Single active-site histidine in D-xylose isomerase from Streptomyces violaceoruber

Identification by chemical derivatization and peptide mapping

Werner Vangrysperre,* Christophe AMPE,† Hilda Kersters-Hilderson,*‖ and Paul Tempst†‡

*Laboratory of Biochemistry, Ghent State University, 9000 Gent, and †Plant Genetic Systems N.V., 9000 Gent, Belgium

INTRODUCTION

D-Xylose isomerases (D-xylose ketol-isomerase, EC 5.3.1.5) are enzymes of prime economic importance because of their exclusive use in the industrial production of the high-fructose corn syrups that constitute a large share in the vast food and drink sweeteners market. D-Xylose isomerases are tetrmeric enzymes, mostly of microbial origin, that catalyse the conversion of D-xylose and D-glucose to D-xylulose and D-fructose respectively. Their constituting monomers have an average chain length of about 370–470 amino acids.

Industrial interests in D-xylose isomerase with improved catalytic properties and thermostability have sparked many searches for mutant enzymes, traditionally through selection of numerous naturally occurring mutant strains. However, with the advent of DNA recombinant technology and protein engineering, strategies have now shifted towards rationally modified, improved enzymes.

As a first step in the structure-function studies, usually preceding subsequent gene manipulations, active site residues, and more importantly catalytic residues, need to be identified in the enzyme sequence. Some of us recently reported evidence for a single essential active-site histidine residue in D-xylose isomerase from Streptomyces violaceoruber (Vangrysperre et al., 1985b). Modification of the enzyme (M, 171 700; Callens et al., 1985b) with diethyl pyrocarbonate (DEP) in the absence or presence of the protecting ligand combination of xylitol plus Mg++ indicated that four histidines per monomer in the unprotected enzyme and three in the protected enzyme were acylated to form carbethoxyl-histidines. The modification of one differential histidine is totally correlated with complete loss of activity.

In this report, we describe experiments leading to the accurate localization of this histidine residue in the total sequence (J. Seurinck, unpublished work). The method consists of differential peptide mapping by reverse-phase h.p.l.c., based on the changed absorbance ratios and retention times of carbethoxyhistidine-containing peptides as compared with their underivatized counterparts, followed by isolation and sequencing of the single differential peptide.

EXPERIMENTAL

Materials

D-Xylose and xylitol were products ‘for Biochemistry’ from Merck (Darmstadt, Germany). DEP was obtained from Aldrich (Milwaukee, WI, U.S.A.). Hydroxylamine was purchased from Serva (Heidelberg, Germany). Guanidinium hydrochloride (GdnHCl, sequengrade), trifluoroacetic acid (TFA), CH3CN and phenyl isothiocyanate (PITC) were from Pierce (Rockford, IL, U.S.A.).

Abbreviations used: DEP, diethyl pyrocarbonate; TFA, trifluoroacetic acid; PITC, phenyl isothiocyanate; PTC, phenylthiocarbamyl; GdnHCl, guanidinium hydrochloride.

† Present address: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, U.S.A.
‡ Present address: Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115, U.S.A.
‖ To whom correspondence should be addressed, at: Laboratorium voor Biochemie, Rijksuniversiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.
U.S.A.). 1-1-p-Tosylamino-2-phenyl ethyl chloromethyl ketone-treated trypsin (type XIII), and chymotrypsin and elastase (type VII) were from Sigma (St. Louis, MO, U.S.A.); subtilisin was obtained from Novo (Bagsvaerd, Denmark). The synthetic peptide CSF19 (a gift from Dr. Suzanna Horvath, Caltech, Pasadena, CA, U.S.A.) has the following sequence: TVERPKWHVEAIKEALNLA.

Enzyme purification and assay

Cultivation of S. violaceoruber (strain LMG 7183) and purification of D-xylose isomerase to a homogeneous state were as described (Callens et al., 1985a,b). Enzymic activity was measured by the coupled D-xylose isomerase/d-xylosidase dehydrogenase assay (Callens et al., 1986; Kersters-Hilderson et al., 1987).

Reaction of D-xylose isomerase with DEP

Concentration assessment of commercial DEP solutions, reaction (and inactivation) of D-xylose isomerase with DEP, subsequent reactivations using hydroxyamine and differential absorption spectroscopy were exactly as described before (Vangrysperre et al., 1988). The amount of N-carboxybenzohistidine per monomer of D-xylose isomerase was calculated by using 3200 m−1·cm−1 as the molar absorption coefficient at 238 nm (Ovádi et al., 1967).

Denaturation and proteolysis

DEP-modified D-xylose isomerase was denatured by adding 3 vol. of 8 M-GdHCl in 0.05 M-sodium phosphate buffer, pH 7.0, and subsequent incubation for 10 min at 30 °C. The solution was then diluted with 0.05 M-sodium phosphate buffer, pH 7.0, to a final GdHCl concentration of 2 M. Protease (5 % of the mass of substrate) was added at this stage. All digests were performed at 30 °C for 24 h, except with subtilisin (2 h). Peptide mixtures were then immediately injected on to a reverse-phase h.p.l.c. column for separation.

Reverse-phase h.p.l.c. of peptides

The reverse-phase h.p.l.c. system consisted of a complete ABI 150A system and an additional ABI-Kratos 757 detector (Applied Biosystems Inc., Ramsey, NJ, U.S.A.). The two variable wavelength detectors were connected in series and set at 214 and 238 nm. A Vydac 214TP54 reverse-phase (C4) column (0.46 cm × 25 cm) from the Separations Group (Hesperia, CA, U.S.A.) was used with two different solvent systems: system I, or 12 mM-sodium phosphate buffer, pH 6.0 (solvent A)/12 mM-phosphate buffer, pH 6.0 in CH3CN/water (70:30, v/v) (solvent B); and system II, or 0.1 % TFA (solvent A)/0.1 % TFA in CH3CN/water (70:30, v/v) (solvent B). Flow rates were always 1 ml/min and gradient slopes were as indicated in the legends to the Tables and Figures. System II was always used to isolate peptides for amino acid analysis and sequencing. Collected fractions were then dried in a Speedvac concentrator (Savant, Hicksville, NY, U.S.A.).

Amino acid analysis

Peptides were hydrolysed under vacuum at 110 °C in 6 M-HCl containing 0.05 % phenol for 24 h. Hydrolysates were derivatized with PITC and the phenylthiocarbamyl (PTC)-amino acids were analysed with a Waters h.p.l.c. system and a C18 reverse-phase column (Waters, Millipore Corp., Milford, MA, U.S.A.) as described by Bidlingmeyer et al. (1984).

Automatic sequence determination

Peptide XI-1/NH2OH (see the Results section) was sequenced using a 470A Applied Biosystems gas-phase sequencer (Hewick et al., 1981) equipped with a 120 A on-line phenylthiohydantoin (PTH)-analysis system (Applied Biosystems Inc.). Yields of stepwise liberated PTH-amino acids were measured using an integrative recorder (Hitachi/Merck, Darmstadt, Germany).

RESULTS

DEP-derivatized D-xylose isomerase preparations, in the presence and absence of xylitol plus Mg2+, were freshly made before all experiments. Complete loss of activity was correlated with modification of a single active-site histidine residue. To locate this residue in the known amino acid sequence (J. Seurinck, unpublished work) we wanted to perform comparative peptide mapping between totally inactive and fully active forms of DEP-derivatized D-xylose isomerase, isolate the single differential peptide and sequence it. However, D-xylose isomerases are proteins with an eight-stranded parallel β-barrel architecture (Carrell et al., 1984) and therefore have a tight and very stable structure. D-xylose isomerase from S. violaceoruber is resistant to degradation by a wide variety of proteases (P. Tempst, E. Bossier & W. Vangrysperre, unpublished work). Thus, in order to cleave the isomerase enzymically, it needed to be denatured first. Since we expected a rather complex peptide mixture, we decided to use a highly selective peptide separation technique such as reverse-phase h.p.l.c. (Tempst et al., 1987).

Table 1. Reverse-phase h.p.l.c. retention times and A254/A214 absorbance ratios of synthetic and proteolytic peptides

<table>
<thead>
<tr>
<th>Peptide</th>
<th>Reverse-phase h.p.l.c. retention (min)</th>
<th>10² × A254/A214</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF19</td>
<td>27</td>
<td>6.7</td>
</tr>
<tr>
<td>CSF19-DEP</td>
<td>33</td>
<td>12.3</td>
</tr>
<tr>
<td>CSF19-DEP/NH2OH</td>
<td>28</td>
<td>6.5</td>
</tr>
<tr>
<td>XI-1</td>
<td>35</td>
<td>11.8</td>
</tr>
<tr>
<td>XI-2</td>
<td>31</td>
<td>3.1</td>
</tr>
<tr>
<td>XI-1/NH2OH</td>
<td>31</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Reverse-phase h.p.l.c. of carbethoxyhistidyl peptides

A single histidine-containing synthetic peptide (CSF19) was used as a model system to test chromatographic behaviour and the use of two-wavelength detection (at 214 and 238 nm) of carbethoxyhistidine derivatives. The result is shown in Table 1 and indicates, as anticipated, that the addition of two carbon atoms to the single histidine of a 19-residue long peptide has a dramatic effect upon the retention on a reverse-phase (C4) support. Moreover, a reverse shift is observed following decarbethoxylation upon NH$_4$OH treatment. A similar observation has been reported by Biscoglio et al. (1986) for peptides varying in length from 3 to 13 residues. The fact that the retention time of decarbethoxylated CSF19 is slightly longer than that of native CSF19, although the $A_{285}/A_{314}$ ratios are the same, can be explained by assuming that derivatization of other groups than histidyl (α- and ε-amino or arginy1) has occurred, resulting in irreversible derivatives with no apparent absorption increase at 238 nm (Miles, 1977).

Most importantly, dual-wavelength detection at 238 and 214 nm, the former wavelength being the absorption maximum of carbethoxyhistidine (Ovádi et al., 1967), indicates that the $A_{285}/A_{314}$ ratio of the carbethoxylated peptide is twice that of its native form.

Stability of carbethoxyhistidine to pH changes

Since carbethoxyhistidine is only stable around pH 6.0 (Miles, 1977), we investigated the stability of carbethoxyhistidyl derivatives in sodium phosphate buffer, pH 6.0 to 8.5, for 5 h at 30 °C and 37 °C. We derivatized synthetic peptide CSF19 with a 20-fold molar excess of DEP and mapped the position on reverse-phase h.p.l.c. (solvent system II) before and after treatment with 0.5 M-NH$_4$OH. Peak heights at 214 nm of 1 nmol of the underivatized, derivatized, and derivatized/decarbethoxylated (DEP/NH$_4$OH) peptides were identical and could consequently be used for quantification of each of these molecules. Freshly prepared aliquots of carbethoxyhistidyl peptide CSF19 were incubated for 5 h at different pH and temperature, immediately

Table 2. Carbethoxyhistidyl CSF19-peptide remaining after 5 h incubation at 30 °C or 37 °C and at different pH values

<table>
<thead>
<tr>
<th>pH</th>
<th>Temp. ...</th>
<th>30 °C</th>
<th>37 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>99</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>6.5</td>
<td>90</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>86</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>61</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>N.D.</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

analysed by reverse-phase h.p.l.c. and the destruction of the derivative quantified (Table 2).

Peptide mapping of DEP-modified d-xylose isomerase

According to the results summarized in Table 2, denaturation and digestion of carbethoxylated d-xylose isomerase needed to be done at a pH between 6 and 7, at 30 °C or below and in a total period of time not exceeding 5 h, preferably faster. Using the results of a systematic study (P. Tempst, unpublished work) of enzymic cleavage of protease-resistant proteins, we developed the optimized protocol described below. S. violaceoruber d-xylose isomerase, treated with a 20-fold molar excess (over monomer) of DEP for 40 min at 25 °C, in 0.05 M-sodium phosphate buffer, pH 6.0, was made 6 M with respect to GdnHCl in the same buffer at pH 7.0, and further treated as described in the Experimental section; 5% (w/w) subtilisin was then added and the digestion proceeded for 2 h at 30 °C. In order to obtain a complete digest under those conditions, substrate concentration

Fig. 1. Reverse-phase h.p.l.c. profiles of S. violaceoruber d-xylose isomerase digested with subtilisin

Isomerases (10 nmol) were treated with a 20-fold molar excess (over monomer) of DEP in the absence (a) or presence (b) of xylitol plus Mg$^{2+}$. Conditions for the digests and h.p.l.c. experiments are described in the Experimental section; solvent system I was used. Gradient slopes (---) were 0–50% solvent B in 50 min and 50–100% solvent B in 5 min. U.v. detection was done at 214 nm (-----) and 238 nm (-----); $A_{285}$ peaks are slightly off to the right of their $A_{314}$ counterparts. Collected peaks XI-1 and XI-2 are indicated with the arrows on the profiles concerned as are their corresponding positions on the other chromatogram.
must exceed 0.4 mg/ml. Peptide mixtures were then injected on the C4 reverse-phase column equilibrated with buffer system 1.

Isolation and sequencing of the ‘active-site His’-peptide

D-Xylose isomerase (10 nmol of monomer) modified with DEP in the presence or absence of xylitol plus Mg²⁺ was digested with subtilisin and chromatographed as described above in two parallel experiments. The reverse-phase h.p.l.c. profiles are presented in Fig. 1. The patterns are nearly identical, with the exception of one major peak that has shifted considerably. Both peptide peaks, designated XI-1 and XI-2 in Fig. 1, were collected for further characterization. Peak XI-1, displaying the highest retention time of the two and derived from the unprotected carbethoxylated D-xylose isomerase and therefore inactive, was subsequently incubated with an equal volume of 1 M-NH₂OH for 30 min at 25 °C (designated XI-1/ΝΗ₂ΟΗ). An aliquot was then rechromatographed under conditions used for the total peptide mixtures (result not shown). The retention times and the A₂₃₈/A₂₁₄ absorbance ratios for peptides XI-1, XI-2 and XI-1/ΝΗ₂ΟΗ are presented in Table 1. Peptide XI-1 has an almost 4-fold higher A₂₃₈/A₂₁₄ ratio than XI-2, and also elutes later from the C4 support; but when treated with ΝΗ₂ΟΗ, peptide XI-1 is converted into a molecule with exactly the same A₂₃₈/A₂₁₄ ratio and reverse-phase retention time as XI-2. This clearly indicates that XI-1 is a carbethoxyhistidyl peptide; moreover, XI-2 is most probably its uncarbethoxylated counterpart.

Final purification of peptides XI-1/ΝΗ₂ΟΗ and XI-2 was accomplished by preparative reverse-phase h.p.l.c. using the same chromatographic system but operated with solvent system II (see the Experimental section). The additional advantage of this final purification is the complete volatility of the solvent which allows optimal amino acid composition and sequence analysis of the peptides afterwards (Mahoney & Hermodson, 1980). The amino acid composition of peptides XI-1/ΝΗ₂ΟΗ and XI-2 proved to be the same: 1.6 Asx, 1.2 Thr, 1.6 Gly, 0.8 Val, 1.2 Ile, 1.0 Leu, 1.8 Phe, 0.7 His and 1.0 Pro. Automatic sequence determination of XI-1/ΝΗ₂ΟΗ yielded the following sequence: Gly-Val-Thr-Phe-His-Asp-Asp-Asp-Leu-Ile-Pro-Phe. Given the peptide composition and subtilisin specificity, this sequence is most likely to be full length. The peptide matches region 50–61 of the amino acid sequence deduced from the nucleotide sequence of the S. violaceoruber D-xylose isomerase gene (J. Seurinck, unpublished work). Consequently, His-54 is located in the active site of this enzyme.

DISCUSSION

To gain further information about the proposed single active-site histidine, a procedure has been developed for isolation and amino acid sequencing of the peptide containing the essential histidyl residue.

To this purpose, the protease-resistant enzyme was unfolded in 6 M-GdnHCl and subsequently digested with subtilisin in 2 M-GdnHCl at pH 7.0 for only 2 h and at 30 °C. The use of any other set of denaturing conditions and/or proteases was either too harsh, too lengthy, irreproducible or did not produce the right size fragments.

Reverse-phase h.p.l.c. effluents were monitored simultaneously at 238 nm (the absorbance maximum of the difference spectrum between carbethoxylated and native isomerase) and at 214 nm, a common wavelength for peptide detection. It allowed us to detect the shift of a single peak by comparison of subtilitic peptide profiles of active and inactive D-xylose isomerases, containing three- and four carbethoxyhistidines respectively (Fig. 1). In addition to the retention differences, the peaks also differed sharply in absorbance properties (Table 1). Subsequent isolation of differential peptides was simple. The properties of the carbethoxylated one could be converted by NH₂OH treatment into exactly those of its unmodified counterpart.

U.v. detection at 238 nm of reverse-phase h.p.l.c. effluents during separation of carbethoxylated peptide mixtures, in combination with subsequent decarbethoxyl-

**Actinomycetales:**

| S. violaceoruber: (peptide sequence)* | 50 | Gly | Val | Thr | Phe | His | Asp | Asp | Asp | Leu | Ile | Pro | Phe |
| S. violaceoniger: (gene sequence) † | 69 | Gly | Val | Thr | Phe | His | Asp | Asp | Asp | Leu | Ile | Pro | Phe |
| Ampullariella sp: (gene sequence) ‡ | 50 | Gly | Val | Thr | Phe | His | Asp | Asp | Asp | Leu | Ile | Pro | Phe |
| Bacillus subtilis: (gene sequence) § | 103 | Phe | Phe | Ala | Phe | His | Asp | Arg | Asp | Ile | Ala | Pro | Glu |
| Escherichia coli: (gene sequence) ‖ | 97 | Phe | Tyr | Cys | Phe | His | Asp | Val | Asp | Val | Ser | Pro | Glu |

* This work.
† Drocourt et al. (1988).
‡ Saari et al. (1987).
‖ Schellenberg et al. (1984).

Fig. 2. Sequence alignment of the active-site His peptide from S. violaceoruber with similar regions of D-xylose isomerases from other bacteria

The numberings are according to published reports or to the S. violaceoruber D-xylose isomerase gene sequence (J. Seurinck, unpublished work). Identical or chemically conserved amino acids are boxed with a solid and a dashed line respectively.
ation followed by rechromatography and detection at 220 nm, has already been employed for specific isolation of histidine peptides (Biscoglio et al., 1986). In contrast to that report, our studies deal with DEP-derivatization prior to proteolysis and rely on peptide profile comparisons in which simultaneous detection of DEP-derivatized and underivatized peptides is necessary.

Following isolation, decarbethoxylation, rechromatography and sequencing of the active-site histidine-containing peptide, comparison with the complete primary structure of S. violaceoruber D-xylose isomerase allowed us to identify His-54 as an active-site residue. When the experimentally determined peptide sequence surrounding His-54 is compared with the best matching stretches of the known amino acid sequences of D-xylose isomerases from the two related species *Ampullariella* sp. (Saari et al., 1987) and *S. violaceoniger* (Drocourt et al., 1988) and from the two more divergent micro-organisms *E. coli* (Schellenberg et al., 1984) and *B. subtilis* (Wilhelm & Hollenberg, 1985) significant sequence similarity was observed (Fig. 2). Five out of the twelve residues are identical in all sequences and two more positions are chemically conserved. Even greater similarity is observed among the sequences of the isomerases from the three species belonging to the *Actinomycetales* order; all residues are identical except for one conservative substitution.

These highly conserved regions, as compared with the overall similarities, allow one to suggest that they are located in a structurally essential part of the molecule, adding more value to our claim that this particular histidine is part of the active site in those enzymes of the micro-organisms concerned. This conclusion is substantiated by the recently published structural analysis of D-xylose isomerase from *Actinoplanes missouriensis* (Rey et al., 1988) classified in the same order as *S. violaceoruber* (*Actinomycetales*). According to these authors, the active site is positioned at the carboxyl ends of the $\beta$-barrel strands and more specifically, His-54 is placed at the C-terminus of the $\beta_2$-strand.

We thank Professor C. De Bruyne for encouragement and helpful discussions. We are indebted to E. Bossier and M. Cambier for excellent technical assistance, and to M. Vanderstichelen for typing the manuscript. W.V. was supported by an IWONL (Belgium) graduate fellowship during the course of this work.

**REFERENCES**


Received 28 March 1989/19 May 1989; accepted 25 May 1989