Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa)

Valentina C. CARRICARTE,* Graciela M. BIANCHINI,* Jorge P. MUSCHIETTI,* Maria Teresa TELLEZ-IñóN,* Alejandro PERTICARI,† N. TORRES* and Mirtha M. FLAWIA*

*Instituto de Investigaciones en Ingeniería Genética y Biología Molecular (INGEBI–CONICET), Facultad de Ciencias Exactas y Naturales, UBA, Obligado 2490, (1428) Buenos Aires, Argentina, and †Instituto Nacional de Tecnología Agropecuaria, Castelar, Argentina

An adenylate cyclase activity in Medicago sativa L. (alfalfa) roots was partially characterized. The enzyme activity remains in the supernatant fluid after centrifugation at 105000 g and shows in crude extracts an apparent M, of about 84000. The enzyme is active with Mg2+ and Ca2+ as bivalent cations, and is inhibited by EGTA and by chlorpromazine. Calmodulin from bovine brain or spinach leaves activates this adenylate cyclase.

INTRODUCTION

The control of metabolism, cell growth and differentiation by cyclic AMP in some eukaryotic organisms has been well established. In these organisms, which belong to the Animalia, Protoctista and Fungi kingdoms, the cyclic nucleotide mediates cell response to different environmental signals, acting as intracellular second messenger. In higher plants, however, the role of cyclic AMP is unknown. Several reports indicate the existence of this compound in plant tissues, as well as the presence of cyclic AMP phosphodiesterases, adenylate cyclase and cyclic AMP-binding protein activities (Brown & Newton, 1981). These studies, however, do not give a detailed characterization of some of these enzyme activities and their regulation, or provide major evidence on the involvement of the cyclic nucleotide in the control of some important responses of plant cells to environmental stimuli.

Ca2+ and calmodulin constitute another alternative for the transduction of environmental signals, modulation of cell metabolism and regulation of development in higher plants (Vanderhoef & Kosuge, 1984; Hepler & Wayne, 1985). In this regard, the involvement of Ca2+ in geotropic and phototropic responses has been indicated (Slocum & Roux, 1983; Hale & Roux, 1980). Similarly, the cation seems to be related to the actions of gibberelic acid, auxin and cytokinins on senescence, germination and growth, as well as in the secretion of indolyacetic acid (Poovaliah & Leopold, 1973; Moll & Jones, 1981; Saunders & Hepler, 1983; de la Fuente, 1984; Guzmán & de la Fuente, 1984). Some of these actions are inhibited by phenanthrene derivatives (Elliot et al., 1983; Raghunathama et al., 1985), which may indicate the involvement of the Ca2+-calmodulin complex in such regulatory phenomena.

It is also known that calmodulin activates some enzyme activities in higher plants, such as NAD kinase (Anderson & Cormier, 1978), Ca2+-ATPase (Dieter & Marmé, 1981) and quinatase: NAD+ 3-oxidoreductase (Ranjeva et al., 1983). The involvement of the Ca2+-calmodulin complex in protein phosphorylation in plants has also been reported (Veluthambi & Poovaliah, 1984, 1986). The involvement of phosphoinositides in controlling cytosolic Ca2+ concentrations in plants was also proposed (Drobak & Ferguson, 1985; Poovaliah et al., 1987).

The present paper reports studies on the characterization and partial purification of a soluble adenylate cyclase activity from alfalfa (Medicago sativa L.) roots. This enzyme was found to be activated by calmodulin.

EXPERIMENTAL

Materials

Rabbit muscle creatine kinase and lactate dehydrogenase were from Boehringer (Mannheim, Germany), and ATP, cyclic AMP, phosphocreatine, EDTA, EGTA, horse heart cytochrome c, phenylmethylasulphonyl fluoride, pigeon breast muscle malate dehydrogenase, ox liver catalase, 3H2O, Tris and Pipes were from Sigma Chemical Co. (St. Louis, MO, U.S.A.). Sucrose was from Schwartz–Mann (Orangeburg, NY, U.S.A.), forskolin from Calbiochem (San Diego, CA, U.S.A.), DEAE-cellulose (DE-52) from Whatman (Clifton, NJ, U.S.A.), 3-isobutyl-I-methylxanthine from Aldrich (Milwaukee, WI, U.S.A.), Trasylol from Bayer (Leverkusen, Germany) and Ultrogel AC-34 from LKB-Produkter (Bromma, Sweden). Neutral alumina was purchased from Merck (Darmstadt, Germany), AG50 W-X4 (200–400 mesh) from Bio-Rad (Richmond, CA, U.S.A.), and [α-32P]ATP and cyclic [3H]AMP were from New England Nuclear. All other chemicals were reagent grade.

Plant material

Medicago sativa L. was grown in fields fertilized with ammonium superphosphate (30 kg/hectare) for 1–2 years. After removal of soil, roots were gently washed with water and stems were cut at about 1 cm above the root–stem confluence. Thereafter these trimmed plants were transferred to pots containing a nitrogen-rich sterile soil and further cultured at 25°C, 60–70% humidity and 16 h/day illumination (1000 lm; 40 W Sylvania Grolux fluorescent tubes) with daily watering (Vincent, 1970). These plants did not contain any nodule in the roots.
Estimation of molecular and hydrodynamic parameters

Gel filtration. A sample of 'crude extract' or 'DEAE fraction' (1 ml) was loaded on an Ultrogel AC-34 column (40 cm x 1.5 cm) equilibrated with Buffer A containing 0.15 M-NaCl. Fractions (1 ml) were collected at 0.2 ml/min. The fractions with the highest specific activity, termed 'Ultrogel fractions', were combined, concentrated and stored as indicated above.

Sucrose-gradient centrifugation. A sample of 'crude extract' or 'DEAE fraction' (0.5 ml) was overlaid on 5-20% sucrose linear gradients made in Buffer A, containing 0.15 M-NaCl. Some of the gradients were also made in solutions made in D₂O. Centrifugations were carried out at 45000 rev./min for 16 h in a Beckman SW40 rotor. Fractions (0.2 ml) were collected by pumping from the bottom at a rate of 0.5 ml/min.

Calibrating proteins and calculations. Samples of calibrating proteins were filtered through an Ultrogel AC-34 column or subjected to sucrose gradient centrifugation under conditions described above. Calibrating proteins were added at the following concentrations: catalase (ox liver), 100 μg/ml; lactate dehydrogenase (rabbit muscle), 30 μg/ml; malate dehydrogenase (pigeon breast muscle), 10 μg/ml; cytochrome c (horse heart), 2 mg/ml. Calculations of sedimentation coefficients, partial specific volumes, Stokes radius, M_r, and frictional ratio were performed as previously described (Kornblith et al., 1981; Reig et al., 1982).

Purification of calmodulin from Spinacea oleracea L. (spinach) leaves

Fresh spinach leaves (200 g) were washed with distilled water and homogenized with a Waring Blender in 200 ml of 50 mm-Tris/HCl buffer, pH 7.4, containing 3 mm-EDTA. The homogenate was filtered through two layers of gauze and the filtrate centrifuged at 10000 g for 20 min. The supernatant (120 ml) was loaded on a DEAE-cellulose column (17 cm x 1.7 cm) equilibrated with 50 mm-Tris/HCl buffer, pH 7.4, and washed with 100 ml of this solution. Elution was performed with a linear gradient of 0-0.6 m-NaCl (300 ml) in the same solution; 6 ml fractions were collected at a rate of 1 ml/min and assayed for calmodulin activity after the activation of bovine brain cyclic AMP phosphodiesterase as described by Téllez-Iñón et al. (1985).

Purification of bovine calmodulin

The modulator was purified by the method of Bazari & Clarke (1981) with the modifications of Téllez-Iñón et al. (1985).

 adenylate cyclase assay

The standard incubation mixture contained 50 m M-Tris/HCl buffer, pH 7.4, 0.2 mm-3-isobutyl-1-methylxanthine, 1 mm-cyclic AMP, 2.5 mm-MgCl₂, 0.25 mm-CaCl₂, 0.5 mm-[α-³²P]ATP (sp. radioactivity 100-300 c.p.m./pmol), 2 mm-phosphocreatine, 0.2 mg of creatine kinase and enzyme fractions. The volume was 0.1 ml. Incubations were performed at 37°C for 2.5-10 min, and reactions were stopped by addition of a solution containing 12.5 mm-cyclic [³²P]AMP (sp. radioactivity 3800 c.p.m./μmol) plus 40 mm-ATP and heating in a boiling-water bath for 3 min (Rodbell, 1967). Each sample was adjusted to 1 ml with water, and cyclic AMP was purified by the sequential column procedure (Dowex 50 and alumina) described by Salomon et al. (1974). According to the criteria previously described (Flawiá & Torres, 1972), by this assay procedure only cyclic AMP was detected as reaction product.

Other analytical procedures

Enzyme activities of M_r standards were measured as previously described (Kornblith et al., 1981). Protein was measured by the procedure of Lowry et al. (1951).

RESULTS

Evidence of a 'non-sedimentable' form of adenylate cyclase in root tissues

Table 1 shows the distribution of enzyme activity in different fractions obtained after three successive centrifugations of a root 'homogenate'; most of the enzyme activity was found in the 105000 g supernatant fluid. The possibility that this 'non-sedimentable' adenylate cyclase may be generated by the proteolytic breakdown of a membrane-bound enzyme could be discounted, since the presence of two different proteolytic inhibitors in the extracting buffer did not modify the enzyme distribution. As a soluble adenylate cyclase, the alfalfa root enzyme could be subjected to purification procedures, in the absence of detergents, often employed with other soluble proteins. These procedures included ultracentrifugation, DEAE-cellulose chromatography (Fig. 1), gel filtration (Fig. 2) and centrifugation through sucrose gradients (Fig. 3). The two last methods was employed for the determination of hydrodynamic and molecular characteristics of the enzyme. The values for these parameters were as follows: sedimentation coefficient, 4.1 S; Stokes
Adenylate cyclase in a higher plant

Table 1. Distribution of adenylate cyclase activity after centrifugation of a homogenate of alfalfa roots

The homogenate (5 ml) was centrifuged at 10000 g for 20 min, and the supernatant fluid thus obtained was centrifuged for 120 min at 105000 g. Other conditions were given in the text and in the Experimental section.

<table>
<thead>
<tr>
<th>Additions to Buffer A</th>
<th>Fraction</th>
<th>Total activity (pmol/min)</th>
<th>Specific activity (pmol/min per mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Homogenate</td>
<td>8783</td>
<td>68.6</td>
</tr>
<tr>
<td></td>
<td>10000 g sediment</td>
<td>46</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>105000 g sediment</td>
<td>52</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>105000 g supernatant</td>
<td>10480</td>
<td>630.0</td>
</tr>
<tr>
<td>5 mM-Phenylmethanesulphonylfluoride</td>
<td>Homogenate</td>
<td>8750</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>10000 g sediment</td>
<td>50</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>105000 g sediment</td>
<td>58</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>105000 g supernatant</td>
<td>9960</td>
<td>650</td>
</tr>
<tr>
<td>Trasylol (25 units/ml)</td>
<td>Homogenate</td>
<td>8690</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>10000 g sediment</td>
<td>52</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>105000 g sediment</td>
<td>59</td>
<td>8.3</td>
</tr>
<tr>
<td></td>
<td>105000 g supernatant</td>
<td>11000</td>
<td>642</td>
</tr>
</tbody>
</table>

Fig. 1. DEAE-cellulose column chromatography of a ‘crude extract’ from alfalfa roots

○, Adenylate cyclase activity; ■, protein; —, [NaCl]. Other conditions were as described in the Experimental section.

radius, 4.4 nm; partial specific volume, 0.74 ml/g; M_r, 84000; and axial ratio, 1.54.

It is important to point out that amounts of adenylate cyclase activity in alfalfa roots can be affected by some undefined factors. Enzyme specific activities in the same plant increased from negligible values and decreased in periods of about 3–5 weeks.

Requirements of alfalfa root adenylate cyclase activity

Requirements for enzyme activity were studied in a partially purified enzyme preparation obtained after chromatography in DEAE-cellulose. As shown in Table 2, adenylate cyclase activity, measured with MgATP as substrate, was stimulated by Ca^{2+} ions. This stimulation was blocked by EDTA. In addition, the enzyme activity was stimulated by calmodulin from two different sources: bovine brain and spinach leaves. Such stimulation was also blocked by EDTA and by the neuroleptic phenothiazine derivatives chlorpromazine and flufenazine.

As shown in Fig. 4(a), activation of alfalfa adenylate cyclase had a saturable dependence on bovine brain or spinach calmodulin, with a half-maximal stimulation at about 1.0 \mu g of the factor/ml. On the other hand, half-maximal inhibition by chlorpromazine was observed at 150 \mu M (Fig. 4b). This extent of inhibition was achieved at concentrations of chlorpromazine which were similar to those required to block the stimulatory action of brain calmodulin in Neurospora crassa cyclic AMP phosphodiesterase (Téllez-Brón et al., 1985).

In addition, the effects of some well-known modulators of animal, membrane-bound, adenylate cyclase activities were also studied. In this regard, GTP, guanosine 5'-[\betay-imido]triphosphate, forskolin, fluoride or cholera toxin
Fig. 2. Gel filtration of a ‘crude extract’ from alfalfa roots

The inset show the relationship between K_v (elution-volume/exclusion-volume ratio) and Stokes radii for markers (●) and adenylate cyclase activity (○). Other conditions were described in the Experimental section. The standard proteins, shown at the top (Stokes radii in parentheses), were: G, β-galactosidase (6.84 nm); C, catalase (5.21 nm); M, malate dehydrogenase (3.69 nm); Cc, cytochrome c (1.87 nm). V_e, exclusion volume.

| (preactivated with dithiothreitol) had no effect on enzyme activity (results not shown). |

DISCUSSION

The results indicate the existence in alfalfa roots of an adenylate cyclase activity with two important properties: (1) it is a ‘non-sedimentable’ enzyme activity, which is amenable to purification by procedures commonly used for other soluble, globular, proteins; and (2) it is activated by Ca$^{2+}$ ions and calmodulin.

From an evolutive point of view, these characteristics of solubility and dependence on Ca$^{2+}$ are not new facts. In the Fungi kingdom, *Neurospora* adenylate

Fig. 3. Sucrose gradient centrifugation of a ‘crude extract’ from alfalfa roots

Gradients were made in H$_2$O or 4H$_2$O. The inset shows the relationship between the position in the gradient (r) and sedimentation coefficients for markers (●) and adenylate cyclase activity (○). Other conditions were described in the Experimental section. The standard proteins, shown at the top, were: Cc, cytochrome c (1.7 S); M, malate dehydrogenase (4.3 S); L, lactate dehydrogenase (7.3 S); C, catalase (11.3 S).

<table>
<thead>
<tr>
<th>Table 2. Effect of Ca$^{2+}$, EGTA, calmodulin and neuroleptic drugs on the activity of alfalfa root adenylate cyclase</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ‘DEAE fraction’ (40 μg of protein) was used as source of enzyme. Other conditions were described in the Experimental section.</td>
</tr>
<tr>
<td>Additions to the assay mixture</td>
</tr>
<tr>
<td>None (Ca$^{2+}$ omitted)</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$ plus 1 mm-EGTA</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$ plus brain calmodulin (0.3 μg/ml)</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$ plus brain calmodulin (0.3 μg/ml) plus 1 mm-EGTA</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$ plus brain calmodulin (0.3 μg/ml) plus 100 μM-chlorpromazine</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$ plus brain calmodulin (0.3 μg/ml) plus 100 μM-fluphenazine</td>
</tr>
<tr>
<td>0.25 mm-CaCl$_2$ plus spinach calmodulin (0.3 μg/ml)</td>
</tr>
</tbody>
</table>
cyclosome activity has these two properties (Reig et al., 1982, 1984). Moreover, in the Animalia kingdom, a soluble adenylate cyclosome was found in mammalian testicular tissues, which might also be under the control of Ca^{2+} (Morton et al., 1974; Braun & Dods, 1975; Kornbluith et al., 1981). From a regulatory point of view, it seems that eukaryotic cells have two different types of control mechanisms for cyclic AMP synthesis. One of them involves GTP-binding proteins (Gilman, 1984); the other may implicate the interaction with the Ca^{2+}-calmodulin system. In the particular case of alfalfa adenylate cyclosome, the limited evidence available might suggest that this Ca^{2+}-dependent adenylate cyclosome activity could be associated with proliferative responses in root tissues.

REFERENCES

Fig. 4. Relationship between adenylate cyclosome activity and (a) concentration of bovine brain (●) or spinach (○) calmodulin, and (b) chlorpromazine concentration

Mixtures contained peak fractions corresponding to the sucrose-gradient centrifugation of a 'crude extract' made in H_2O (10 μg of protein). In (b), mixtures contained 0.5 μg of bovine brain calmodulin. Other conditions were described in the Experimental section.

Received 15 July 1987/16 September 1987; accepted 1 October 1987