INTRODUCTION

In recent years, Moore & Dedman (1982) have isolated a new set of four \(\text{Ca}^{2+} \)-binding proteins from smooth muscle with apparent molecular masses of 67000, 35000, 33000 and 30000 on SDS/polyacrylamide gels. These proteins were termed calcimedins, and function in a molecular fashion similarly to calmodulin. Calcimedins, like calmodulin, interact with several hydrophobic ligands coupled to a polyasaccharide matrix. These supports include the phenothiazine-ring-coupled Affi-Gel, W-7 (Hidaka et al., 1981) coupled to a Sepharose, and both phenyl- and octyl-Sepharose affinity resins. Calcimedins do not bind to a Sepharose column without proper ligand or to a calmodulin–Sepharose affinity matrix. They are not as widely distributed in tissues as calmodulin, but are more abundant in muscle tissue homogenates than is calmodulin. They differ from calmodulin in molecular mass, pI, DEAE-cellulose binding properties and heat-stability. However, like calmodulin, calcimedins also become hydrophobic upon binding \(\text{Ca}^{2+} \). Calcimedins have been shown to stimulate the \(\text{Ca}^{2+} \)-ATPase activity of isolated liver microsomal fractions, and this activation could be inhibited by micromolar concentrations of calmodulin antagonist (Moore et al., 1984).

Calcimedins could conceivably be involved in mediating the calcium signal, in addition to calmodulin and troponin-C. Intracellular calcium signals probably follow several independent pathways, and the concentrations of various calcium mediators vary from tissue to tissue, depending on the physiological demands.

To date, no one has characterized these proteins in physico-chemical detail. In this work we have studied the \(\text{Ca}^{2+} \)-binding properties of 67 kDa protein isolated from chicken gizzard, using a combination of spectroscopic techniques.

MATERIALS AND METHODS

The isolation procedure used in our laboratory is a modification of the method developed in Dedman’s laboratory (Matthew et al., 1987). Chicken gizzard (700 g) was homogenized in a Waring blender in 2 litres of buffer, consisting of 40 mm-Tris, pH 7.5, 80 mm-NaCl, 2 mm-EGTA, 0.05% NaN₃, 1 mm-phenylmethanesulphonyl fluoride and 0.5 ml of aprotinin. The homogenate was centrifuged in a Beckman J2-21 centrifuge at 10000 rev./min for 75 min. Calcimedins in the supernatant were precipitated by adding (NH₄)₂SO₄ to 90% saturation. Precipitated protein was dissolved in 40 mm-Tris (pH 7.5)/80 mm-NaCl and centrifuged at 14000 rev./min for 45 min. Free \(\text{Ca}^{2+} \) concentration in the supernatant was adjusted to 2 mm. The supernatant in the presence of \(\text{Ca}^{2+} \) was applied to a phenyl-Sepharose column equilibrated with 80 mm-NaCl/2 mm-CaCl₂/40 mm-Tris, pH 7.5. Calcimedins along with calmodulin were eluted from this column with 4 mm-EGTA. Eluted proteins were next applied to a DEAE-cellulose column in the presence of 20 mm-imidazole (pH 6.2) and 1 mm-EGTA. \(\text{Ca}^{2+} \)-binding proteins were eluted with a linear NaCl gradient. The peak corresponding to 67 kDa calcimedin was pooled and applied to an Ultrogel AcA44 (LKB) column equilibrated with 50 mm-Tris, pH 7.5,
containing 200 mM-NaCl, 2 mM-EDTA and 0.05% Na₂S. The first major peak obtained corresponded to
67 kDa, and the isolated protein was homogeneous
when tested by SDS/polyacrylamide-gel electrophoresis.
Standard polyacrylamide-gel electrophoresis was
performed at pH 8.6 with Tris/glycine buffer as described
electrophoresis and molecular-mass determinations
were carried out as described in one of our previous papers
(Mani et al., 1982). Amino acid analyses were performed
on a Durrum D-500 amino acid analyser (Dionex Corp.)
as described by Leung et al. (1986). The thiol groups in
67 kDa calcimedin were titrated by the method of Ellman
(1959). The number of thiol groups modified/molecule of
67 kDa was calculated, by assuming an absorption
coefficient of 13 600 M⁻¹·cm⁻¹ for the liberated 5-nitro-2-
thiobenzoate. Tryptophan was determined spectrophoto-
metrically by the method of Bencez & Schmid (1957).
Protein concentrations were determined by the Bradford
method (1976). Chicken gizzard calmodulin was used in
generating the standard curve. The A₂₇₈ was measured
for a protein sample of known concentration, and from
this A₁ cm·₂₇₈ = 6.0 was established for 67 kDa protein.
For spectral work reported in this paper we used 6.0 as
the absorption coefficient for this protein.
U.v. absorption and u.v. difference spectra were
recorded on a Perkin-Elmer Lambda 5 spectrophotometer
over the wavelength range 320–250 nm with 1 cm-
path-length cells. The spectra were measured at 25 °C
with a Lauda thermoregulator connected to the sample
compartment. To generate a u.v. difference spectrum,
Ca²⁺ was added to the sample cell and an equal volume
of Chelex-100 treated water was added to the reference
cell. Corrections were made for dilutions before the
spectrum was plotted.
C.d. measurements were made on a Jasco J500C
instrument fitted with a DP-500N data processor as
described previously (Mani & Kay, 1983). A mean residue
weight of 115 was used in calculating the molar ellipticity.

Fluorescence spectra were obtained with a Perkin–Elmer
model MPF-44 spectrofluorimeter, and all measurements
were made at 20 °C. The instrument was operated in a
ratio mode. The A₂₇₈ of the sample was less than 0.1. The
protein was initially dissolved in 0.1 M-Tris/HCl buffer,
pH 7.5, containing 4 mM-EDTA, and thereafter was
subjected to exhaustive dialysis with at least four
changes against solvent that had been passed through a
Chelex-100 column.

Ca²⁺-binding assays were carried out as described for
S-100b protein (Mani & Kay, 1986), by using Centricon
10 micro-concentrators from Amicon as ultrafiltration
devices to perform rapid-flow dialysis as a means of
monitoring Ca²⁺ binding to 67 kDa protein (Blatt et al.,
1968). The 67 kDa protein was incubated for 15 min with
excess Ca²⁺, and was then centrifuged in a Beckman
model L centrifuge at 4000 rev./min for 30 min. Free
Ca²⁺ in the supernatant (in this case, the solution
centrifuged across the dialysis membrane) was analysed
by using the metallochromic indicator Arsenazo III
(Sigma) as described by Thomas (1982). The 67 kDa
apo-protein (~ 50 nmol) was placed in a prewashed
Centricon 10 micro-concentrator along with a known
amount of excess Ca²⁺ (~ 10-fold molar excess),
icubated for 15 min, and the solution was centrifuged.
The supernatant was assayed for Ca²⁺. From the amounts
of free Ca²⁺ found in the supernatant along with the total
Ca²⁺ added and the amount of protein used, it was
possible to calculate the amount of Ca²⁺ bound to the
protein.

RESULTS

Ca²⁺-binding proteins including calcimedin and
calmodulin were eluted from the phenyl-Sepharose
column in the presence of EDTA. Calcimedin was
resolved from calmodulin on a DEAE-cellulose column
by using a linear NaCl gradient to 0.25 M. Under these
conditions 67 kDa calcimedin was eluted around 0.2 m-

Fig. 1. Elution profile of 67 kDa calcimedin from a DEAE-cellulose column

Solvent system used was 20 mM-imidazole (pH 6.2)/1 mM-EDTA containing 1000 ml of a linear NaCl gradient from 0 to 0.25 M. Proteins were eluted at a flow rate of 35 ml/h and 10 ml fractions were collected.
Spectroscopy of 67 kDa calcimedin

Fig. 2. Electrophoresis of 67 kDa calcimedin (a) in 15% polyacrylamide gel plus SDS, and (b and c) in 12.5% polyacrylamide gels in Tris/glycine buffer (pH 8.6) in 1 mM-EDTA (b) and 1 mM-Ca²⁺ (c)

NaCl, as indicated in Fig. 1. Isolated protein was essentially homogeneous, and the main contaminants were a low-molecular-mass protein and calcimedin of molecular masses around 30 kDa. Fractions corresponding to 67 kDa protein, i.e. peak IV from the DEAE-cellulose column, was next applied to an Ultragel AcA44 column (LKB). Proteins were eluted at a flow rate of 5 ml/h, and under these conditions the proteins were resolved into two peaks. The first major peak obtained corresponded to 67 kDa calcimedin. When the protein was run in SDS/15% polyacrylamide gels, it migrated at 67 kDa and was homogeneous (Fig. 2). The gels were calibrated with standard proteins by using the Sigma gel kit protein samples. The mobility of 67 kDa protein in non-SDS gels is shown in Fig. 2. The protein moved faster in the presence of EDTA. The observed decrease in mobility in the presence of Ca²⁺ could be due to a decrease in negative charge on the protein resulting from binding Ca²⁺. In this respect, 67 kDa calcimedin behaves similarly to calmodulin and brain S-100b protein, but differently from muscle troponin-C.

A comparison of the amino acid analysis of our preparation with that of the 67 kDa calcimedin prepared by Moore (1986) from chicken gizzard is summarized in Table 1. A good agreement exists between the two, the major difference being in the contents of histidine, arginine and valine. We carried out acid hydrolysis for 24, 48 and 72 h, and the values reported here for valine and isoleucine correspond to the time-extrapolated values, whereas Moore (1986) had performed hydrolysis for 24 h only. However, when we compared our analysis with the published sequences of calceclin and the lymphocyte p68 Ca²⁺-binding protein, considerable deviation was noticed for the following amino acids: Gly, Val, Met, Ile, Arg, Cys and Trp. Hence it appears that our protein resembles more closely the 67 kDa calcimedin isolated by Moore (1986) from the same source. The number of thiol groups in 67 kDa protein was determined by the method of Ellman (1959). The rate of reaction of the 67 kDa protein with 5,5'-dithiobis-(2-nitrobenzoic acid) in 50 mM-Tris, pH 7.5, containing either 0.5 mM-Ca²⁺ or 1 mM-EDTA was slow, and only 0.5 thiol group reacted per molecule of protein. However, when the reaction was carried out in the presence of 6 M-urea/50 mM-Tris, pH 7.5, 1.8 thiol groups reacted per molecule of protein. This would suggest that, out of two thiol groups in the protein, one is more reactive than the other, or, alternatively, both the thiol groups become more reactive in the presence of 6 M-urea. The u.v. absorption spectrum of 67 kDa calcimedin is characterized by the presence of a shoulder around 290 nm corresponding to tryptophan. The fine structure that one usually associates with Ca²⁺-binding proteins such as calmodulin, S-100b and troponin-C in the 250–270 nm region is not noticeable, and this is because the tyrosine phenylalanine aromatic groups are nearly 1 for 67 kDa protein, whereas for the other above-mentioned Ca²⁺-binding proteins this ratio is high, e.g. for S-100b it is 7.

U.v. difference spectroscopy

The possible effect of Ca²⁺ on the tryptophan, tyrosine and phenylalanine aromatic groups was investigated by using u.v. difference spectroscopy. Fig. 3 shows the difference spectrum of 67 kDa protein when Ca²⁺ was added to the sample cell, compared with non-treated protein in the reference cell. The difference peak at 292 nm is characteristic of a red shift of the tryptophan absorption band. The dominant difference peaks at 287 and 280 nm arise from the perturbation of one or more tyrosine residues. The sign of the tryptophan and tyrosine
difference peak (i.e. a ‘red shift’) suggests that the chromophores are in a less polar environment in the presence of Ca$^{2+}$ (Donovan, 1969). Alternatively, the perturbations may be due to local charge effects as a result of Ca$^{2+}$ binding. The binding of Ca$^{2+}$ by carboxylate groups would decrease the free negative charge on the latter, which might result in changes in the geometry of the binding site and re-orientation of the phenolic group. Similar observations have been noted for skeletal- and cardiac-muscle troponin-C in our laboratory (Hincke et al., 1978).

Near-u.v. c.d. studies

The aromatic c.d. spectrum of 67 kDa protein is shown in Fig. 4. The positive band at 292 nm is due to tryptophan, and the two bands at 284 and 279 nm can be attributed to tyrosine residues. The spectrum shows that the tryptophan residue at 292 nm and the tyrosine residues in the 280 nm region are perturbed upon Ca$^{2+}$ addition. When we added 1 mM-Mg$^{2+}$ to 67 kDa apoprotein, there was no noticeable change in the c.d. spectrum, suggesting that Mg$^{2+}$ has no significant effect on the protein conformation, or alternatively that Mg$^{2+}$ simply does not bind to this protein at this concentration. In the far-u.v. c.d. region also, Mg$^{2+}$ had no significant effect on the secondary structure of the protein. In another series of experiments, Mg$^{2+}$ was added initially to the apoprotein, and subsequently Ca$^{2+}$ was added. Ca$^{2+}$ in the presence of Mg$^{2+}$ could still induce the same conformational change, implying that Ca$^{2+}$ can bind to 67 kDa calcimedin in the presence of Mg$^{2+}$.

Far-u.v. c.d. results

Fig. 5 represents a typical far-u.v. c.d. spectrum of the protein in the absence and in the presence of Ca$^{2+}$. Addition of Ca$^{2+}$ induced only a small change in the overall secondary structure of the protein molecule: the $[\theta]_{222}$ value decreased by only 10%. Mg$^{2+}$ addition, on the other hand, produced no significant change in the $[\theta]_{222}$ value, suggesting that the observed effect with Ca$^{2+}$, though small, is specific for this metal ion.

Fluorescence spectroscopy

The 67 kDa calcimedin, which has both tryptophan and tyrosine residues, has its emission maximum centred around 325 nm when the protein is excited at 280 nm. The emission peak at 325 nm is probably due to tryptophan, and from the observed position of the emission maximum one can infer that the tryptophan residue(s) is partly buried in the interior of the protein molecule. Ca$^{2+}$ addition to apoprotein resulted in only a 5% decrease in fluorescence intensity at 325 nm, and for this reason we were not able to carry out a Ca$^{2+}$ titration to estimate K_a. 1989
Spectroscopy of 67 kDa calcimedin

Ca2+-binding proteins that are members of the E-F hand family upon binding Ca2+ undergo a conformational change, and this process results in exposing a hydrophobic domain (Moore et al., 1984). The fact that 67 kDa protein in the tissue homogenate binds to a phenyl-Sepharose column in the presence of Ca2+ suggests that this protein also exposes a hydrophobic region when it binds Ca2+. For this reason we used a hydrophobic fluorescent probe, TNS (2-p-toluidinylnaphthalene-6-sulphonate), which fluoresces weakly in polar solvents, but its intensity becomes enhanced in apolar solvents or when bound to a hydrophobic pocket on the protein (McClure & Edelman, 1966). Addition of Ca2+ to TNS-labelled protein resulted in a 25% enhancement in fluorescence intensity, and this was accompanied by a blue shift of the emission maximum, implying that the probe in the presence of Ca2+ occupies a more hydrophobic environment. The increase in relative fluorescence intensity at 435 nm as a function of Ca2+ concentration is plotted in Fig. 6. From this plot a K\textsubscript{d} value of 2 x 10-5 ± 0.5 x 10-5 M was obtained for Ca2+, and this corresponds to the Ca2+ concentration required to produce 50% of the observed increase in fluorescence intensity. The Ca2+-binding assay, as described in the Materials and methods section, revealed the binding of 4 mol of Ca2+/mol of 67 kDa protein at pH 7.5, and this finding is in agreement with the observation by Matthew et al. (1986).

DISCUSSION

A set of four Ca2+-binding proteins from smooth muscle, termed calcimedis, bind hydrophobic-matrix resins in a Ca2+-dependent manner (Moore & Dedman, 1982), and this property was used in the isolation scheme developed in our laboratory. The original isolation procedure (Matthew et al., 1987), which involved batchwise treatment with DEAE-cellulose before a phenyl-Sepharose column, yielded very little protein in our hands, and for this reason we subjected the muscle homogenate after initial centrifugation to precipitation with 90% satd. (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}. Proteins precipitated by 90% satd. (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} were subsequently applied to a phenyl-Sepharose column in the presence of Ca2+. By the procedure outlined in the Materials and methods section, the yield obtained was considerably better, and we often isolated from 350 g of chicken gizzard nearly 250 mg of calcimedis along with calmodulin after the first phenyl-Sepharose column.

The cellular function of the calcimedis is not understood. It has been suggested that 67 kDa calcimedin may be important in membrane events associated with the inflammatory response (Morse & Moore, 1986). Since higher contents of calcimedis are found in a secretory organ such as the liver, it may be involved in the secretory process. It is possible that all the four calcimedis have a specialized cellular function, providing a discrete discrimination of the intracellular Ca2+ signal. The 67 kDa calcimedin interacts with cyclic nucleotide phosphodiesterase (Moore et al., 1984), and by doing so is able to inhibit calmodulin activation of cyclic nucleotide phosphodiesterase, and this interaction probably involves unmasking of a certain hydrophobic region in the protein molecule in the presence of Ca2+. This is thought to be the mechanism by which calmodulin interacts with its target enzymes, and this is borne out by the fact that 67 kDa calcimedin, like calmodulin, can bind to a phenyl-Sepharose column in the presence of Ca2+. Calcimedis can be eluted from the phenyl-Sepharose column only with EGTA. Even the purified 67 kDa calcimedin could bind to a phenyl-Sepharose column in the presence of 1 M-NaCl, 40 mM-Tris, pH 7.5, and 2 mM-Ca2+-. Ca2+-binding proteins belonging to the calmodulin family generally undergo a conformational change in response to physiological demands. Changes in Ca2+ concentration result in altered conformation of calmodulin, S-100 proteins and vitamin D-dependent Ca2+-binding protein. Similarly, 67 kDa calcimedin also undergoes a conformational change in the presence of Ca2+, as revealed by the spectroscopic techniques applied in the present study.

Südhof et al. (1988) have sequenced a protein of 67 kDa referred to as calectrin and, as mentioned in the Results section, our protein preparation appears to be different from their 67 kDa calectrin on the basis of its amino acid composition. The 67 kDa protein isolated from chicken gizzard by Moore (1986) resembles our protein preparation. According to Morse & Moore (1986), the 67 kDa calcimedin isolated from chicken gizzard is distinct from p67 calectrin and lymphocyte 68 kDa Ca2+-binding protein, since antibodies raised to the smooth-muscle 67 kDa calcimedin failed to recognize the two above-mentioned proteins.

Moore (1986) reported a K\textsubscript{d} value of 0.4 uM for Ca2+ for the native 67 kDa calcimedin, and our fluorescence studies with the TNS-labelled protein gave a K\textsubscript{d} value of 2 x 10-5 M. Moore (1986) had used the Hummel & Dreyer (1962) method for binding studies, and this method has a limitation, i.e. the Ca2+ bound is generally very small compared with the total Ca2+ used, and this was cited as
a possible reason for the observed discrepancy between spectroscopic results and this method for Protein II from liver (Shadle et al., 1985). This argument is also cited in the work of Kuznicki & Filipek (1987) with their 10.5 kDa Ca²⁺ binding protein from Ehrlich ascites-tumour cells. Of course, use of a non-covalent hydrophobic probe like TNS also has limitations. For example, in this instance one assumes that the presence of the probe will have no significant effect on the ability of the protein to bind Ca²⁺. In our opinion it is a valid assumption, since K_d values obtained in the past with TN-C, calmodulin and S-100 proteins all agree with the published values in the literature from other laboratories obtained by either similar spectroscopic approaches or equilibrium dialysis. The Ca²⁺-binding assay indicated that the protein binds 4 mol of Ca²⁺/mol of protein, and this finding is in agreement with the observation by Matthew et al. (1986) for their 67 kDa calcimedin isolated from chicken gizzard. The fact that the fluorescence titration with Ca²⁺ indicated only one class of binding site in the presence of the probe suggested that all four Ca²⁺-binding sites have the same affinity for Ca²⁺. Alternatively, we may also be monitoring only one or more Ca²⁺-binding sites that are located close to the TNS-binding site, and as a consequence the observed K_d value for Ca²⁺ corresponds only to those sites that are in the near vicinity of the probe.

As a first step in understanding the Ca²⁺-binding properties of 67 kDa calcimedin, we initiated this work with a careful characterization of the protein by spectroscopic methods. The ability of this protein to expose a hydrophobic site in the presence of Ca²⁺, as evidenced by the observed conformational changes, further strengthens the idea that most Ca²⁺-binding proteins are able to perform their physiological functions by exposing a hydrophobic site as a result of Ca²⁺ binding. It is now becoming evident that this type of conformational change is not just confined to the calmodulin family of proteins.

We thank the Alberta Heart Foundation and the Medical Research Council of Canada for their generous financial support. We also thank Dr. W. D. McCubbin for valuable discussions, and K. Okawa, A. Keri and L. Hicks for competent technical assistance.

REFERENCES

Ellman, G. L. (1959) Arch. Biochem. Biophys. 82, 70–77
Mani, R. S. & Kay, C. M. (1983) Biochemistry 22, 3902–3907

Received 28 September 1988/29 November 1988; accepted 5 December 1988

1989