Confirmation of D-aspartic acid in the novel dipeptide β-aspartylglycine isolated from tissue extract of Aplysia kurodai

Minoru SATO, Tomoyuki YAMAGUCHI, Nobuhiro KANNO and Yoshikazu SATO
School of Fisheries Sciences, Kitasato University, Sanriku, Iwate 022-01, Japan

A novel o-phthalaldehyde-reactive compound was found in the h.p.l.c. chromatogram of Aplysia kurodai extract. This compound was isolated by ion-exchange chromatography and preparative high-voltage paper electrophoresis. It was shown by optical-rotatory-dispersion spectrum and optical-resolution h.p.l.c. analysis that this compound consisted of equimolar amounts of D-aspartic acid and glycine. This compound resisted cleavage in the Edman reaction. This peptide was inferred to be β-D-aspartylglycine, and this was confirmed by synthesis. β-D-Aspartylglycine was detected in all tissues of Aplysia kurodai, with especially high concentrations in body wall (skin and muscle) and gill.

INTRODUCTION

We have previously described the presence of N-methyl-D-aspartic acid in the muscle of the blood shell Scapharca broughtonii (Sato et al., 1987). In the subsequent study on the distribution of D-aspartic acid (which seems to be the precursor of N-methyl-D-aspartic acid) in molluscs by optical-resolution h.p.l.c. analysis, we detected an unidentified peak in the acidic area before D-aspartic acid in the tissue extract of Aplysia. It was isolated by ion-exchange chromatography and preparative paper electrophoresis. The structure of this compound was inferred to be β-D-aspartylglycine (β-D-Asp-Gly), and this was confirmed by synthesis. The present paper deals with the isolation and identification of β-D-Asp-Gly from the tissues of Aplysia kurodai.

EXPERIMENTAL

Materials and reagents

All chemicals such as L- and D-aspartic acid, o-phthalaldehyde, N-acetyl-L-cysteine, phenyl isothiocyanate etc. in reagent grade were purchased from Wako Pure Chemicals Co., Tokyo, Japan. The reverse-phase column material TSK-ODS 80T (particle size 5 μm; Tosoh Co., Tokyo, Japan) was packed into a 250 mm × 4.6 mm (internal diameter) stainless-steel column in our laboratory by the conventional slurry-packing technique.

Paper electrophoresis

Amino acids and related compounds were detected routinely by ninhydrin development after separation by high-voltage paper electrophoresis at pH 1.9 (Sato et al., 1987).

Amino acid analysis

Amino acids were analysed by h.p.l.c. after reaction with phenyl isothiocyanate to produce the phenylthiocarbamoyl derivatives. Formation of derivatives and h.p.l.c. analysis were conducted in the manner described by Sato et al. (1988) except that the buffer pH was 5.4 instead of 5.0.

Optical-resolution analysis of D-aspartic acid by h.p.l.c.

Chromatography was conducted in an h.p.l.c. system consisting of the following components: two Jasco 880-PU pumps, a Jasco 801-SC system controller, a Jasco 850-AS autosampler, a Jasco 210-FP spectrofluorimeter, an 865-CO column oven at 40 ± 0.1 °C and a Sic Chromatocorder 12 data processor. The elution solvent systems were (solvent A) 50 mm-sodium acetate buffer, pH 5.4, and (solvent B) acetonitrile. The solvent proportions were set as follows: 0–10 min, 0–10% (v/v) solvent B in solvent A; 10–20 min, 10% (v/v) solvent B in solvent A. After this, a washing step was programmed to 60% (v/v) solvent B in solvent A for 5 min. The formation of amino acid derivatives was carried out by the method of Nimura & Kinoshita (1986). To 10 μl of amino acid solution was added 60 μl of 0.1 M-sodium borate and they were mixed well. Then 40 μl of o-phthalaldehyde/N-acetyl-L-cysteine solution (8 mg of o-phthalaldehyde and 10 mg of N-acetyl-L-cysteine in 1 ml of methanol) was added, and the whole was mixed well and left to stand for 2 min. Then 10 μl of the derivative was injected for h.p.l.c. analysis.

RESULTS

Isolation of β-D-Asp-Gly from Aplysia

Four living specimens of Aplysia kurodai were collected in Okkiri Bay, Iwate Prefecture, Japan, in June 1988. The foot and parapodium muscle (600 g) were used for ethanolic extraction by a previously published method (Sato et al., 1979). The extract was applied on to a Dowex 50W-X8 (H+ form) column (4 cm × 50 cm) and washed thoroughly with 20 litres of deionized water. The bound material was eluted with 4 litres of 2 M-NH₄OH solution and fractionated into 1-litre portions. Each portion was concentrated by flash evaporation and subjected to high-voltage paper electrophoresis and h.p.l.c. analysis. The fractions containing the unknown compound that gave a peak before D-aspartic acid in the optical-resolution h.p.l.c. analysis (Figs. 1a and 1b) were combined and concentrated to dryness. The residue was dissolved in a small volume of deionized water and loaded on a Dowex 1-X8 (acetate form) column (1.5 cm × 25 cm). The column was washed thoroughly with 2 litres of deionized water.
water and then eluted successively with 500 ml each of
0.1 M, 0.15 M and 0.2 M acetic acid. The eluate
was collected in 10 ml fractions and checked by paper
electrophoresis and h.p.l.c. analysis as stated above.
After elution of aspartic acid (fractions 44–64), the
unknown compound was detected in fractions 75–105
with small amounts of other material. The fractions
containing the unknown compound were combined and

**Fig. 1. Chromatography of standard amino acids (a), acidic
fraction of extract from parapodium muscle of *Aplysia*
(b), isolated β-δ-Asp-Gly (c) and HCl hydrolysate of β-δ-
Asp-Gly (d)**

Chromatography was on a 250 mm × 4.6 mm (internal
diameter) column of TSK-ODS 80T (5 μm particle size)
at 40 °C. The mobile phase was formed from solvent A
(50 mM-sodium acetate buffer, pH 5.4) and solvent B
(acetonitrile). The gradient was set as follows: 0–10 min,
0–10% (v/v) solvent B in solvent A; 10–20 min, 10%
(v/v) solvent B in solvent A. The flow rate was 1 ml/min.
Fluorimetric detection was with an excitation wavelength
of 348 nm and an emission wavelength of 450 nm. A
33.3 pmol amount of each standard amino acid was
injected.

**Fig. 2. Optical-rotatory-dispersion spectrum of β-δ-Asp-Gly
isolated from *Aplysia***

β-δ-Asp-Gly was dissolved in water at a concentration
of 0.35 mg per 3 ml, and its optical-rotatory-dispersion
spectrum was measured at 23 °C with a Jasco model
ORD-J-20A instrument.

Identification of β-δ-Asp-Gly

The isolated compound consisted of equimolar
amounts of aspartic acid and glycine as judged from the
amino acid analysis after hydrolysis with 6 M HCl at
110 °C for 20 h. The D-configuration of aspartic acid
was strongly suggested by optical-rotatory-dispersion
spectrum analysis: [M]205° = −1177°, [M]230° = −1827°,
[M]250° = −2801°, [M]273° = −3613°, [M]280° = −4527° and
[M]290° = −3897° (Fig. 2). It was also confirmed by
optical-resolution h.p.l.c., as shown in Figs. 1(c) and
1(d). This compound gave neither aspartic acid
phenylthiodyantoin derivative nor glycine phenyl-
thiohydantoin derivative during attempted cleavage by
the Edman reaction. From all the above data, the isolated
compound was inferred to be β-δ-Asp-Gly.

**Synthesis of β-δ-Asp-Gly and comparison with the
compound isolated from *Aplysia kurodai***

N-Benzyloxy carbonyl-δ-aspartic acid α-ethyl ester
prepared from δ-aspartic acid (1.33 g) by the method of
Kovacs *et al.* (1963) was combined with glycine by the
general method of Yajima *et al.* (1967) to produce
N-benzyloxy carbonyl-β-δ-Asp(OEt)-Gly. The protecting
groups were removed by the usual procedure and β-δ-
Asp-Gly was purified by ion-exchange chromatography
on both a Dowex 50-X8 (H⁺ form) column (2.6 cm ×
12 cm) and a Dowex 1-X8 (acetate form) column
(2.2 cm × 17 cm). Colourless crystals were obtained by
crystallization from aqueous ethanol (yield 1.4 mg). On
h.p.l.c. analysis this compound showed a single peak
with the same retention time as the compound isolated
from *Aplysia*. The data of the optical-rotatory-dispersion
Table 1. Concentration of β-d-Asp-Gly in tissues of *Aplysia kurodai*

<table>
<thead>
<tr>
<th>Tissue</th>
<th>β-d-Asp-Gly content (µmol/g of tissue)</th>
<th>d-Asp content (µmol/g of tissue)</th>
<th>100 x D-Asp/DL-Asp ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parapodium (skin)</td>
<td>20.93</td>
<td>3.47</td>
<td>73.90</td>
</tr>
<tr>
<td>Parapodium (muscle)</td>
<td>19.37</td>
<td>3.88</td>
<td>40.09</td>
</tr>
<tr>
<td>Gill</td>
<td>15.04</td>
<td>0.26</td>
<td>48.02</td>
</tr>
<tr>
<td>Mid-gut gland</td>
<td>0.28</td>
<td>0.03</td>
<td>5.42</td>
</tr>
<tr>
<td>Intestine</td>
<td>0.93</td>
<td>0.04</td>
<td>7.66</td>
</tr>
<tr>
<td>Mouth</td>
<td>5.08</td>
<td>0.65</td>
<td>36.02</td>
</tr>
<tr>
<td>Stomach</td>
<td>3.81</td>
<td>0.58</td>
<td>38.00</td>
</tr>
<tr>
<td>Gizzard</td>
<td>4.31</td>
<td>1.72</td>
<td>45.14</td>
</tr>
<tr>
<td>Ganglion and nerves</td>
<td>3.73</td>
<td>1.59</td>
<td>90.54</td>
</tr>
<tr>
<td>Purple dye fluid</td>
<td>Trace</td>
<td>Trace</td>
<td>–</td>
</tr>
</tbody>
</table>

$= -3213^\circ$, $[\mathcal{M}]_{205} = -4108^\circ$ and $[\mathcal{M}]_{205} = -3694^\circ$, agreeing well with the values obtained with the compound isolated from *Aplysia*.

Distribution of β-d-Asp-Gly in *Aplysia* tissues

Tissues of *Aplysia kurodai*, collected in May 1989, were homogenized in 3 vol. (v/w) of 1 M-HClO$_4$ in an Ystral disperser and then centrifuged at 10000 g for 20 min. The supernatant was neutralized with 10 M-KOH and centrifuged at 10000 g for 20 min. The final supernatant was diluted and used for h.p.l.c. analysis after derivative formation with o-phthalaldehyde/N-acetyl-L-cysteine. High β-d-Asp-Gly concentrations were detected in body-wall tissue (both skin and muscle of parapodium) and gill, as shown in Table 1. β-d-Asp-Gly was also detected in all other tissues analysed, including digestive and nervous tissues. There are high concentrations of D-aspartic acid, which seems to be a precursor of β-d-Asp-Gly, in all tissues of *Aplysia*.

DISCUSSION

In this study a novel acidic dipeptide, β-d-aspartylglycine (β-d-Asp-Gly), was isolated from extracts of parapodium and foot of *Aplysia kurodai*. This compound was confirmed to be distributed in all tissues of this gastropod mollusc. It is, however, noteworthy that high concentrations of β-d-Asp-Gly were contained in the external tissues in direct contact with sea-water. The low yields of β-d-Asp-Gly actually obtained compared with the high concentrations in parapodium measured by h.p.l.c. analysis can be attributed to incomplete separation from tissue extract and/or to seasonal variation.

β-Asp-Gly has been identified previously in human urine (Buchanan et al., 1962; Gejyo et al., 1978), in collagen (Pisano et al., 1966), in caecal contents of mammals (Welling & Groen, 1978; Welling, 1982) and also in tissues of *Aplysia californica* (McCaman & Stetzler, 1984). However, there is no information in these reports on the configuration of aspartic acid of β-Asp-Gly. Since the configuration of aspartic acid of β-Asp-Gly occurring in *Aplysia kurodai* has now been confirmed to be the D-form, it is necessary to reconsider the configuration of aspartic acid of mammalian β-Asp-Gly from a comparative viewpoint.

Synthesis of β-Asp-Gly in the ganglion of *Aplysia californica* has been studied by radioactive tracer experiments (McCaman & Stetzler, 1985). In these experiments a rapid incorporation of 14Cglycine from a sea-water medium into β-Asp-Gly was observed, but only a little of 14Caspartic acid (configuration not stated). It might have been more rapidly incorporated if D-aspartic acid had been used in these experiments.

With regard to mammalian β-Asp-Gly, it has been pointed out that β-Asp-Gly would be metabolized by a number of strains of bacteria present in the intestinal tract of animals (Welling, 1982). It follows that the configuration of aspartic acid of mammalian β-Asp-Gly needs to be determined, since bacteria can metabolize D-amino acids. And, in the case of humans, there could be some relationship between D-aspartic acid and β-Asp-Gly, which have both been detected in the blood of uremic patients (Nagata et al., 1987; Gejyo et al., 1978).

As shown in the present and previous studies, there are appreciable amounts of D-amino acids, especially D-aspartic acid, and related compounds in marine molluscs and other invertebrates (Preston, 1986; Felbks & Wiley, 1987; Sato et al., 1987). The metabolism and physiological role of D-amino acids seem to merit further study.

This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

REFERENCES

Received 11 July 1989/8 August 1989; accepted 16 August 1989