Identification of oversulphated galactosaminoglycans in intestinal-mucosal cell lines of rats infected with the nematode worm *Nippostrongylus brasiliensis*

Marion KUSCHE,* Ulf LINDAHL,* Lennart ENERBÄCK† and Lennart RODÉN‡

*Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, The Biomedical Center, S-751 23 Uppsala, Sweden, †Department of Pathology II, Gothenberg University, Sahlgrensk Hospital, S-413 45 Gothenburg, Sweden, and ‡Institute of Dental Research and Departments of Medicine and Biochemistry, The University of Alabama at Birmingham, Birmingham, AL, 35294, U.S.A.

The oversulphated galactosaminoglycans synthesized by rat mucosal cell lines were isolated from the small intestine of animals infected with the nematode *Nippostrongylus brasiliensis*, which causes proliferation of these cells. The 35S-labelled polysaccharides were degraded by digestion with chondroitinase ABC, and the structures of the disaccharide products were determined by cleavage with mercuric acetate followed by electrophoretic characterization of the resultant sulphated monosaccharides. It was concluded that about half of the disulphated disaccharide units in the polysaccharide consisted of chondroitin sulphate E-type structures [GlC-A-GalNAc(4,6-di-OSO$_3$)], in which both sulphate groups were located on the N-acetylglactosaminol unit. The remainder consisted of isomeric structures with one sulphate group on the N-acetylglactosaminol residue and one on the hexuronic acid unit and presumably represented the dermatan sulphate-type sequence [IdoA(2-OSO$_3$)-GalNAc(4-OSO$_3$)].

INTRODUCTION

The secretory granules of mast cells generally contain sulphated glycosaminoglycans, hence their strongly basophilic staining properties. Recent studies have shown that various types of mast cells differ with regard to the structure of the stored polysaccharides. Thus heparin, by tradition considered the hallmark of the stored structure glycosaminoglycans, cell et al. (1985) concluded that the disulphated disaccharide residues had the predominant structure:

- GlC-A-GalNAc(4,6-di-OSO$_3$)-

with both sulphate groups on the N-acetylglactosaminol moiety (sometimes referred to as a 'chondroitin sulphate E structure'), Stevens et al. (1986) claimed that the sulphate groups were largely distributed between both sugar moieties in the disulphated di-B sequence:

- IdoA(2-OSO$_3$)-GalNAc(4-OSO$_3$)-

In the present study this problem was reinvestigated by using a novel method to characterize saccharide sequences with non-reducing-terminal hexuronic acid units (Ludwigs et al., 1987). The method is based on selective elimination of such units by treatment with mercuric ions under conditions that leave the remaining saccharide unmodified.

EXPERIMENTAL

Materials

35S-labelled polysaccharides from rat mucosal cell lines were isolated essentially as described in detail previously (Enerbäck et al., 1985). Briefly, rats were infected with the nematode *Nippostrongylus brasiliensis*, and polysaccharides were isolated from the small intestine.

Abbreviations used: HexA, unspecified hexuronic acid; GlC A, D-glucuronic acid; IdoA, L-iduronic acid; GalNAc, 2-deoxy-2-acetamido-D-glucose (N-acetyl-D-galactosamine); GlcNAc, 2-deoxy-2-acetamido-D-galactose (N-acetyl-D-galactosamine); Man$_{n}$, 2-5-anhydro-D-mannitol formed by reduction of 2,5-anhydromannose residues; ADi-4S, 2-acetamido-2-deoxy-3-O-(β-D-glucopyranosyluronic acid)-4-O-sulpho-D-galactose; ADi-6S, 2-acetamido-2-deoxy-3-O-(β-D-glucopyranosyluronic acid)-6-O-sulpho-D-galactose; ADi-diS$_{n}$, 2-acetamido-2-deoxy-3-O-(2-O-sulpho-D-glucopyranosyluronic acid)-4-O-sulpho-D-galactose; ADi-diS$_{m}$, 2-acetamido-2-deoxy-3-O-(2-O-sulpho-D-glucopyranosyluronic acid)-4,6-di-O-sulpho-D-galactose; chondroitinase ABC, chondroitin ABC lyase (EC 4.2.2.4); chondroitinase AC, chondroitin AC lyase (EC 4.2.2.5); chondroitinases ABC, chondroitinase AC, chondroitin ABC lyase (EC 4.2.2.7); in abbreviated saccharide sequences the positions of sulphate groups are indicated in parentheses.
after intraperitoneal injection of Na$_{35}$SO$_4$. The tissue was digested with Pronase, and the digest was treated with NaOH/NaBH$_4$ and was then centrifuged at 20000 g for 20 min. After dialysis against water, the supernatant was adjusted to pH 8.0 by the addition of Tris and was then applied to a column of DEAE-cellulose (DE-52, Whatman). The column was washed with 0.05 M-NaCl/0.05 M-Tris buffer, pH 8.0, then with 0.05 M-LiCl/0.05 M-acetate buffer, pH 4.0, and was finally eluted with a gradient of LiCl from 0.05 to 1.5 M, in acetate buffer, pH 4.0. As shown in Fig. 1, a major portion of the labelled material was eluted somewhat later than was a chondroitin sulphate standard, but ahead of heparin. Despite the heterogeneous appearance of the elution profile, which suggested the presence of several incompletely resolved components, subdivision of the eluate was not necessary for the purpose of this investigation. Labelled material was pooled as described in the legend to Fig. 1 and dialysed against water. In some preparations, the labelled polysaccharides were recovered from the ion-exchange column by batchwise elution with 1.5 M-LiCl in 0.05 M-acetate buffer, pH 4.0, after exhaustive washing with 0.2 M-NaCl in the same acetate buffer.

The unsaturated disulphated 3H-labelled disaccharide ΔDi-diS$_6^3$ was prepared from chondroitin sulphate E, kindly given by Dr. N. Seno, Department of Chemistry, Ochanomizu University, Tokyo, Japan. The polysaccharide was N-$[^3]H$acetyl-labelled by the procedure of Høök et al. (1982), which involved N-deacetylation by hydrazinolysis (100 °C for 2 h) followed by reaction with $[^3]H$acetic anhydride. Hexuronic acid residues are known to be partially converted into hydrazides during hydrazinolysis (Shaklee & Conrad, 1984), and carbonyl groups were therefore regenerated by dialysis of the polysaccharide against 0.25 M-HIO$_4$, and then against several changes of water. The product (sp. radioactivity 300×10^3 c.p.m. of 3H/μg of hexuronic acid) was digested with chondroitinase ABC, and the resulting disaccharides were isolated by gel chromatography on a column (1 cm \times 170 cm) of Sephadex G-15, eluted with 0.2 M-NH$_4$HCO$_3$. After freeze-drying, the disulphated disaccharide (ΔDi-diS$_6^3$) was separated from non-sulphated and monosulphated disaccharides by preparative high-voltage paper electrophoresis at pH 1.7 (see below) and was finally eluted from the paper with water.

3H-labelled unsaturated monosulphated disaccharides were prepared in a similar manner from chondroitin sulphate isolated from bovine nasal cartilage and kindly given by Dr. Å. Wasteson, Department of Cell Biology, University of Linköping, Linköping, Sweden. The corresponding 4- or 6-sulphated N-$[^3]H$acetylgalactosamine monosaccharides, obtained by treatment of the unsaturated disaccharides with mercuric acetate, were isolated by preparative paper electrophoresis (pH 1.7) and were finally separated by paper chromatography as described below (see also Fig. 4 below). The two monosaccharide sulphates were identified in a separate experiment by modifying this protocol such that a sample of the intact disaccharides was digested with chondro-6-sulphatase before cleavage with mercuric acetate. The resulting paper chromatogram lacked the slower-migrating component, which was therefore assumed to represent N-acetylgalactosamine 6-sulphate. N-$[^3]H$Acetylgalactosamine 4,6-disulphate was isolated in a similar fashion, after cleavage of labelled ΔDi-diS$_6^3$.

A 3S-labelled trisulphated unsaturated disaccharide with the structure:

$$\Delta$$HexA(2-OSO$_3^-$)-GlcNSO$_4^-$(6-OSO$_3^-$)

was obtained by heparinase digestion (Linhardt et al., 1986) of $[^3]S$heparin synthesized by mouse mastocytoma cells in culture. Confluent cultures were incubated with inorganic $[^3]S$phosphate for 1 h, and labelled polysaccharide was isolated as described (Jacobsson et al., 1985). Chondroitinase ABC-resistant material (1.7 \times 104 c.p.m.) was digested at 30 °C for 15 h with heparinase (3.5 μg of protein) in 1 ml of 2.5 mM-calcium acetate/0.25 mM-sodium acetate, pH 7.0. Trisulphated disaccharide was isolated from the incubation mixture by gel chromatography and high-voltage paper electrophoresis as described above; it was the major disaccharide product and migrated faster than a disulphated disaccharide standard on paper electrophoresis at pH 1.7 (see the Results section).

HexA-[$^3]H$Man$_n$ disaccharides with O-sulphate groups in various positions were obtained as described (Peijler et al., 1987), after deaminative cleavage of heparin with HNO$_4$, 2,3-Anhydro[1-3H]mannitol(6-OSO$_3^-$) monosaccharide was prepared by digestion of GlcA-
Galactosaminoglycans in mucosal mast cells

[3H]αMan(6-OSO₃) with bovine liver β-D-glucuronidase (Jacobsson et al., 1979).

[3H]Acetic anhydride (500 mCi/mm) and inorganic [35S]sulphate (carrier-free) were obtained from The Radiochemical Centre, Amersham, Bucks., U.K. Chondroitinase ABC (chondroitin ABC lyase; EC 4.2.2.4) and chondro-6-sulphatase (EC 3.1.6.10) were purchased from Seikagaku Fine Chemicals, Tokyo, Japan, and Sigma Chemical Co., St. Louis, MO, U.S.A., respectively. Bacterial heparinase (heparin lyase; EC 4.2.2.7) was a gift from Dr. R. J. Linhardt, College of Pharmacy, University of Iowa City, Iowa City, IA, U.S.A.; Sephadex G-15 was obtained from Pharmacia Fine Chemicals, Uppsala, Sweden; DEAE-cellulose (DE-52) was from Whatman Biochemicals, Maidstone, Kent, U.K.; Dowex 50W-X8 (200–400 mesh) was from Serva Feinbiochemica, Heidelberg, Germany. Bovine serum albumin and Pronase were from Sigma Chemical Co. Mercuric acetate (analytical grade) was a product of E. Merck, Darmstadt, Germany.

Methods

Hexuronic acid was determined by the carbazole method of Bitter & Muir (1962).

Glycosidic linkages of non-reducing-terminal unsaturated hexuronic acid units were cleaved by treatment with 10 mm-mercuric acetate at room temperature for 30 min (Ludwigs et al., 1987), as described in the legend to Fig. 3 (below). The reaction products were either directly spotted on paper for high-voltage electrophoresis, or passed through small columns of Dowex 50W-X8 (Na⁺ form) for removal of mercuric ions before further analysis.

Digestions of polysaccharides with chondroitinase ABC and of unsaturated disaccharides with chondro-6-sulphatase (Yamagata et al., 1968; Saito et al., 1968) were performed as described in the legends to Figs. 2 and 7 (below) respectively.

Paper chromatography was performed on Whatman no. 3MM paper, developed with ethyl acetate/acetic acid/water (3:1:1, by vol.). After development for the appropriate periods of time, the strips were dried and cut into 1 cm segments, which were transferred to vials for liquid-scintillation counting of radioactivity. The paper segments were extracted with 1 ml of water for 1 h before the addition of 5 ml of scintillation cocktail [0.2 g of POPPOP [1,4-bis-(5-phenyloxazol-2-yl)benzene] and 3.3 g of PPO (2,5-diphenyloxazole) per litre of toluene/Triton X-100 (2:1, v/v)]. High-voltage electrophoresis was conducted on Whatman no. 3MM paper in 0.83 M-pyridine/0.5 M-acetic acid (pH 5.3; 80 V/cm) or in 1.6 M-formic acid (pH 1.7; 40 V/cm). After drying, papers were cut in 1 cm segments, which were analysed for radioactivity as described above.

RESULTS

Enzymic degradation of [35S]-labelled polysaccharides and isolation of disaccharides

The [35S]-labelled polysaccharides isolated (see the Experimental section) from rat small intestine (~500 × 10⁶ c.p.m./g of tissue from infected rats as compared with ~100 × 10⁶ c.p.m./g from uninfected control animals) were digested with chondroitinase ABC, and the resulting unsaturated disaccharides were separated from resistant material by gel chromatography as described in

the legend to Fig. 2. The degraded galactosaminoglycans corresponded to 50–60% of the total labelled macromolecules, in agreement with previous findings (Enerbäck et al., 1985). This previous study had revealed a close correlation between the content of labelled polysaccharide, the histamine content and the number of mast cells in the intestinal mucosa. Moreover, autoradiography revealed a selective labelling of the mucosal mast cells. It was therefore concluded that the polysaccharide originated from these cells (Enerbäck et al., 1985). The proportion of labelled heparin/heparan sulphate (~13% of the total labelled macromolecules) was less than half of that in the control material, in accord with the notion that the rat mucosal mast cell does not produce heparin.

Fractionation of the unsaturated disaccharides by high-voltage paper electrophoresis at pH 5.3 gave the results shown in Fig. 2. Two major components were observed, and comparison with reference compounds derived from heparin (see the legend to Fig. 2 for details) indicated that the slower-migrating component (ΔDi-S) consisted of monosulphated disaccharide(Δ) and the faster-migrating component (ΔDi-diS) contained disulphated disaccharide(s). ΔDi-diS accounted for approx. 40% of the total radioactivity recovered as disaccharide

Fig. 2. Paper electrophoresis of disaccharides generated by digestion of [35S]-labelled galactosaminoglycan with chondroitinase ABC

A sample (~5 × 10⁶ c.p.m.) of labelled polysaccharide, isolated as described in the legend to Fig. 1, was digested with 0.2 unit of chondroitinase ABC in 1 ml of 0.05 M-Tris/HCl/0.03 M-sodium acetate, pH 8.0, containing 100 µg of bovine serum albumin/ml. After incubation for 15 h at 37°C, the digest was passed through a column (1 cm × 170 cm) of Sephadex G-15, equilibrated with 0.2 M-NH₄HCO₃, to separate disaccharides from undigested labelled polysaccharide. The disaccharides were freeze-dried and were then fractionated further by high-voltage paper electrophoresis at pH 5.3, as described in the Experimental section. Guide strips were analysed for [38S] as indicated. The zones corresponding to the peaks designated 'ΔDi-S' and 'ΔDi-diS' were cut out, and the labelled components were eluted from the strips. The standards shown below the tracing are: MS, [3H]αMan(6-OSO₃); GMS, GlcA-[3H]αMan(6-OSO₃); ISMS, IdoA(2-OSO₃)-[3H]αMan(6-OSO₃) (see the Experimental section).
Monosulphated, unsaturated disaccharide (ADi-S in Fig. 2; 4000 c.p.m. of 35S) derived from mucosal mast-cell galactosaminoglycan, and the corresponding N-[U-3H]acetetyl-labelled disaccharide [6000 c.p.m. of 3H] prepared from cartilage chondroitin sulphate (see the Experimental section), were subjected to paper electrophoresis at pH 5.3 or at pH 1.7, either before or after treatment with mercuric acetate, as indicated. Samples (10 μl) were mixed with 10 μl of 20 mM-mercuric acetate/130 mM-sodium acetate, and the reaction was allowed to proceed at room temperature for 30 min. Before electrophoresis, mercuric ions were removed by passage of the reaction mixtures through small columns of Dowex 50 (Na$^+$ form; 200-400 mesh). The standards below the tracings are the same as in Fig. 2.

Characterization of monosulphated disaccharide(s) (ADi-S)

The unsaturated uronic acid component of the monosulphated disaccharide(s) was released by treatment with mercuric acetate, as described in detail in the legend to Fig. 3, and the reaction products as well as the untreated ADi-S material were analysed by high-voltage paper electrophoresis (Fig. 3). After mercuric acetate treatment, a single product was observed on electrophoresis at pH 5.3 (b) that migrated more slowly than the untreated disaccharide fraction (a). Compared with the reference standards, the reaction product had a slightly lower mobility than did anhydromannitol 6-sulphate. At pH 1.7, the untreated disaccharide fraction yielded a single peak, which was located in the same position as GlcA-aMan(6-OSO$_3$) (c). The single component observed after mercuric acetate treatment was located just ahead of the untreated control, between the monosulphated reference disaccharide and anhydromannitol 6-sulphate (d). Fig. 3 also shows the corresponding electrophoretic patterns for a [U-3H]acetetyl-labelled monosulphated unsaturated disaccharide fraction (mixture of 4- and 6-sulphated species) derived from chondroitin sulphate (see the Experimental section). The 3H-labelled standard invariably co-migrated with the 35S-labelled samples before, as well as after, treatment with mercuric acetate.

These results indicate that the 35S-labelled component released on mercuric acetate treatment of the monosulphated disaccharide fraction was N-acetylgalactosamine 4- or 6-sulphate. The parent disaccharide fraction, derived from the mucosal mast cells, would thus consist of one or both of the two species ADi-4S and ADi-6S. In particular, the migration characteristics of the products of mercuric acetate treatment clearly ruled out the presence of a sulphated uronic acid residue. On electrophoresis at pH 5.3, a sulphated uronic acid monosaccharide would have a higher charge density than a monosulphated disaccharide and therefore would migrate faster than the untreated disaccharide. No such fast-migrating product was observed, even when the separation was performed immediately after the mercuric acetate treatment (see below).

Further characterization of the putative N-acetyl-
Galactosaminoglycans in mucosal mast cells

Fig. 4. Paper chromatograph of N-acetylgalactosamine [35S]sulphate formed by mercuric acetate treatment of unsaturated monosulphated disaccharides (ΔDi-S)

The [35S]-labelled product obtained by degradation of ΔDi-S with mercuric acetate was isolated by preparative paper electrophoresis at pH 1.7, as shown in Fig. 3(d), and was then subjected to paper chromatography (see the Experimental section). Below the tracings are indicated the migration positions of standard N-[3H]acetylgalactosamine 6-sulphate (GalNAc6S) and N-[3H]acetylgalactosamine 4-sulphate (GalNAc4S).

galactosamine [35S]sulphate formed on mercuric acetate treatment of ΔDi-S was carried out by paper chromatography (Fig. 4). Most of the radioactivity coincided with the position of standard N-acetylgalactosamine 4-sulphate, but a minor component was also seen in the position of N-acetylgalactosamine 6-sulphate. The ΔDi-S fraction thus consisted mainly of the 4-sulphated disaccharide, ΔDi-4S, with smaller amounts of the 6-sulphated isomer, ΔDi-6S. These results are in agreement with previous analyses based on ion-exchange chromatography (Enerbäck et al., 1985), and therefore indicate that the reaction with mercuric salts, previously studied only with a non-sulphated model disaccharide derived from hyaluronic acid (Ludwigs et al., 1987), can be applied also to the structural analysis of sulphated unsaturated disaccharides.

Characterization of disulphated disaccharide(s) (ΔDi-diS)

Fraction ΔDi-diS was further separated by paper electrophoresis at pH 1.7. This purification step was required to remove a faster-moving component that migrated as a distinct peak ahead of the disulphated disaccharide(s) at this pH, but co-migrated with the latter at pH 5.3 (results not shown). This component represented approx. 10% of the total radioactivity in ΔDi-diS and was found in all preparations. It has not yet beencharacterized further.

The purified preparation of disulphated disaccharide(s) was treated with mercuric acetate as described in the Experimental section, and the reaction mixture was analysed by high-voltage paper electrophoresis. As seen in Figs. 5(a) and 5(b), the products separated into two fractions at pH 1.7: one which migrated more slowly than the untreated disaccharide(s) (peak I-pH 1.7), and one which migrated faster (peak II-pH 1.7). The mobility of the latter component was also greater than that of the standard disulphated disaccharide from heparin, which, in turn, migrated somewhat faster than untreated ΔDi-diS. At pH 5.3 (Figs. 5c and 5d), untreated ΔDi-diS migrated to approximately the same position as the disulphated standard (partially overlapping with, and partially just behind, the latter; see also Fig. 2). The mercuric acetate-treated sample again showed the presence of two peaks, which both migrated more slowly than did the untreated material. With reference to other compounds, the most retarded fraction, peak I-pH 5.3, migrated somewhat more slowly than the slowest standard (anhydromannitol 6-sulphate), whereas the faster-moving peak, II-pH 5.3, had a slightly lower mobility than had the untreated parent disaccharide, intermediate between those of the mono- and di-sulphated heparin disaccharide standards.

Keeping in mind those structural features of the oversulphated galactosaminoglycans which are already known, we are presumably dealing with one or both of the two disulphated disaccharides ΔHexA-GalNAc(4,6-di-OSO₄) and ΔHexA(2-OSO₄)GalNAc(4-OSO₄), which originate from glucuronic acid-containing disaccharide units in chondroitin sulphate E and iduronic acid-containing units in dermatan sulphate respectively. Cleavage of the former disaccharide by mercuric acetate would be expected to yield a single [35S]-labelled product, namely N-acetylgalactosamine 4,6-disulphate, which has a higher charge density than the parent disaccharide at pH 1.7 and should therefore migrate faster. Peak II-pH 1.7 in Fig. 5(b) satisfies this criterion. At pH 5.3, the charge density of N-acetylgalactosamine 4,6-disulphate should be approximately the same as at pH 1.7, whereas the dissociation of the uronic acid carboxy group will increase the charge density of the parent disaccharide. The two compounds should thus have similar mobilities at pH 5.3; as seen in Figs. 5(c) and 5(d), peak II-pH 5.3 migrated only slightly behind the untreated disaccharide fraction. That the faster-migrating components did indeed correspond to N-acetylgalactosamine disulphate was ascertained by electrophoresis of a mercuric acetate-treated disulphated disaccharide, which had been isolated after chondroitinase ABC digestion of an authentic sample of [3H]acetyl-labelled chondroitin sulphate E. The single labelled compound formed co-migrated with [35S]-labelled peak II-pH 5.3 (Fig. 5d) as well as with peak II-pH 1.7 (Fig. 5b).

It may be predicted that ΔHexA(2-OSO₄)GalNAc(4-OSO₄), that is, the second disulphated disaccharide likely to be a component of fraction ΔDi-diS, will yield two [35S]-labelled products on treatment with mercuric acetate. Like the non-sulphated unsaturated uronic acid in the hyaluronic acid disaccharide ΔHexA-GlcNAc, the sulphated Δ4,5-hexuronosyl residue of the disulphated disaccharide may be expected to undergo immediate rearrangement into an oxo (‘keto’) acid after release as a monosaccharide (Ludwigs et al., 1987). One of the potential degradation products, therefore, would be a sulphated oxo acid, formed along with the monosulphated monosaccharide N-acetylgalactosamine 4-sulphate. With regard to the electrophoretic properties, we may postulate that, at pH 1.7, these two fragments will migrate to the same position, since at this pH they are both monosulphated monosaccharides with a charge of −1. (The dissociation of the uranosyl carboxy group is
Disulphated unsaturated disaccharide [Di-DiS in Fig. 2; 5000 c.p.m. of 35S(□)] derived from mucosal mast-cell polysaccharide (a–d) and trisulphated unsaturated disaccharide [5000 c.p.m. of 35S(■)] derived from mastocytoma heparin (e, f) were subjected to paper electrophoresis at pH 1.7 or at pH 5.3, either before or after treatment with mercuric acetate, as indicated. Superimposed in (b) and (d) are peaks corresponding to 4000 c.p.m. of N-[3H]acetylgalactosamine 4,6-disulphate standard (□). Additional standards, indicated below the tracings, are as described in the legend to Fig. 2. 35S-labelled components corresponding to peak I-pH 1.7 and peak II-pH 1.7 (indicated by braces in b) were isolated by preparative paper electrophoresis and re-run at pH 5.3 (see Fig. 6).

Fig. 5. Paper electrophoresis of unsaturated di-35S]sulphated disaccharides (Di-DiS), before and after treatment with mercuric acetate (HgAc$_2$).

Disulphated unsaturated disaccharide [Di-DiS in Fig. 2; 5000 c.p.m. of 35S(□)] derived from mucosal mast-cell polysaccharide (a–d) and trisulphated unsaturated disaccharide [5000 c.p.m. of 35S(■)] derived from mastocytoma heparin (e, f) were subjected to paper electrophoresis at pH 1.7 or at pH 5.3, either before or after treatment with mercuric acetate, as indicated. Superimposed in (b) and (d) are peaks corresponding to 4000 c.p.m. of N-[3H]acetylgalactosamine 4,6-disulphate standard (□). Additional standards, indicated below the tracings, are as described in the legend to Fig. 2. 35S-labelled components corresponding to peak I-pH 1.7 and peak II-pH 1.7 (indicated by braces in b) were isolated by preparative paper electrophoresis and re-run at pH 5.3 (see Fig. 6).

Moreover, they should be located close to the monosulphated monosaccharide standard derived from heparin. The mobility of peak I-pH 1.7 (Fig. 5b) was in agreement with the prediction. At pH 5.3 a different pattern is to be expected; whereas the charge density of N-acetylgalactosamine 4-sulphate is not substantially altered by the change in pH, the carboxy group of the oxo acid becomes ionized, and the sulphated oxo acid would acquire a charge density similar to that of N-acetylgalactosamine 4,6-disulphate. Since the position of the latter component corresponds to that of peak II-pH 5.3, the sulphated oxo acid would be expected to coincide with, or migrate close to, this peak. The validity of these predictions, relating to the sulphated oxo acid, was verified in experiments with the tri-35S-sulphated disaccharide AHexA(2-OSO$_2$)-GlcNSO$_2$(6-OSO$_2$) isolated after digestion of biosynthetically labelled heparin with bacterial heparinase (see the Experimental section). After treatment of this disaccharide with mercuric acetate, paper electrophoresis at pH 1.7 yielded two 35S-labelled components (Fig. 5f).

The major product, presumably GlcNSO$_2$(6-OSO$_2$), corresponded to about two-thirds of the total radioactivity, and had migrated similar to the untreated disaccharide (Fig. 5e), distinctly faster than the di-

sulphated IdoA(2-OSO$_2$)-aMan$_n$(6-OSO$_2$) standard. A slower-migrating fraction, comprising about one-third of the total 35S (as expected for the sulphated oxo acid derivative), appeared at approximately the same position (Fig. 5f) as peak I-pH 1.7 (cf. Fig. 5b); the somewhat smeared appearance of this fraction is explained below. When the degradation products of the heparin disaccharide were instead analysed at pH 5.3, all the radioactivity was accumulated in a broad peak located between the mono- and di-sulphated disaccharide standards (not shown); no slower-migrating 35S-labelled component was observed.

On the basis of the above considerations, and assuming that the initial disulphated disaccharide fraction, Di-DiS, contained the AHexA(2-OSO$_2$)-GalNAc(4-OSO$_2$) species in addition to the AHexA-GalNAc(4,6-di-OSO$_2$) component, the following composition may be anticipated for the various fractions formed by mercuric acetate treatment: peak I-pH 1.7, N-acetylgalactosamine 4-sulphate and sulphated oxo acid; peak II-pH 1.7, N-acetylgalactosamine 4,6-disulphate; peak I-pH 5.3, N-acetylgalactosamine 4-sulphate; peak II-pH 5.3, sulphated oxo acid and N-acetylgalactosamine 4,6-disulphate.

To substantiate these assumptions, peak I-pH 1.7 was
Fig. 6. Paper electrophoresis at pH 5.3 of 35S-labelled products isolated at pH 1.7 after mercuric acetate treatment of ADi-diS

The di[35S]sulphated unsaturated disaccharide fraction, ADi-diS, obtained from mucosal mast-cell polysaccharide, was treated with mercuric acetate, and the products were fractionated by paper electrophoresis at pH 1.7 as shown in Fig. 5(b). Peak I-pH 1.7 and peak II-pH 1.7 were isolated and subjected to repeated electrophoresis, at pH 5.3; the results are shown in (a) for peak I-pH 1.7 and in (b) for peak II-pH 1.7. The standards below the tracings are as described in Fig. 2.

isolated by preparative paper electrophoresis at pH 1.7 and was then subjected to electrophoresis at pH 5.3. A major component was seen (Fig. 6a), presumably N-acetylgalactosamine 4-sulphate, which migrated slightly behind the monosulphated monosaccharide standard from heparin (similar to peak I-pH 5.3; see Fig. 5d). A second, less abundant, component was also observed, which migrated faster and was located between the monosulphated and the disulphated heparin disaccharide standards (essentially similar to peak II-pH 5.3; see Fig. 5d). This material, along with an additional component of somewhat greater mobility, constituted approx. 30% of the total radioactivity of the sample. Although these findings confirm, in a qualitative sense, the presence of the two postulated monosulphated monosaccharide moieties in peak I-pH 1.7, their evaluation is complicated by the blurred profile of the faster-migrating material and the deviation from the theoretical distribution of radioactivity between the two monosaccharide sulphates (expected ratio 1:1). However, previous studies (Ludwigs et al., 1987, and references cited therein) showed that the oxo acid (hence presumably also the sulphated oxo acid) is unstable and is converted into products which have not been well characterized. Thus it was not possible to detect the oxo acid after paper chromatography overnight, whereas paper electrophoresis immediately after the completed reaction with mercuric acetate allowed the revelation of an o-phenylenediamine-staining component, before extensive degradation had occurred.

This lability of the oxo acid could account for the observed diffuse electrophoretic pattern as well as for the low yield of the faster-migrating material, smearing degradation products being difficult to distinguish from background radioactivity. Similar analysis of peak II-pH 1.7 yielded a single peak only, with the expected

Fig. 7. Digestion of ADi-diS with chondro-6-sulphatase

Samples of ADi-diS derived from mucosal mast-cell polysaccharide (a; 5000 c.p.m. of 35S) and of N-[3H]acetethyl-labelled ADi-diS standard (b: 6000 c.p.m. of 3H), were incubated for 60 min at 37 °C with 0.1 unit of chondro-6-sulphatase in 50 μl of 0.05 M-Tris/HCl/0.03 M-sodium acetate, pH 8.0, containing 100 μg of bovine serum albumin/ml. Each disaccharide sample was analysed by high-voltage paper electrophoresis at pH 1.7, either before (■) or after (□) enzyme digestion. The standards shown below the tracings are as described in the legend to Fig. 2, and, in addition, inorganic [35S]sulphate (SO₄²⁻).
mobility of \(N \)-acetylglucosamine 4,6-disulphate at pH 5.3 (Fig. 6b).

Peak I-pH 1.7 and peak II-pH 1.7 were further characterized by paper chromatography (results not shown). Peak II-pH 1.7 co-chromatographed with authentic \(^{3}H\)acetyl-labelled \(N \)-acetylglucosamine 4,6-disulphate, prepared by mercuric acetate treatment of \(\Delta \)Di-diS\(_{R}\) (see the Experimental section), and migrated slightly faster than the undegraded disaccharide. Peak I-pH 1.7 was separated into three components. The major \(^{35}S\)-labelled component had the same \(R_{p} \) value as \(N \)-\(^{3}H\)acetylglucosamine 4-sulphate, whereas approx. 15 % of the \(^{35}S\) remained at the origin and 20 % showed intermediate mobility.

These results are consistent with the notion that the disulphated disaccharides obtained by chondroitinase ABC digestion are a mixture of \(\Delta \)Di-diS\(_{R}\) and \(\Delta \)Di-diS\(_{G}\). Owing to the lability of the sulphated oxo acid, they do not, however, provide a reliable measure of the proportions of these components. Therefore an additional experiment was undertaken in which the entire disulphated disaccharide fraction (\(\Delta \)Di-diS) was digested with chondro-6-sulphatase. Analysis of the products by paper electrophoresis (Fig. 7a) showed that approx. 45 % of the \(^{35}S\)-labelled material was resistant to digestion (and thus representative of \(\Delta \)Di-diS\(_{R}\) disaccharide), whereas the remainder was converted into \(\Delta \)Di-4S and inorganic sulphate. Under identical conditions, a standard of \(N \)-\(^{3}H\)acetyl-labelled \(\Delta \)Di-diS\(_{R}\) was quantitatively converted into \(^{3}H\)Di-4S (Fig. 7b).

DISCUSSION

In contrast with the unsaturated monosulphated disaccharides obtained by eliminase digestion of galactosaminoglycans, which are readily separated by various chromatographic procedures, the disulphated species are difficult to characterize. Selective removal of sulphate groups from the \(N \)-acetylglucosamine units by digestion of such disaccharides with specific chondrosulphatases has been successfully employed (Suzuki et al., 1968), but is critically dependent on the purity of the enzymes. Sulphate groups on the uronic acid moieties have been demonstrated (Suzuki, 1960) and in some cases located (Seno & Murakami, 1982) by using periodate oxidation of unsaturated or sulphurated disaccharides. Stevens et al. (1986) based their identification of \(\Delta \)Di-diS\(_{R}\) on h.p.l.c., although the data presented (see Fig. 4a in the cited paper) showed only partial separation of this disaccharide from \(\Delta \)Di-diS\(_{G}\). Nevertheless, these authors claimed that \(\Delta \)Di-diS\(_{R}\) accounted for > 90 % of the disulphated disaccharide units obtained from the mast-cell polysaccharide, and suggested that the discrepancy in relation to our previous results (Enerbäck et al., 1985) might be ascribed largely to differences in the analytical techniques employed.

In the present study the problem has been approached by a novel technique involving cleavage of the glycosidic bond between the unsaturated hexuronic acid unit and the \(N \)-acetylglucosamine moiety by mercuric ions. The method was developed by using the unsaturated disaccharide from hyaluronan as a model compound (Ludwigs et al., 1987), but it is obviously applicable also to eliminase digestion products of sulphated glycosaminoglycans. Our results show, in contrast with the proposal of Stevens et al. (1986), that \(\Delta \)Di-diS\(_{R}\) is not a minor component but accounts for about half of the total disulphated disaccharide generated by chondroitinase ABC digestion of the mucosal mast-cell polysaccharide. This estimate is based primarily on the ratio between peak I-pH 1.7 (which represents the sum of the \(N \)-acetylglucosamine monosulphate and the sulphated oxo acid from \(\Delta \)Di-diS\(_{R}\)) and peak II-pH 1.7 (\(N \)-acetylglucosamine 4,6-disulphate from \(\Delta \)Di-diS\(_{G}\) (Fig. 5b), and allows for some underestimation of peak I-pH 1.7 (attributable to partial loss of the labile oxo acid).

Moreover, it is in good agreement with the value calculated from the composition of the products obtained on digestion of the total disulphated disaccharide with chondro-6-sulphatase (Fig. 7). It is unclear at present whether the discrepancy between our conclusions and those of Stevens et al. (1986) should indeed be ascribed to the different analytical techniques employed, or to variations in the biosynthetic capacity of the mucosal mast cells under study.

Finally, a world of caution regarding the identity of the disulphated disaccharide referred to as \(\Delta \)Di-diS\(_{R}\) in this report and in that of Stevens et al. (1986). It has become increasingly apparent that galactosaminoglycans occur in a large variety of structures, and it is particularly notable that both D-glucuronic and L-iduronic acid units may be sulphated at C-2 and/or C-3 (Seldin et al., 1984). In our opinion the evidence available is not sufficient to establish conclusively the identity of the sulphated hexuronic acid unit in the galactosaminoglycan of mucosal mast cells, nor the position of the sulphate group. Owing to the loss of the asymmetric centre at C-5 on introduction of the double bond, cleavage by chondroitinase ABC of a galactosaminidic linkage to D-glucuronic acid or L-iduronic acid will generate the same A-4,5-unaturated uronic acid residue. In previous experiments, digestion of the mast-cell polysaccharide with chondroitinase ABC yielded larger amounts of disulphated disaccharides than did digestion with chondroitinase AC, as expected for an iduronic acid-containing sequence (Enerbäck et al., 1985). On the other hand, galactosaminoglycan preparations may resist chondroitinase AC digestion in spite of a high glucuronic acid content (Yanagashita et al., 1979), presumably owing to inhibitory effects of sulphate groups. Furthermore, attempts at defining the location of sulphate groups in unsaturated disaccharides, using sulphate digestion, have been inconsistent. The alleged \(\Delta \)Di-diS\(_{R}\) described by Stevens et al. (1986) was based on a claim to resist digestion by chondro-4-sulphatase, in apparent disagreement with the original finding of Suzuki et al. (1968). Although this discrepancy may well have a trivial explanation, the occurrence in the mast-cell galactosaminoglycan of as yet unrecognized sequences cannot be excluded.
REFERENCES

Received 17 December 1987/16 March 1988; accepted 27 April 1988