INTRODUCTION

Tumour burden has profound effects on lipid metabolism. These include decreases in whole-body lipid oxidation rates (Costa et al., 1976), lipoprotein lipase activity and the rate of lipogenesis in white adipose tissue (Thompson et al., 1981; Lanza-Jacoby et al., 1984), and an increase in plasma triacylglycerols (Lanza-Jacoby et al., 1984). Recently the tissue-specific effects of malignant tumour (Walker-256 carcinosarcoma) burden on mammary-gland and adipose-tissue lipid metabolism during lactation and after premature removal of the pups have been described (Evans & Williamson, 1988). The tumour was found to exert its deleterious effects mainly during periods of rapid transition in metabolism (parturition and establishment of lactation; weaning) (Evans & Williamson, 1988; Williamson et al., 1988). These effects include decreased \(^{14}\text{C}\)lipid accumulation in plasma together with hypertriglyceridaemia, and decreased lipogenesis in white and brown adipose tissue in litter-removed rats, effects not seen during tumour growth in established lactation (Evans & Williamson, 1988). Tumour growth before parturition inhibits lactation post partum (Williamson et al., 1988). Some of the effects of tumour burden in rats can be mimicked by macrophage cytokines, notably suppression of lipoprotein lipase activity in adipose tissue by recombinant-derived tumour necrosis factor \(\alpha\) (TNF\(\alpha\), cachectin) both in vitro (Price et al., 1986) and in vivo (Semb et al., 1987), and this has led to the suggestion that it may be the causative agent of tumour cachexia (Beutler & Cerami, 1987). In a human study, half the patients with active cancer had increased serum TNF\(\alpha\) (Balkwill et al., 1987). Much of the present information on the effects of TNF\(\alpha\) on lipid metabolism comes from studies on cultured cell lines rather than in vivo (see Moldawer et al., 1988). In the present study we have investigated the effect of recombinant-derived human TNF\(\alpha\) on lipid metabolism in vivo during lactation and on litter removal to examine whether this cytokine can mimic the previously reported effects of tumour growth (Evans & Williamson, 1988). For comparison, effects of TNF\(\alpha\) on disposal of a \(^{14}\text{C}\)lipid load in virgin rats were also examined.

MATERIALS AND METHODS

Animals

All animals were fed ad libitum on a chow diet consisting (by weight) of 52% carbohydrate, 21% protein and 4% fat (the residue was non-digestible material; Special Diet Services, Witham, Essex, U.K.) with free access to drinking water, and were maintained at an ambient temperature of 22 ± 2°C with a 12 h-light/12 h-dark cycle (lights on from 07:00 h). Food was weighed daily. Three groups of Wistar rats were studied: virgin females (body wt. 200–250 g), lactating rats with nine or ten pups used 10–12 days post partum (body wt. 270–330 g) and lactating rats 10–13 days post partum whose litters had been prematurely removed 24 h previously (body wt. 270–330 g). Only lactating rats whose litters were increasing in weight around the average for the colony (1.8 g/day per pup) were used.

Biochemicals

All enzymes and coenzymes were obtained from Boehringer Corp. (London) Ltd., Lewes, Sussex, U.K. Recombinant-derived human TNF\(\alpha\) was generously given by BASF/Knoll AG, Ludwigshafen, Germany, \([^{14}\text{C}]\)triolein (glycerol tri[1-\(^{14}\text{C}\)oleate]) and glycerol tri[9,10(n)-\(^{3}\text{H}\)oleate] were obtained from Amersham International, Amersham, Bucks, U.K.

Cytokine administration

Experimental animals were injected with 0.6 mg of recombinant-derived human TNF\(\alpha\)/kg body wt. in
0.5 ml of phosphate-buffered saline (50 mm-potassium phosphate/0.9 % NaCl, pH 8.5) (contamination with endotoxin < 0.137 ng/mg of protein by Limulus assay) intravenously through the dorsal tail vein under light diethyl ether anaesthesia; control animals received 0.5 ml of vehicle. All injections were administered between 09:00 and 10:00 h on the day of the experiment, with the animals being killed 6 h later; food was not available during this period.

Measurement of lipid oxidation and tissue lipid accumulation

The metabolic fate of orally administered [1-14C]-triolein was measured as described by Oller do Nascimento & Williamson (1986). The dose administered was 700 mg of [1-14C]triolein, containing about 0.33 μCi. After collection of expired CO2 for 5 h the animal was killed (6 h after TNFα administration), aortic blood collected with a heparinized syringe for plasma and blood samples, and the gastrointestinal tract was removed and homogenized in 150 ml of 3 % (w/v) HClO4. Duplicate samples of liver, parametrial adipose tissue, inguinal mammary gland (animals post partum) and interscapular brown adipose tissue (single sample) were removed. Carcasses, after removal of liver, mammary gland and heart, were autoclaved, blended, and triclipic samples taken; all tissues were saponified and fatty acids extracted by the method of Stansbie et al. (1976).

Lipoprotein lipase

Parametrial-adipose-tissue, mammary-gland and heart lipoprotein lipase activities were determined on acetone/diethyl ether-dried powders of the tissues as described previously (Evans & Williamson, 1988).

Plasma triacylglycerols

Plasma triacylglycerol was measured by the method of Eggstein & Kreutz (1966).

RESULTS AND DISCUSSION

The effect of TNFα on exogenous [14C]lipid absorption and disposal is shown in Table 1. Absorption was calculated by subtracting radioactivity remaining in the gastrointestinal tract from that administered, and a significant impairment was observed in TNFα-treated rats from all three study groups (virgin, lactating and litter-removed) to less than half their respective control values (Table 1). Consequently, subsequent lipid disposal was calculated as a percentage of absorbed lipid (Oller do Nascimento & Williamson, 1986). Profound gastrointestinal-tract dysfunction, with even macroscopic haemorrhagic necrosis of the small bowel, has been reported in virgin animals in response to high doses of TNFα (Tracey et al., 1986). This effect may account for many of the metabolic derangements noted in previously reported studies, as recorded food intake or even gastric gavage may be an unreliable index of metabolic substrate availability to the animal in vivo. In our experiments (0.6 mg of TNFα/kg body wt.) the bowel appeared macroscopically normal and no rats died (see also Sun & Hsueh, 1988).

Whole-body lipid oxidation rate, as estimated by 14CO2 production, was significantly diminished (about 90 %) in all groups (Table 1), including lactating rats, which have low oxidation rates (Oller do Nascimento &
Williamson, 1986; Evans & Williamson, 1988). This decrease in lipid oxidation may represent an energy-conservation mechanism, as in the normal lactating rat (Oller do Nascimento & Williamson, 1986), or may simply indicate unavailability of the lipid substrate to oxidation sites. The 14CO$_2$ production rate was analysed for each rat over the 5 h collection period and was found to be linear between 2 and 5 h in each case ($r > 0.9$), indicating that the rate of appearance of $[^{14}]$lipid in the circulation, even when absorption is diminished by the cytokine, is presumably constant.

Accumulation of the $[^{14}]$triolein was significantly decreased in a variety of tissues in virgin and litter-removed animals after TNFα administration (Table 1); thus carcass, liver and white and brown adipose tissue all accumulated less radioactivity than their respective controls. Mammary-gland accumulation was low 24 h after litter removal, but was depressed still further in the TNFα-treated group (Table 1). $[^{14}]$Lipid tended to increase in plasma in all groups treated with TNFα, but this was not significant (Table 1). In lactating animals, accumulation in tissues other than mammary gland is diminished as a physiological mechanism of 're-direction' of energetic substrates to the active mammary gland (Oller do Nascimento & Williamson, 1986), and this was confirmed in the present experiments. The high accumulation in the lactating mammary gland was decreased (90%) after TNFα administration (Table 1). This indicates that the effect of TNFα is not confined to adipose tissue and may be contrasted with the situation with tumour burden, where there is no effect on mammary-gland lipid accumulation at stages of tumour growth when accumulation in other tissues was significantly inhibited (Evans & Williamson, 1988).

Administration of TNFα was found to cause hypertriglyceridaemia in virgin, lactating and litter-removed animals (Table 2). Hyperlipaemia has been noted previously in tumour-bearing animals (Lanza-Jacoby et al., 1984; Evans & Williamson, 1988). A possible mechanism in tumour-bearing rats is the suppression of adipose-tissue lipoprotein lipase activity (Thompson et al., 1981; Lanza-Jacoby et al., 1984; Evans & Williamson, 1988), and this was observed in the parametrial adipose tissue of virgin and litter-removed rats treated with TNFα (Table 2); this activity is physiologically low in the adipose-tissue activity is significantly depressed (Evans & 1987) and therefore was not measured. However, lipoprotein lipase activity was decreased in lactating mammary gland, a novel finding indicating a relatively non-tissue-specific effect of the cytokine (Table 2). Tumour burden has been shown not to suppress lipoprotein lipase activity in lactating mammary gland at a time when adipose tissue activity is significantly depressed (Evans & Williamson, 1988), suggesting that TNFα has additional effects not seen during tumour growth (Evans & Williamson, 1988). However, some tissue specificity of TNFα action appears to exist, as lipoprotein lipase activity in heart was not suppressed by this cytokine in any experimental group (Table 2). It has recently been reported that TNFα has no short-term effect on the activity of lipoprotein lipase in the perfused heart (Hülsmann et al., 1988).

Thus TNFα has a wide range of actions on lipid metabolism, including decreased lipid absorption and decreased lipid assimilation by lactating mammary gland, effects not observed in response to tumour growth in rats (Evans & Williamson, 1988). The decreased absorption may be due to a delay in gastric emptying (Patton et al., 1987). The hyperlipaemia occurring in response to TNFα administration (despite a decrease in lipid absorption) in the present experiments may be explained by the decrease in lipoprotein lipase activity in mammary gland (lactating rats) or adipose tissue (virgin and litter-removed rats); however, a contribution from increased lipolysis in adipose tissue in these states cannot be ruled out. Stimulation of lipolysis by TNFα in vitro has been demonstrated (Patton et al., 1986; Kawakami et al., 1987; but see Price et al., 1986; Rofe et al., 1987).

We thank Mrs. Vera Ilic for skilled assistance and Mrs. M. Barber for preparation of the typescript. R.D.E. holds a
Medical Research Council (MRC) Training Fellowship, and D.H.W. is a member of the MRC External Scientific Staff.

REFERENCES

Received 24 August 1988/4 October 1988; accepted 17 October 1988

