\) M-vcathepsin G. Sigmoidal binding curves are characteristic of positive co-operativity, indicating that the first molecule(s) of ligand binds with a lower affinity than the subsequent molecule(s) (Cantor & Schimmel, 1980). In the case where an iodinated ligand binds less tightly than the native protein, Scatchard plots are concave downward (Taylor, 1975). However, as discussed in the Materials and methods section, we were able to exclude ligand heterogeneity as the cause for the pronounced deviation from a simple equilibrium. Sigmoidal binding kinetics might also be observed if new binding sites on the platelet surface are exposed due to the proteolytic activity of cathepsin G.

Fig. 2. Binding of cathepsin G to platelets at 23 °C as a function of cathepsin G concentration

(a) Effect of cathepsin G concentration on \(^{125}\text{I}-\text{cathepsin G} \) binding to platelets. Portions of platelets (2 \(\times \) 10\(^7\)/ml) were incubated for 5 min at 23 °C with the indicated concentrations of cathepsin G followed by centrifugation through a silicone oil barrier as described in the Materials and methods section. (b) Hill plot of cathepsin G binding to platelets at 23 °C.

To test the possibility that the enzymic activity of cathepsin G is responsible for the sigmoidal binding curves, binding studies were conducted for various periods of time with 5 \(\mu \)g, 25 \(\mu \)g or 45 \(\mu \)g of cathepsin G/ml. If this supposition is valid, it would be expected that the binding of native cathepsin G would increase as a function of time when platelets are exposed to a sub-saturating ligand concentration (i.e. 5 \(\mu \)g/ml). However, as shown in Fig. 3, this was observed not to be true. These data indicate that exposure of new binding sites is not a simple kinetic process but one that is also dependent on absolute ligand concentration. This suggests either that a critical threshold of receptors must be occupied before new binding sites are uncovered, or that two different topologically distinct binding sites exist on the platelet for cathepsin G. Alternatively, these observations may suggest that while the cathepsin G receptor is being slowly digested, the rate of hydrolysis is slower than the rate of receptor exposure at this ligand concentration, and therefore binding neither decays nor increases with time.

Binding of PMSF-inhibited cathepsin G

To further address the question of proteolytic exposure of binding sites as the cause for the apparent positive co-operativity, \(^{125}\text{I}-\text{cathepsin G} \) was rendered inactive by treatment with PMSF, a treatment that totally abolishes platelet Ca\(^{2+}\) mobilization, 5-hydroxytryptamine release and aggregation. When binding studies were carried out using PMSF-treated \(^{125}\text{I}-\text{cathepsin G} \) and compared with native radioligand, the inhibited form exhibited diminished binding with hyperbolic binding curves (Fig. 4a). Dissociation studies demonstrated that native cathepsin G could displace PMSF-treated cathepsin G bound
to platelets (Fig. 4b), signifying that native and PMSF-treated cathepsin G can bind to the same sites on the platelet. Scatchard (1949) analysis yielded a straight line, indicating that PMSF-treated cathepsin G binds to a single class of identical and independent sites. A single non-interacting site was also suggested by a value of 1.07 ± 0.1 for the Hill coefficient. Hill plots gave an average value of (592 ± 96) × 10⁻⁷ M for S₀.₅ and Scatchard plots gave a value for B₅₀ of 0.91 × 10⁻⁶ molecules of PMSF-treated cathepsin G bound/platelet. Although the binding of PMSF-treated ¹²⁵I-cathepsin G was hyperbolic and was diminished relative to that of the native enzyme, the binding curves were shifted to the left relative to those of the uninhibited enzyme at low ligand concentrations, suggesting that the PMSF-inhibited enzyme bound to platelets with a higher affinity than did the native form (Figs. 2 and 3a).

To ascertain if PMSF treatment of cathepsin G had altered the conformation and thereby the affinity of the ligand, native ¹²⁵I-cathepsin G and PMSF-treated ¹²⁵I-cathepsin G were compared for their susceptibility to trypsin digestion. Portions of the tryptic digests were subjected to SDS and non-denaturing polyacrylamide-gel electrophoresis followed by autoradiography. [A similar approach has been used by Staatz et al. (1988) to ascertain if different conformations result when platelet glycoproteins Ia and Ila form complexes with either calcium or magnesium.] Interestingly, PMSF-treated cathepsin G was found to be more resistant to trypsin digestion than was native enzyme, indicating that differences exist between the native and inhibitor-treated forms of the enzyme that may account for the observed binding curves (results not shown). A trivial explanation for this finding is that trypsin is inhibited by non-protein-bound PMSF trapped within a hydrophobic pocket of inhibitor-treated cathepsin G. This explanation cannot be entirely excluded, but seems unlikely for the following reasons. First, ongoing substrate (SAAPPN) hydrolysis by native cathepsin G was totally unaffected by addition of PMSF-treated cathepsin G. Secondly, PMSF-treated cathepsin G had no effect on the enzymic activity of trypsin as measured with a synthetic trypsin substrate (benzoyl-Arg-p-nitroanilide). Both of these observations suggest that our preparations of active-site-inhibited cathepsin G lack free PMSF.

Fig. 4. Binding of PMSF-treated cathepsin G to platelets: comparison with native enzyme

(a) Effect of PMSF-treated cathepsin G concentration on binding of PMSF-treated ¹²⁵I-cathepsin G (○) to platelets. Binding experiments were conducted as described in the legend to Fig. 2, except excess unlabelled PMSF-treated cathepsin G was used to assess non-specific binding. Shown for comparison is the binding curve obtained using native ¹²⁵I-cathepsin G (●) with autologous platelets. The binding curves are the means of three different experiments conducted with different donors. Native and PMSF-treated radioligands were used at similar specific activities. (b) Time course of PMSF-treated cathepsin G binding to platelets and reversibility by native cathepsin G. Binding was initiated by addition of 25 μg of PMSF-treated ¹²⁵I-cathepsin G/ml. At 10 min after addition of the radioligand, 325 μg of unlabelled native cathepsin G/ml was added (arrow).

Fig. 5. Binding of cathepsin G to platelets at 0.5 °C as a function of cathepsin G concentration: comparison with binding at 23 °C

Experiments were conducted as described in the legend to Fig. 2 after temperature equilibration of platelets to 0.5 °C (○). Shown for comparison is the 23 °C binding curve (●) conducted with autologous platelets. The values shown are the means of three different experiments conducted with different donors.
Binding of native cathepsin G at 0.5 °C

To circumvent potential differences between PMSF-inhibited and native enzyme, binding studies were also conducted in an ice bath at 0.5 °C (actual temperature of binding assay) using native enzyme and compared with ligand binding at 23 °C in autologous platelets. As seen in Fig. 5, substantially less native cathepsin G bound to platelets at 0.5 °C than at 23 °C, and the curves were much less obviously sigmoidal. Hill plots of the low-temperature binding data revealed an $S_0.5$ of $(858 \pm 161) \times 10^{-9}$ M and a Hill coefficient of 1.93 ± 0.47. The value of h is lower than that observed at 23 °C, indicating a lower degree of apparent co-operativity. That any co-operativity remains probably reflects the fact that cathepsin G exhibits a very low but nonetheless significant enzymic activity at 0.5 °C. At 37 °C, cathepsin G hydrolysed 11.6 µmol of SAAPPN/min per mg, whereas at 0.5 °C it exhibited a specific activity of 0.186 µmol/min per mg.

Cathepsin G receptor occupation and platelet responses

The extent of 125I-cathepsin G binding and the stimulation of changes in cytosolic free Ca$^{2+}$ were used to correlate the relationship between binding and platelet activation. As seen in Fig. 6, near-maximal Ca$^{2+}$ mobilization was achieved at 15 µg of cathepsin G/ml, and maximal radioligand binding was observed at approx. 35 µg/ml.

![Fig. 6. Correlation of cathepsin G binding with platelet functional changes](image)

Cathepsin G binding and Ca$^{2+}$ mobilization are shown as a function of cathepsin G concentration. Fura-2-loaded platelets were stimulated by addition of the indicated concentrations of 125I-cathepsin G at 22 °C in the presence of nominal exogenous Ca$^{2+}$. Fluorescence changes (○) were monitored continuously and cathepsin G binding (△) was determined 5 min after agonist addition following centrifugation of an aliquot of the platelet suspensions through a silicone oil barrier as described in the Materials and methods section. The results shown are representative of three experiments conducted with different donors.

![Effect of forskolin or PMA on cathepsin G binding to platelets](image)

Platelets were preincubated for 5 min at 22–24 °C with either 10 µM-forskolin (△) or 100 ng of PMA/ml (○) before initiating binding studies as described in the legend to Fig. 2. Control platelets (●) were untreated. The binding curves are the means of four experiments conducted with different donors.

Effect of forskolin and PMA on cathepsin G binding

Agents which increase cyclic AMP and promote the activity of cyclic AMP-dependent protein kinase inhibit platelet responses to a wide range of agonists (Haslam, 1987). We have observed that cathepsin G-induced platelet stimulation is potentiated by adrenaline, an inhibitor of platelet adenylate cyclase, and is inhibited by the prostacyclin analogue ZK36374, an activator of platelet adenylate cyclase (results not shown). PMA also inhibits signal generation by agonists when preincubated with platelets, suggesting that the activation of protein kinase C could have important negative feedback effects on platelet function. The effect of activation of protein kinase A or protein kinase C on cathepsin G binding was thus examined. As seen in Fig. 7, pretreatment of platelets with forskolin under conditions known to elevate cyclic AMP (Daly, 1984) decreased the overall binding of 125I-cathepsin G by over 60%. Similarly, preincubation of platelets with PMA, a direct activator of Ca$^{2+}$-activated phospholipid-dependent protein kinase C, decreased cathepsin G binding by approx. 40%.

DISCUSSION

The results of the present study demonstrate that neutrophil cathepsin G exhibits specific, saturable, reversible binding to platelets which is characteristic of binding to a distinct receptor. Binding of native cathepsin G at 22–25 °C exhibited sigmoidal binding, concave-downward Scatchard plots and a Hill coefficient of 4. The binding of PMSF-inhibited enzyme at room tem-
temperature was hyperbolic, whereas the binding curves of native enzyme at 0.5 °C exhibited decreased sigmoidicity, suggesting that enzymic activity is required for the observed positive co-operativity. Although the concentrations of cathepsin G required to give half saturation estimated from binding data obtained with native enzyme at either 23 °C or 0.5 °C or with PMSF-treated enzyme at room temperature were all similar, the data do suggest that the inhibitor-treated ligand differed from the native enzyme. On the other hand, analysis of the data showed that human platelets bind approx. 10^7 molecules of PMSF-treated cathepsin G/cell and approx. 2 x 10^7 molecules of native enzyme/platelet. The similarities in S_0.5 values and the large differences in B_max imply that sigmoidal binding may be a consequence of proteolytic exposure of additional binding sites rather than a decreased affinity of the binding sites for cathepsin G. Exposure of sites by proteolysis would be expected to occur even at low concentrations of cathepsin G in a time-dependent manner. However, binding studies conducted with subsaturating concentrations of cathepsin G for variable periods of time showed that binding did not increase, suggesting that a critical threshold of receptors must be occupied before new binding sites are uncovered.

The binding of cathepsin G and the stimulation of Ca^{2+} mobilization in fura-2-loaded platelets were monitored in the same platelet samples to correlate receptor occupation with a functional change. The elevation in cytosolic free Ca^{2+} had achieved near-maximal levels by 15 μg of cathepsin G/ml, whereas maximal binding did not occur until approx. 35 μg/ml. These observations suggest that only a fraction of the total cathepsin G receptors need to be occupied for platelet activation to occur.

Treatment of platelets with forskolin or with PMA was found to decrease overall cathepsin G binding by approx. 60% and 40%, respectively. A major effect of cyclic AMP seems to be the suppression of generation of second messengers, e.g., cyclic AMP inhibits agonist-induced hydrolysis of inositol phospholipids (Rittenhouse & Sasson, 1985) as well as the rise in cytosolic Ca^{2+} (MacIntyre et al., 1985). More recently, Lerea et al. (1987) have observed that agents which elevate platelet cyclic AMP decrease thrombin binding. Although the mechanism by which cyclic AMP exerts this effect is unknown, these investigators suggest that increased levels of cyclic AMP might lead to a direct modification of the receptor or might alter its interaction with a protein(s) that regulates it. Treatment with phorbol ester has been shown to reduce the amount of inositol 1,4,5-trisphosphate formed (Rittenhouse & Sasson, 1985) and to inhibit the elevation in cytosolic Ca^{2+} and phosphatidic acid formation (MacIntyre et al., 1985) on agonist stimulation of platelets, suggesting that protein kinase C activation can exert negative feedback effects on platelet function. Although the mechanism by which cyclic AMP and PMA attenuate cathepsin G binding remains to be elucidated, the present results suggest that activation of either protein kinase A or protein kinase C may desensitize or down-regulate the cathepsin G receptor by phosphorylation and perhaps by internalization. In this regard, receptor phosphorylation in many different cell systems has been shown to be associated with a decrease in receptor function and distribution (Sibley et al., 1988). Our observations suggest that the cathepsin G receptor, and hence signal transduction pathways mediated by it, are subject to regulation. Whereas both kinases could alter platelet responsiveness to cathepsin G at numerous stages, data shown here demonstrate that a primary effect may be exerted at the receptor level.

Having established that the binding of cathepsin G to platelets exhibits characteristics indicative of a distinct receptor, we have attempted to determine the mechanism responsible for the apparent positive co-operativity of binding. Although our data show that cathepsin G appears to up-regulate its own binding to human platelets, from the data we are unable to define clearly the mechanism by which this up-regulation occurs. Proteolytic exposure of additional binding sites would appear to be the simplest explanation for the apparent positive co-operativity of cathepsin G binding; however, this conclusion is incompatible with the failure to observe increased binding of cathepsin G after longer time intervals in the presence of low ligand concentrations. The latter observation suggests that a critical threshold of cathepsin G receptors must be occupied before up-regulation is observed, and further suggests that cathepsin G can function as a homotropic effector to regulate its own binding. Since PMA and forskolin diminish receptor availability by activating negative feedback mechanisms, inhibition of negative signal transduction pathways could conversely result in up-regulation of cathepsin G binding. However, modulation of cathepsin G binding by protein kinase A or protein kinase C cannot solely account for up-regulation, since neither PMA nor forskolin pretreatment of platelets completely eliminated the sigmoidal binding curves.

As a serine proteinase, cathepsin G has esterolytic and amido-lytic activities, either or both of which may play a role in platelet activation. Although cathepsin G exhibits chymotrypsin-like specificity (Powers et al., 1985), it differs from chymotrypsin in that it can activate platelets whereas chymotrypsin cannot (Davy & Luscher, 1967). The difference in the ability to activate platelets may be related to the sequence of residues lining the substrate specificity pocket as well as to the absence of the disulphide bond linking residues Cys-191 and Cys-220 (Salvesen et al., 1987). These changes may alter the geometry of the binding pocket and affect the substrate specificity (Woodbury et al., 1978). Glycine-226 in chymotrypsin has been replaced by a glutamyl residue in cathepsin G and this alteration, along with the absence of the disulphide bridge, may confer trypsin-like properties on cathepsin G, and the similarity to trypsin may account for the ability of cathepsin G to activate platelets. Since cathepsin G resembles thrombin and trypsin in its ability to activate platelets, and since cathepsin G and thrombin are both strong platelet agonists that are also proteinases, it will be of interest to determine how their respective target proteins on the platelet membrane differ. We believe that the demonstration that cathepsin G is a strong platelet agonist that binds to specific receptors provides an insight into the potential physiological role of this neutral proteinase and has important implications for the understanding of both thrombosis and the critical events surrounding the initiation and propagation of the inflammatory response.

This work was supported by grants 861161 from the American Heart Association and HL30783 from the National Institutes of Health. We are deeply indebted to Lee Silver for
performing neutrophil isolations and gel electrophoresis. We thank Dr. Barrie Ashby for advice and criticism during the preparation of this manuscript.

REFERENCES

Baugh, R. J. & Travis, J. (1976) Biochemistry 15, 836–841

Received 18 May 1989/25 September 1989; accepted 13 October 1989

M. A. Selak and J. B. Smith