Capacitative calcium entry in parotid acinar cells

Haruo TAKEMURA and James W. PUTNEY, Jr.*
Calcium Regulation Section, Laboratory of Cellular and Molecular Pharmacology,
National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park,
NC 27709, U.S.A.

The intracellular Ca\(^{2+}\) indicator, fura-2, was used to monitor changes in cytosolic [Ca\(^{2+}\)] in parotid acinar cells. When parotid cells were incubated in a medium containing low [Ca\(^{2+}\)], and [Ca\(^{2+}\)] was restored to the physiological range, there was a small increase in cytosolic [Ca\(^{2+}\)]. If, however, the cells were first activated by a muscarinic agonist, and receptor activation was terminated before the addition of Ca\(^{2+}\) by the addition of a pharmacological excess of the muscarinic-receptor antagonist atropine, the initial increase in cytosolic [Ca\(^{2+}\)] was faster and transiently larger than in the control cells which had not been previously stimulated. This suggested that a stimulation of Ca\(^{2+}\) entry occurred owing to the prior emptying of the agonist-regulated intracellular Ca\(^{2+}\) pool. This extra Ca\(^{2+}\) influx seen in pool-depleted cells persisted even when the interval between the addition of atropine and Ca\(^{2+}\) was increased from 1 to 20 min. Also, when the pool was allowed to refill by adding atropine in the presence of extracellular Ca\(^{2+}\), and Ca\(^{2+}\) was then sequentially removed and restored, the rise in cytosolic [Ca\(^{2+}\)] after the addition of extracellular Ca\(^{2+}\) was not rapid, and resembled the increase seen in unstimulated cells. These results indicate that, when the agonist-sensitive Ca\(^{2+}\) pool is emptied by an agonist, Ca\(^{2+}\) influx across the plasma membrane is increased. This influx of Ca\(^{2+}\) occurs independently of the concentrations of inositol phosphates and probably of any second messengers linked directly to receptor activation. It appears rather to be a consequence of the empty state of the Ca\(^{2+}\) pool. Further, we suggest that, whenever the agonist-sensitive Ca\(^{2+}\) pool is emptied by agonist activation, the plasma-membrane permeability to Ca\(^{2+}\) will be increased, and this may account, at least in part, for the phenomenon of receptor-activated Ca\(^{2+}\) entry.

INTRODUCTION

Activation of cell-surface receptors for a variety of hormones, neurotransmitters and growth factors results in an increase in the cytoplasmic Ca\(^{2+}\) concentration (Putney, 1987). In most cases, this increase in cytosolic Ca\(^{2+}\) can be attributed to the release, or mobilization, of Ca\(^{2+}\) from intracellular stores and to the entry of Ca\(^{2+}\) from the extracellular space (Putney, 1987; Putney et al., 1981). Stimulation of these same receptors also results in the phospholipase C-catalysed hydrolysis of the minor plasma-membrane phospholipid, phosphatidylinositol 4,5-bisphosphate, with the concomitant formation of inositol 1,4,5-trisphosphate [Ins(1,4,5)P\(_3\)] (Berridge, 1983). There is strong evidence that Ins(1,4,5)P\(_3\) stimulates Ca\(^{2+}\) release from intracellular stores (Berridge, 1986); however, the mechanism underlying receptor-regulated Ca\(^{2+}\) entry is not well understood. According to one proposal, termed capacitative Ca\(^{2+}\) entry, as the Ins(1,4,5)P\(_3\)-sensitive Ca\(^{2+}\) pool is depleted, a process for rapidly refilling the pool is activated (Castells & Droogmans 1981; Putney, 1986). Therefore, in the continued presence of Ins(1,4,5)P\(_3\), the activated pathway of Ca\(^{2+}\) entry into this pool, and subsequently out via the Ins(1,4,5)P\(_3\)-activated channel, would result in a sustained process of Ca\(^{2+}\) entry to the cytoplasm. This implies a mechanism for communication between the Ca\(^{2+}\) pool and the plasma membrane such that the permeability of the plasma membrane, perhaps in discrete regions, would be increased when the intracellular pool is empty. Here we describe experimental results, obtained with the intracellular Ca\(^{2+}\) indicator fura-2 (Tsien et al., 1985), which for the first time demonstrate this ability of the agonist-regulated Ca\(^{2+}\) pool to enhance Ca\(^{2+}\) influx at the level of the plasma membrane.

METHODS

Rat parotid acinar cells were prepared as described previously (Sugiya et al., 1987) with slight modification. Briefly, minced rat parotid glands were incubated with trypsin, followed by EGTA plus trypsin inhibitor, and then collagenase in Dulbecco's Modified Eagle's Medium containing 0.5% bovine serum albumin. [Ca\(^{2+}\)], was determined with fura-2 essentially as described previously (Hughes et al., 1988; Merritt & Rink, 1987a,b). The cells, suspended in Dulbecco's medium containing 0.5% albumin, were incubated with 2 μM-fura-2/AM for 45 min at 37 °C. The fura-2-loaded cells were washed twice, resuspended in a Hapes-buffered Krebs–Ringer medium (KRH) containing 0.2% albumin and kept at room temperature. KRH consisted of the following (mm): NaCl, 120; KCl, 5.4; MgSO\(_4\), 0.8; CaCl\(_2\), 1.0; glucose, 11.1; Hapes, 20 (pH 7.4). Just before use, batches of cells were washed by centrifugation, and resuspended in fresh Ca\(^{2+}\)-free KRH containing 0.2 mm-EGTA at 37 °C in a quartz cuvette. In this and all subsequent experiments, final extracellular [Ca\(^{2+}\)] was assumed to be the total concentration, minus 0.2 mm complexed by the EGTA. The fluorescence of fura-2-

Abbreviations used: Ins(1,4,5)P\(_3\), inositol 1,4,5-trisphosphate; [Ca\(^{2+}\)], intracellular Ca\(^{2+}\) concn.

* To whom correspondence should be addressed.
loaded cells was measured with a Delta-Scan 1 spectrofluorimeter (Photon Technology International, Princeton, NJ, U.S.A.) with excitation at 340 nm and 380 nm and emission at 500 nm. [Ca2+] was calculated from the measurement of the ratio of fluorescence intensities (Grynkwicz et al., 1986). The ratios of maximum and minimum fluorescence were then determined by the addition of 0.09 vol. Triton in the presence of free Ca2+ concentration of \geq 1 mM, and in the presence of a concentration of EGTA at least twice the [Ca2+] (pH $>$ 8.3), respectively. Cell autofluorescence, determined with cells not loaded with fura-2, was subtracted from the traces before [Ca2+] was calculated. As previously reported (Hughes et al., 1988), leakage of fura-2 from the cells was minimal within the time frame of the experiments described, as determined by the absence of fura-2 fluorescence in the supernatant after centrifugation of the cells, and the absence of effect of addition of Mn2+ to the preparation.

RESULTS AND DISCUSSION

Treatment of parotid acinar cells with a muscarinic-cholinergic agonist results in a transient increase in cytosolic Ca2+, which is independent of extracellular Ca2+ and therefore attributed to the release of intracellular Ca2+ stores. Subsequently, there is a sustained increase in cytosolic Ca2+, which is dependent on the presence of extracellular Ca2+ and is believed to result from an enhanced entry of Ca2+ from the extracellular space (Putney et al., 1981). Much of the original evidence for the capacitative model for Ca2+ entry was obtained from studies of the refilling of the agonist-sensitive Ca2+ pool in parotid acinar cells after removal of an agonist. When this agonist-sensitive pool was full, removal of extracellular Ca2+ did not lead to its depletion; however, when empty, the pool could be rapidly refilled from the extracellular space (Aub et al., 1982). In our earlier studies, changes in cytosolic [Ca2+] were monitored by measurements of 86Rb+ efflux, an indicator of activation of Ca2+-dependent K+ channels. Since efflux of 86Rb+ was not increased during reloading of the pool, it was concluded that the pathway into the pool from the extracellular space did not traverse the cytoplasmic compartment (Aub et al., 1982).

The intracellular Ca2+ indicator fura-2 has been used to monitor changes in cytosolic [Ca2+] in parotid acinar cells (Merritt & Rink, 1987a,b; Hughes et al., 1988). With this more-sensitive indicator, we now detect a brief elevation of cytosolic [Ca2+] during the reloading process, which in turn can be used to infer the influence of pool Ca2+ content in plasma-membrane Ca2+ fluxes. Thus, when parotid cells were incubated in a medium containing low [Ca2+], the cytoplasmic [Ca2+] decreased from 100 nM to about 50 nM, a phenomenon not detected in earlier studies with 86Rb+. Likewise, a corresponding restoration of cytosolic [Ca2+] occurred when extracellular Ca2+ was increased to physiological (mM) concentrations (Fig. 1). Fig. 1 also illustrates experiments in which muscarinic-receptor activation was terminated before the addition of Ca2+ by the addition of a pharmacological excess of the muscarinic-receptor antagonist atropine. This results in a rapid (t = 7.6 s) decline in the cellular concentration of the Ca2+-mobilizing second messenger Ins(1,4,5)P\textsubscript{3} (Hughes et al., 1988). However, the absence of extracellular Ca2+ prevents refilling of the agonist-sensitive Ca2+ pool (Aub et al., 1982). When extracellular Ca2+ is restored under these conditions, i.e. in the absence of receptor activation but when the agonist-sensitive Ca2+ pool is depleted, the intracellular pool will rapidly refill (Aub et al., 1982; Merritt & Rink, 1987b; Hughes et al., 1988). As shown in Fig. 1, the initial increase in cytosolic [Ca2+] is transiently larger than in the control cells with the pool intact. The rate of increase of intracellular Ca2+ during the first 1 s after introduction of Ca2+ was estimated, and this was also slightly increased in the cells whose pool had been depleted (136 + 5% of control). In the experiment in Fig. 1, the basal [Ca2+] appears lower in the cells that had been stimulated than in the control cells, but on average the values were not different in the two groups. The average cytosolic [Ca2+] in the control cells was 55.5 + 2.4 nM and in the previously stimulated cells it was 55.1 + 2.2 nM.

Previous studies on Ca2+ regulation in the parotid (Merritt & Rink, 1987b) failed to note this additional Ca2+ flux, and concluded that the calcium entering the pool did not traverse the cytosol, consistent with the predictions from the studies of 86Rb+ flux. However, this additional increase in cytosolic [Ca2+] is apparent on inspection of the data (compare the effect of addition of Ca2+ to unstimulated cells shown in Fig. 3(a) with that for previously stimulated cells in Fig. 6(b) of Merritt & Rink (1987b)).

The data of Poggioli et al. (1985) indicated that the agonist-activated Ca2+ influx has a higher K_m for Ca2+ than does the resting leak flux. Thus the reliance of this pool-dependent extra Ca2+ flux on the concentration of Ca2+ added was examined. Fig. 2 illustrates that the extra influx of Ca2+ seen in pool-depleted cells was detectable when extracellular Ca2+ was increased to 0.3 or 1.0 mM, and was especially apparent when the concentration was increased to 3.0 or 10.0 mM.
In the experiments shown in Figs. 1 and 2, the addition of Ca\(^{2+}\) occurred 1 min after the addition of atropine. Thus it is unlikely that the additional flux can be attributed to persisting Ins(1,4,5)P\(_3\), which decreases with a half-time of 7.6 s (Hughes et al., 1988). However, other inositol phosphates formed in acinar cells decrease with half-times of the order of minutes (Hughes et al., 1988), and some of these have been suggested to have Ca\(^{2+}\)-mobilizing or regulating actions, e.g. inositol cyclic 1,2,4,5-trisphosphate (Wilson et al., 1985), inositol 1,3,4-trisphosphate (Irvine et al., 1986), inositol 1,3,4,5-tetrakisphosphate (Morris et al., 1987). Two experimental protocols were utilized to demonstrate the independence of the pool-dependent Ca\(^{2+}\) influx on the presence or metabolism of inositol phosphates or other agonist-dependent messengers. First, increasing the time interval between the addition of atropine and Ca\(^{2+}\) from 1 to 20 min had no effect on the additional Ca\(^{2+}\) influx observed in the pool-depleted cells (Fig. 2c). In a second strategy, the pool was allowed to refill by adding atropine in the presence of extracellular Ca\(^{2+}\). Extracellular Ca\(^{2+}\) was subsequently removed, and the rise in cytosolic [Ca\(^{2+}\)] after application of 3 mM extracellular Ca\(^{2+}\) was determined. Under these conditions, the rise in cytosolic [Ca\(^{2+}\)] after the addition of extracellular Ca\(^{2+}\) was not rapid, and resembled the increase seen in unstimulated cells (Fig. 3). That is, the additional Ca\(^{2+}\) influx could be observed as late as 20 min after the blockade of the muscarinic receptor as long as refilling of the agonist-sensitive pool during the intervening period was prevented by the absence of extracellular Ca\(^{2+}\). Conversely, the extra influx was not observed 3 min after atropine treatment if the intracellular pool was first allowed to refill.

Taken together, these results demonstrate that, when the agonist-sensitive Ca\(^{2+}\) pool is emptied, Ca\(^{2+}\) influx across the plasma membrane is increased. This influx of Ca\(^{2+}\) occurs independently of the increased concentrations of inositol phosphates caused by receptor activation, and probably of any second messengers linked directly to receptor activation. Rather, it appears to be a consequence of the empty state of the Ca\(^{2+}\) pool. Since the influx is exaggerated relative to the basal flux at high [Ca\(^{2+}\)], the extra flux would seem to have a higher \(K_m\) for Ca\(^{2+}\) than the basal flux, in agreement with the findings by Poggioli et al. (1985). Therefore it follows that, whenever the agonist-sensitive Ca\(^{2+}\) pool is emptied by agonist activation, the plasma-membrane permeability to Ca\(^{2+}\) will be increased. In these experiments, this effect is short-lived because the test application of Ca\(^{2+}\) serves to restore the pool. However, in the continued presence of an agonist, Ins(1,4,5)P\(_3\) would prevent the refilling of the pool, and a sustained influx of Ca\(^{2+}\) would result.
These data provide strong evidence in favour of the capacitative model for Ca$^{2+}$ entry into the parotid acinar cell, and may well apply for a number of other cell types in which Ca$^{2+}$ fluxes are under primary control of inositol-lipid metabolism. However, it is also quite possible that other mechanisms may regulate transmembrane Ca$^{2+}$ fluxes in other systems, or that under some circumstances this mechanism of Ca$^{2+}$ entry can be regulated or modified by other second messengers, such as inositol 1,3,4,5-tetraakisphosphate (Morris et al., 1987).

How information concerning the state of the intracellular agonist-sensitive Ca$^{2+}$ pool is conveyed to the plasma membrane is not directly addressed by these experiments. The rapidity of Ca$^{2+}$ entry into the pool from the extracellular space has suggested proximity between these organelles (Putney, 1986), and subcellular-fractionation results support this idea (Guillemette et al., 1988). Thus there may be substantial compartmentation of the cytosolic compartment through which this flux occurs, and the buffering action of fura-2 may serve to short-circuit some of this flux, making it more readily detectable as a rise in total cytosolic [Ca$^{2+}$]. The mechanism of interaction or communication between these important Ca$^{2+}$-regulating cellular components will be a challenging topic for future investigations.

REFERENCES

Putney, J. W., Jr. (1986) Cell Calcium 7, 1–12

Fig. 3. Methacholine followed by atropine does not induce an augmented Ca$^{2+}$ influx if the intracellular Ca$^{2+}$ pool is filled.

In (a), atropine and, 3 min later, 3.0 mM-Ca$^{2+}$ were added to parotid acinar cells incubated in a medium lacking extracellular Ca$^{2+}$ and containing 0.2 mM-EGTA. In (b), 0.1 mM-methacholine was added to cells in the presence of 1.0 mM-Ca$^{2+}$, and then atropine was added 3 min later. This was followed 1 min later by excess EGTA (3.0 mM), and then, after 1 min more, with an additional 5.0 mM-CaCl$_2$ ([Ca$^{2+}$] \approx 3.0 mM). Previous studies (Hughes et al., 1988) have shown that, after the addition of atropine in the presence of extracellular Ca$^{2+}$, the agonist-sensitive Ca$^{2+}$ pool is completely refilled within 1 min. A single experiment is shown; two others produced similar results.

Received 9 September 1988; accepted 1 November 1988