Purification and characterization of a high-\(M_r\) proteinase inhibitor of pro-phenol oxidase activation from crayfish plasma

Hans-Gilbert HERGENHAHN,* Anna ASPAN† and Kenneth SÖDERHÄLL‡

*Institut für Zoophysiologie, Rheinische Friedrich-Wilhelms-Universität, D-5300 Bonn, Federal Republic of Germany, and †Department of Physiological Botany, University of Uppsala, Box 540, S-75121 Uppsala, Sweden

Crayfish plasma was found to contain a proteinase inhibitor, which was purified to apparent homogeneity by acid precipitation, affinity chromatography on concanavalin A–Sepharose and hydrophobic-interaction chromatography. The inhibitor is a monomeric protein with an \(M_r\) of about 155 000 and a pI in the range 4.6–4.8. It is heat-stable and tolerant to low pH. It inhibits the serine proteinases trypsin and chymotrypsin, but not thrombin or subtilisin. Furthermore, it is efficient in decreasing the activity of a proteinase from crayfish haemolymph that is involved in the activation cascade of pro-phenol oxidase and can also block pro-phenol oxidase activation by this serine proteinase. This cascade is believed to play a central role in the recognition mechanism of non-self material in crustaceans and insects. The data presented give some evidence that the new proteinase inhibitor is involved in the regulation of this system.

INTRODUCTION

Although arthropods lack immunoglobulins they are able to protect themselves against parasites and to remove non-self particles from the circulation. This is achieved by the activities of the blood cells that can phagocytose or encapsulate foreign material. The mechanism by which an arthropod can discriminate self from non-self is far from clear, but a likely candidate is the so-called ‘pro-phenol oxidase-activating system’ (Durlait, 1985; Ratcliffe, 1985; Ratcliffe et al., 1985; Söderhäll, 1982; Söderhäll & Smith, 1986a,b). This system is specifically activated by lipopolysaccharides or \(\beta\)-1,3-glucans. It consists of at least two serine proteinases, whose activation leads to the formation of the active phenol oxidase from the zymogen proPO.

The components of the proPO-activating system are sequestered in an inactive form in vesicles in the granular and semigranular cells, and are released from these cells by exocytosis (Johansson & Söderhäll, 1985). This process can be induced by lipopolysaccharides, \(\beta\)-1,3-glucans or a degranulation factor (Johansson & Söderhäll, 1985; Söderhäll et al., 1986). The degranulation factor appears to be produced upon activation of the proPO-activating system, as well as a cell-adhesive protein (M. W. Johansson & K. Söderhäll, unpublished work). This means that activation of the proPO-activating system and subsequent production of the degranulation factor amplifies further release and activation of this system. Hence it should be necessary to regulate activation of the proPO-activating system by inhibiting the proteinases of the system and limiting the enzymic reactions where they would be unnecessary or detrimental for the host. A first candidate for such a role was an \(\alpha_2\)-macroglobulin-like protein that has been detected in crayfish plasma (Hergenhahn & Söderhäll, 1985), as well as in other crustaceans (Armstrong et al., 1985). However, we have not yet succeeded in demonstrating that this macromolecular inhibitor can affect activation of proPO, whereas a different high-\(M_r\) proteinase inhibitor is able to prevent activation of the proPO-activating system. In the present paper we describe the purification and some of the biochemical properties of his inhibitor.

MATERIALS AND METHODS

Animals

Crayfish (Pacifastacus leniusculus) were maintained and housed as previously described (Söderhäll & Hall, 1984).

Materials

Concanavalin A–Sepharose 4B, phenyl-Sepharose CL-4B, heparin–Sepharose CL-6B and PD-10 columns with Sephadex G-25 (medium grade) were obtained from Pharmacia. Trypsin (bovine pancreas, type III s), thrombin (bovine plasma, 250 NIH units/mg), plasmin (pig blood), elastase (pig pancreas, type IV) and subtilisin (type VIII) as well as methyl \(\alpha\)-D-mannopyranoside were from Sigma Chemical Co. Suc-Ala-Ala-Ala-NH-Np, the chemicals for electrophoresis and electrofocusing and the proteins for calibration were obtained from Serva and Pharmacia. The chromogenic substrates S-2222 [1:1 mixture of Bz-Ile-Glu-Gly-Arg-NH-Np and Bz-IleGlu(Me)-Gly-Arg-NH-Np] and S-2586 (MeO-Suc-Arg-Pro-Tyr-NH-Np) were from Kabi AB. Amino acid standards and HCl for amino acid analysis were from Pierce Chemical Co. Human \(\alpha_2\)-macroglobulin was prepared in accordance with Swenson & Howard (1979). All the other chemicals were obtained from commercial sources.

Abbreviations used: proPO, pro-phenol oxidase; Bz, benzoyl; NH-Np, 4-nitroanilide; Suc, 3-carboxypropionyl; MeO-Suc, 3-methoxy-carbonylpropionyl.

† To whom reprint requests and correspondence should be addressed.
Preparation of haemocyte lysate

Haemocyte lysate was prepared as described previously (Söderhäll, 1981).

Preparation of plasma

The 800 g supernatant obtained when preparing the haemocyte lysate was employed.

Purification of trypsin inhibitor

The freeze-dried powder of 500 ml of plasma was suspended in 500 ml of 0.1 M-Tris/HCl buffer, pH 8.0, the suspension was centrifuged at 20000 g for 40 min and the supernatant was adjusted to pH 3.0 and centrifuged as above. The supernatant was re-adjusted to pH 8.0, centrifuged again and applied to a column (2.2 cm x 21 cm) containing about 80 ml of concanavalin A-Sepharose 4B equilibrated with 0.1 M-Tris/HCl buffer, pH 8.0. The column was washed with 300 ml of this buffer. Then 70 ml of elution buffer (0.1 M-Tris/HCl buffer, pH 8.0, containing 2 M-NaCl and 0.5 M-methyl α-D-mannopyranoside) was applied and the column was incubated at room temperature overnight. The inhibitor was then eluted with 100 ml of the elution buffer. The flow rate was 36 ml/h, and 6 ml fractions were collected. The fractions containing the inhibitor were combined and concentrated on an Amicon PM 10 membrane. This material was applied to a 0.9 cm x 14 cm column containing about 9 ml of phenyl-Sepharose CL-4B equilibrated with 0.1 M-Tris/HCl buffer, pH 8.0, containing 2 M-NaCl. The column was washed with 50 ml of this buffer and subsequently with 100 ml of 0.1 M-Tris/HCl buffer, pH 8.0, containing 0.5 M-NaCl. The inhibitor was eluted with 80 ml of 0.1 M-Tris/HCl buffer, pH 8.0, and the residual material with the same buffer but containing additionally 50% (v/v) ethylene glycol. The flow rate was 24 ml/h, and 4 ml fractions were collected. The fractions containing the inhibitor were concentrated, transferred to 20 mm-ammonium acetate buffer pH 7.0, and used directly for experiments or freeze-dried.

Purification of serine proteinases from haemocyte lysate

Haemocyte lysate was diluted 2:1 with 10 mm-sodium cacodylate buffer, pH 7.0, and applied to a heparin-Sepharose column (1.0 cm x 10 cm) equilibrated in 10 mm-sodium cacodylate buffer, at a flow rate of 7.5 ml/h (1 ml fractions). The column was eluted with a step gradient consisting of 50 ml each of 0.15 M-, 0.5 M- and 1.5 M-NaCl in the above buffer. The enzyme was eluted in a sharp peak after the protein peak at 0.5 M-NaCl. The enzyme-containing fractions were pooled and dialysed against 2 x 1 litre of 10 mm-sodium cacodylate buffer, pH 7.0. This proteinase preparation had an activity corresponding to an increase in A4 ps of 6/min per mg of protein. No proPO or phenol oxidase activity was detectable in this preparation.

Isolation of proPO free of activating enzyme

Haemocyte lysate was applied to a heparin-Sepharose column (1.0 cm x 10 cm) equilibrated in 10 mm-sodium cacodylate buffer, pH 7.0, containing 0.1 M-CaCl2 and washed with the same buffer at a flow rate of 7.5 ml/h (1 ml fractions). The protein-containing fractions were pooled, and used as proteinase-free proPO.

Assay of proteinase inhibitor

 Routinely the ability of the inhibitor to inhibit trypsin was tested as follows. A 100 μl portion of the sample was preincubated with 600 μl of 0.1 M-Tris/HCl buffer, pH 8.0, containing 0.1 μg of trypsin at 30 °C for 3–5 min. The assay was started by addition of 100 μl of 1 mm-S-2222 and terminated after 10 min of incubation with 200 μl of 50% (v/v) acetic acid. The absorbance was read at 405 nm. The activities of thrombin and trypsin (substrate S-2222), subtilisin (substrate S-2586) and elastase (substrate Suc-Ala-Ala-Ala-NH-Np) were assayed in an analogous manner.

Assay of phenol oxidase activity

Phenol oxidase activity was assayed by the method of Söderhäll & Häll (1984) with slight modifications. A 50 μl portion of trypsin or chymotrypsin (1 mg/ml) was added to 50 μl of sample together with 50 μl of L-3,4-dihydroxyphenylalanine (3 g/l). After 2.5 min of incubation at room temperature, 450 μl of buffer was added and the absorbance was measured at 490 nm. Activity is expressed as the difference in absorbance at 490 nm/min per ml.

Assay of serine proteinase activity

Serine proteinase activity was measured as described by Söderhäll (1983).

To check the influence of the inhibitor on the proteinases of the proPO-activating system, the usual proteinase assay system (Söderhäll, 1983) was used, with the exception that 100 μl of the buffer was replaced by the purified inhibitor.

The influence of the inhibitor on the activation of proPO was assayed by preincubation of the partly purified serine proteinases with laminarin or lipopolysaccharide in the presence of trypsin inhibitor. After 15 min partly purified proPO and L-3,4-dihydroxyphenylalanine were added together with Tris/HCl buffer, pH 8.0, and the reaction was monitored for 30 min at 490 nm. As controls proPO and 3,4-dihydroxyphenylalanine were added to a pre-activated serine proteinase fraction.

SDS/polyacrylamide-gel electrophoresis

SDS/polyacrylamide-gel electrophoresis was performed in accordance with Laemmli (1970) and 7.5% gels were used. About 20 μg of the inhibitor was applied. Human α1-macroglobulin (M, 180000), phosphorylase b (M, 94000), bovine serum albumin (M, 67000) and egg albumin (M, 43000) were used as standards. The electrophoresis was performed on 0.75 cm x 14 cm x 16 cm gels. The gels were stained with Serva Blue G-250.

Isoelectric focusing

Isoelectric focusing was performed in an LKB 2117 Multiphor apparatus with an LKB 2103 power supply. The experiments were performed at 4°C. Servalyt Precotes pH 3–6 were used in accordance with the
Crayfish high-M_r, proteinase inhibitor

Table 1. Purification of a proteinase inhibitor from crayfish plasma

For experimental details of the purification procedure see the Materials and methods section. The amount of inhibitor was determined according to the calibration curve shown in Fig. 4; the amount of inhibitor was not determined in the crude extract, because of the presence of α_4-macroglobulin.

<table>
<thead>
<tr>
<th>Step</th>
<th>Total amount of inhibitor (mg)</th>
<th>Total amount of protein (mg)</th>
<th>Specific activity (mg/mg of protein)</th>
<th>Purification (fold)</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude plasma</td>
<td>–</td>
<td>11985</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Acid precipitation</td>
<td>25</td>
<td>725</td>
<td>0.034</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Concanavalin</td>
<td>8</td>
<td>36.8</td>
<td>0.217</td>
<td>6.38</td>
<td>32</td>
</tr>
<tr>
<td>A-Sepharose chromatography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenyl-Sepharose chromatography</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Elution profile of the crayfish plasma proteinase inhibitor from a concanavalin A-Sepharose column (2.2 cm × 21 cm)

After a washing with equilibrating buffer (0.1 M-Tris buffer, pH 8.0) (I), the column was incubated at room temperature overnight with 0.1 M-Tris buffer, pH 8.0, containing 2 M-NaCl and 0.5 M-methyl α-D-mannopyranoside (IIa). The inhibitor was eluted as described in the Materials and methods section (IIb). ●, A_{280}; ○, inhibitor.

RESULTS

Purification of proteinase inhibitor

As summarized in Table 1, a proteinase inhibitor was purified from crayfish plasma by means of acid precipitation, affinity chromatography on concanavalin A-Sepharose (Fig. 1) and hydrophobic-interaction chromatography (Fig. 2) to apparent electrophoretic homogeneity (Fig. 3). Since the binding to concanavalin A-Sepharose was very strong, a better yield was obtained if the column was incubated with elution buffer at room temperature overnight (IIa in Fig. 1). As shown in Fig. 2, a considerable amount of the inhibitor could be eluted from phenyl-Sepharose with Tris buffer containing no additional salt. However, a further, much sharper, peak could be obtained if 50% (v/v) ethylene glycol was

![Fig. 1](image1.png)

![Fig. 2](image2.png)
included. As Table 1 reveals, 25 mg of inhibitor was obtained after acid precipitation. So the inhibitor content of the native plasma should be at least in the region of 0.1 mg/ml. The final yield of pure inhibitor was 5.4 mg.

Biochemical characterization of proteinase inhibitor

The M_r as obtained by SDS/polyacrylamide-gel electrophoresis was calculated to be 140 000 (Fig. 3) in the absence and 155 000 in the presence of 2-mercapto-ethanol, which suggests that the proteinase inhibitor is monomeric. In isoelectric focusing, in the range of pH 4.6–4.8 four bands could be observed. Amino acid analysis revealed a relatively high content of acidic and hydrophobic amino acids (Table 2).

Studies on proteinase inhibition

The inhibitor was highly specific, since only the serine proteinases trypsin and chymotrypsin were efficiently inhibited, whereas elastase was inhibited only to a limited extent (Table 3). Hence trypsin was used throughout the experiments to quantify the amount of inhibitor. The correlation between the amount of the inhibitor and trypsin inhibition is shown in Fig. 4. The purified trypsin inhibitor from crayfish plasma could also inhibit the purified proPO-activating enzyme, a serine proteinase, which converts proPO into the active form, phenol oxidase (Fig. 4). When the purified inhibitor (at a concentration that inhibits proPO-activating enzyme by 50%) was incubated with this serine proteinase preparation and proPO from crayfish blood cells phenol oxidase activity was decreased to 55%.

DISCUSSION

A proteinase inhibitor was isolated and purified to apparent homogeneity from crayfish plasma. The purified inhibitor was a monomeric protein with an M_r of 155 000 and a pI of 4.6–4.8. It was specific in its inhibitory capacity, since only trypsin and chymotrypsin were efficiently inhibited, whereas elastase was only slightly and thrombin or subtilisin not at all affected. Further-

![Image](https://example.com/image1)

Fig. 3. Proof of electrophoretic purity of the purified proteinase inhibitor and determination of the M_r by SDS/polyacrylamide-gel electrophoresis

Electrophoresis was performed in the presence (a) and in the absence (b) of reducing agent.

Table 2. Amino acid composition of the proteinase inhibitor

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Composition (mol of residue/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asx*</td>
<td>11.57</td>
</tr>
<tr>
<td>Thr*</td>
<td>7.20</td>
</tr>
<tr>
<td>Ser*</td>
<td>10.17</td>
</tr>
<tr>
<td>Glx†</td>
<td>10.10</td>
</tr>
<tr>
<td>Pro†</td>
<td>3.25</td>
</tr>
<tr>
<td>Gly†</td>
<td>7.17</td>
</tr>
<tr>
<td>Ala†</td>
<td>6.74</td>
</tr>
<tr>
<td>Cys‡</td>
<td>2.95</td>
</tr>
<tr>
<td>Val‡</td>
<td>5.67</td>
</tr>
<tr>
<td>Met‡</td>
<td>0.88</td>
</tr>
<tr>
<td>Ile§</td>
<td>3.62</td>
</tr>
<tr>
<td>Leu§</td>
<td>7.66</td>
</tr>
<tr>
<td>Tyr*</td>
<td>3.80</td>
</tr>
<tr>
<td>Phe†</td>
<td>3.67</td>
</tr>
<tr>
<td>His†</td>
<td>6.55</td>
</tr>
<tr>
<td>Lys†</td>
<td>4.06</td>
</tr>
<tr>
<td>Arg†</td>
<td>5.08</td>
</tr>
</tbody>
</table>

* Values from 24 h hydrolysis.
† Average values from 24 h, 48 h and 72 h hydrolysis.
‡ Determined after oxidation with performic acid and 24 h hydrolysis.
§ Values from 72 h hydrolysis.

Table 3. Inhibition of some proteinases by the inhibitor

The enzymes were assayed with chromogenic substrates; for trypsin and thrombin S-2222 was employed, for chymotrypsin and subtilisin S-2586 was used, and Suc-Ala-Ala-Ala-NH-Np was used for elastase. The activity was monitored as the release of p-nitroaniline at 405 nm. The amount of purified inhibitor was 100 µg for thrombin, 10 µg for elastase and subtilisin and 1 µg for trypsin and chymotrypsin. The experiments were performed in triplicate.

<table>
<thead>
<tr>
<th>Proteinase</th>
<th>A_{405} without the inhibitor</th>
<th>A_{405} with the inhibitor</th>
<th>Inhibition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trypsin (0.1 µg/assay)</td>
<td>0.26</td>
<td>0.04</td>
<td>85</td>
</tr>
<tr>
<td>Chymotrypsin (0.2 µg/assay)</td>
<td>0.46</td>
<td>0.03</td>
<td>93</td>
</tr>
<tr>
<td>Thrombin (50 µg/assay)</td>
<td>0.70</td>
<td>0.70</td>
<td>0</td>
</tr>
<tr>
<td>Elastase (5 µg/assay)</td>
<td>0.58</td>
<td>0.47</td>
<td>19</td>
</tr>
<tr>
<td>Subtilisin (2 µg/assay)</td>
<td>0.65</td>
<td>0.67</td>
<td>0</td>
</tr>
</tbody>
</table>
more, it could inhibit the proPO-activating enzyme as well as the conversion of proPO into phenol oxidase by the proPO-activating enzyme. Since the proPO-activating system appears to be involved in the defence reactions arthropods mount towards parasites (Söderhäll, 1982; Söderhäll & Smith, 1986a,b), this system needs to be regulated to avoid activation of this system in places where it would be inappropriate or detrimental to the host. Therefore this trypsin inhibitor in crayfish plasma may constitute an important regulator of the activation of the proPO-activating system. Sugumaran and colleagues (Saul & Sugumaran, 1986; Sugumaran et al. 1985) have reported the presence of protease inhibitors in the hemolymph of the insects Manduca sexta and Sarcophaga bullata. These protease inhibitors were involved in preventing proPO activation, but as yet no purification or properties of these inhibitors have been reported. Several protease inhibitors have been isolated from invertebrates (Kang & Fuchs, 1974; 1980; Sasaki, 1978; 1984; Sasaki & Kobayashi, 1984; Armstrong et al., 1984; Armstrong & Quigley, 1985; Eguchi & Shamoto, 1985; Suzuki & Natori, 1985, 1986). These inhibitors are all in the low- Mr range of 5000–15000, except in silkworm haemolymph, from which a chymotrypsin inhibitor (Mr 43000) (Sasaki & Kobayashi, 1984; Eguchi & Shamoto, 1985) and a trypsin inhibitor (Mr 42000) (Sasaki & Kobayashi, 1984) have been isolated. Most of these inhibitors are serine-protease inhibitors, with the exception of a cysteine-protease inhibitor from Sarcophaga peregrina (Suzuki & Natori, 1986). Although no clear biological function has been shown for most of these inhibitors, an acid-labile protease inhibitor from Limulus polyphemus haemolymph could inhibit the clotting enzyme of this animal (Armstrong et al., 1984), and we have now shown that the plasma protease inhibitor of crayfish inhibits the proPO-activating enzyme, a serine protease. Interestingly, a subtilisin-specific protease inhibitor purified from crayfish blood cells (Häll & Söderhäll, 1982) with an Mr of 23000 could not inhibit the proPO-activating enzyme (results not shown) and may therefore be aimed at proteinase from parasitic microorganisms.

Other high-Mr protease inhibitors have been isolated from invertebrate plasma. In L. polyphemus an α2-macroglobulin-like molecule, with a subunit Mr of approx. 180000, has been isolated (Quigley & Armstrong, 1983, 1985), and a similar molecule has been reported to be present in crayfish plasma (Hergenhahn & Söderhäll, 1985) and plasma of some other crustaceans (Armstrong et al., 1985). However, the 155000-Mr protease inhibitor purified from crayfish plasma had no α2-macroglobulin-like activity, e.g. to protect proteinase from inhibition of soya-bean trypsin inhibitor as determined with chromogenic peptides as proteolytic substrates. Furthermore, in contrast with α2-macroglobulin, the activity of this inhibitor was not influenced by methylamine. Therefore it can be excluded that it is α2-macroglobulin or a part of it. In vertebrates several protease inhibitors of high Mr have been found. The only one with a similar Mr and inhibitor specificity to the proPO inhibitor is inter-α-trypsin inhibitor (Steinbuch, 1976); but inter-α-trypsin inhibitor has been reported to be highly unstable, which is not the case with the protease inhibitor of crayfish. Furthermore, they differ substantially in their amino acid compositions. We therefore consider that these two proteins may not be related, but certainly more detailed chemical information is required before we can compare this inhibitor with other known high-Mr proteinase inhibitors from vertebrates and invertebrates.

We are very grateful to Dr. G. Kegel for performing the amino acid analysis and to Mrs. M. Langhammer and Mr. R. Ajaxon for skilful technical assistance. This work was supported by grants from the Swedish National Science Research Council and Bergwalls Foundation to K.S. and by an EMBO short-term fellowship to H.-G. H.

REFERENCES

Vol. 248

Received 16 April 1987/7 July 1987; accepted 5 August 1987