Purification and characterization of the 27000 Da calcium-binding protein of bovine brain

Masaaki TOKUDA, Navin C. KHANNA and David Morton WAISMAN*
Department of Medical Biochemistry and Cell Regulation Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada

A Ca\(^{2+}\)-binding protein named CAB-27 was purified from bovine brain 100000 g supernatant. The protein has a molecular mass of 27000 Da as determined by SDS/polyacrylamide-gel electrophoresis and 35500 Da by sedimentation-coefficient and Stokes-radius analysis. The protein contains about 26\% Glx and Asx and 13\% basic residues. The acidic nature of the molecule is confirmed by its pI of 4.80. In the presence of 3 mM-MgCl\(_2\) and 150 mM-KCl, CAB-27 binds 2.0 mol of Ca\(^{2+}\)/mol of protein, with an apparent K\(_d\) of 0.2 \(\mu\)M. Ca\(^{2+}\) binding is unaffected by prior incubation of the protein at 80 °C for 2 min. Brain contains about 130 mg of CAB-27/kg. Immunoblotting identified CAB-27 in several bovine tissues; it appears to be particularly rich in brain and kidney. In addition, CAB-27 is identified as an inhibitor of bovine pancreas phospholipase A\(_2\) in vitro. The inhibitory activity of CAB-27 was 20-fold less potent than lipocortin. On the basis of the Ca\(^{2+}\)-binding properties, intracellular concentration and tissue distribution of this protein, we suggest that CAB-27 may be an important intracellular Ca\(^{2+}\) receptor.

INTRODUCTION

The development of techniques to allow quantification of changes in cytosolic free Ca\(^{2+}\) concentrations with varied stimuli has catalysed a resurgence of interest in the Ca\(^{2+}\) second-messenger system. Information obtained from intracellular Ca\(^{2+}\) indicators such as aequorin (Shimomura & Johnson, 1970) and quin2 (Tsien & Rink, 1980) has provided solid evidence for a second-messenger role of Ca\(^{2+}\) in many cellular processes, including fibroblast proliferation (Moolenaar et al., 1984; Morris et al., 1984), sea-urchin egg fertilization (Steinhardt et al., 1977; Eisen et al., 1984), muscle contraction (Harvey et al., 1985) and secretion (Berridge, 1984). The cytosolic Ca\(^{2+}\)-binding proteins are the intracellular receptors for second-messenger Ca\(^{2+}\).

In previous work (Waismann et al., 1983b), the 100000 g supernatant of bovine brain was chromatographed on DEAE-cellulose, and the resultant fractions were assayed for Ca\(^{2+}\)-binding activity by the Chelex competitive Ca\(^{2+}\)-binding assay (Waismann & Rasmussen, 1983), and for calmodulin by the cyclic AMP phosphodiesterase assay (Teo et al., 1973). Since the calmodulin activity comprised only a small percentage of the total Ca\(^{2+}\)-binding activity, we suggested that bovine brain contained, in addition to calmodulin, many other Ca\(^{2+}\)-binding proteins. Gel-permeation-chromatographic analysis of the Ca\(^{2+}\)-binding activity peaks eluted from DEAE-cellulose suggested that bovine brain might contain previously uncharacterized Ca\(^{2+}\)-binding proteins (Waismann et al., 1983b). The three peaks of Ca\(^{2+}\)-binding activity, resolved by DEAE-cellulose chromatography, have been subjected to further purification, and the Ca\(^{2+}\)-binding proteins responsible for the Ca\(^{2+}\)-binding activity peaks have been purified and identified (Waismann & Rasmussen, 1983). Peak I was resolved into CAB-27 (Waismann et al., 1983a, 1985a), peak II yielded CAB-48 (Waismann et al. 1985a) and calcineurin (Klee & Krinks, 1978), and peak III resolved into calregulin (Waismann et al., 1985a) and calmodulin (Klee et al., 1980).

In the present paper a rapid large-scale purification procedure for CAB-27 is documented. In addition, CAB-27 is characterized as a monomeric acidic Ca\(^{2+}\)-binding protein, whose Ca\(^{2+}\)-binding properties and tissue concentration suggest that it may be an important cytosolic Ca\(^{2+}\) receptor. Analysis of the function of CAB-27 has identified this protein as a specific inhibitor of phospholipase A\(_2\) activity in vitro.

EXPERIMENTAL

Materials

All chemicals were reagent grade unless specified. Deionized water was used throughout. Chelex-100 and hydroxyapatite were obtained from Bio-Rad. Di-isopropyl fluorophosphate, benzamidine, phenylmethylene-sulphonyl fluoride and pig pancreatic phospholipase A\(_2\) were obtained from Sigma. DEAE-cellulose (DE-52) was obtained from Whatman. L-\(\alpha\)-1-Palmitoyl-2-[\(^{14}\)C]-oleoylphosphatidylcholine was purchased from Amer- sham. Calmodulin (bovine brain), S-100\(_{\beta}\) (bovine brain) and parvalbumin (rabbit skeletal muscle) were generously given by Dr. J. H. Wang (University of Calgary). Calregulin (Waismann et al., 1985b) and CAB-48 (Waismann et al., 1985a) were purified as detailed in those references.

DEAE-cellulose chromatography of bovine brain 100000 g supernatant

Fresh bovine brain was obtained from a local slaughterhouse. Connective tissue was dissected away, and the tissue was rinsed thoroughly with ice-cold distilled water and frozen immediately at -20 °C. Frozen tissue (1 kg) was chopped, and then further
minced in a meat grinder. The mince was mixed with 3 litres of ice-cold buffer, containing 40 mM-Tris/HCl (pH 8.0), phenylmethanesulphonyl fluoride (0.5 mM), soybean trypsin inhibitor (5 mg/l), di-isopropyl fluorophosphate (1.0 mM), leupeptin (5 mg/l), pepstatin (5.0 mg/l), antipain (5.0 mg/l), chymostatin (5.0 mg/l), benzamidine (10.0 mM) and DTT (1.0 mM), and then homogenized in a Waring blender. The resultant extract was centrifuged at 20000 g for 30 min, and the supernatant was then centrifuged at 100000 g for 60 min. The supernatant was diluted into 5 vol. of 40 mM-Tris/HCl (pH 8.0)/1.0 mM-DTT, and 800 ml of packed DEAE-cellulose was then added. The mixture was stirred rapidly for 1 h, and then filtered through a coarse sintered-glass funnel. The resultant slurry was washed with 6 litres of 40 mM-Tris/HCl (pH 8.0) and poured into a 5.0 cm × 60 cm column. Protein was eluted with a linear gradient made from 2.2 litres each of 40 mM-Tris/HCl (pH 8.0)/1.0 mM-DTT and 40 mM-Tris/HCl (pH 8.0)/1.0 mM-DTT/0.45 mM NaCl. The resulting fractions were analysed for both Ca²⁺-binding activity (by using the Chelex-100 competitive Ca²⁺-binding assay; Waisman & Rasmussen, 1983) and calmodulin activity (Teo et al., 1973). Three peaks (I–III) of Ca²⁺-binding activity were pooled, and subsequently the Ca²⁺-binding protein responsible for the Ca²⁺-binding activity peak I was subjected to further purification.

Purification of CAB-27 from peak I

The pooled peak was dialysed against buffer A (1.0 mM-sodium phosphate buffer, pH 6.8, 1 mM-DTT), and applied to a 5.0 cm × 30 cm column of hydroxyapatite previously equilibrated with buffer A. The column was washed with 2 column volumes of buffer A and eluted with 2 litres of buffer A containing a linear phosphate gradient (1.0–100 mM). Fractions (25 ml) were collected and analysed for Ca²⁺-binding activity by Chelex-100 assay. The Ca²⁺-binding activity peak was heated at 80 °C for 2 min, and the denatured protein was removed by centrifugation at 30000 g for 30 min. The supernatant was concentrated by ultrafiltration (PM 10; Amicon Corp.), dialysed against buffer B (40 mM-Mops, pH 7.1, 150 mM-NaCl and 1 mM-DTT), applied to a high-performance gel-permeation liquid-chromatography column (TSK-G3000SW; LKB), and eluted with buffer B at a flow rate of 30 ml/h. Fractions (3.0 ml) were collected and assayed for Ca²⁺-binding activity.

Ca²⁺ binding of purified CAB-27

This was determined by equilibrium dialysis. CAB-27 was first dialysed overnight against 1000 vol. of a solution containing 150 mM-KCl, 10 mM-Mops (pH 7.1), 3 mM-MgCl₂, 1.0 mM-DTT and 0.1 mM-EGTA, to remove bound Ca²⁺ from the protein. The dialysed protein was then used for equilibrium dialysis as follows. A 0.5 ml portion of protein was dialysed with shaking for 48 h at 4 °C against 100 ml of the same solution (see above) containing various amounts of CaCl₂ and ⁴⁴Ca⁺ (5 μCi) to achieve the desired free Ca²⁺ concentration. The solutions outside and inside the dialysis tubing were removed, the A⁵₇⁸ was determined, and then the protein concentration calculated (A₅₇⁸ = 5.72). Portions of these solutions were subjected to liquid-scintillation spectrometry. The association constants for metal and H⁺ binding to EGTA were based on values measured by Fabiato (1981).

Amino acid analysis

CAB-27 was dialysed overnight against two changes of 1000 vol. of 40 mM-NH₄HCO₃, and portions of protein solutions were transferred to hydrolysis tubes containing 0.1% phenol and 0.22% 2-mercaptoethanol; 10 nmol of noreleucine was used as an internal standard, to correct for losses of protein. Hydrolysis was carried out at 110 °C for 24, 48 and 72 h. The calculated values were based on mean values from eight determinations. Performic acid oxidation was performed as described by Hirs (1967). Tryptophan determinations were performed as detailed by Simpson et al. (1976). Recoveries of tryptophan typically ranged between 90 and 95%.

Sedimentation-velocity experiments

These were carried out at 40000 rev./min at 18 °C (Yphantis, 1964). Data were corrected to the density and viscosity of water at 20 °C. The partial specific volume was determined (Cohn & Edsall, 1943). The absorption coefficient was estimated from protein concentration determined by amino acid analysis. The Stokes radius was determined on a calibrated TSK-G3000SW column. The molecular mass was determined from Stokes-radius and sedimentation-coefficient data (Siegel & Monty, 1966).

Other methods

Agarose-gel isoelectric focusing (Saravis et al., 1979), ⁴⁴Ca⁺ autoradiography (Maruyama et al., 1984), Chelex competitive assay (Waisman & Rasmussen, 1983), protein determination (Bradford, 1976), calmodulin assay (Teo et al., 1973), phospholipase A₂ assay (Khanna et al., 1986) and SDS/PAGE (Laemmli, 1970) were performed as described in the references.

RESULTS AND DISCUSSION

Purification of bovine brain CAB-27

Fig. 1 shows the DEAE-cellulose profile of 100000 g supernatant of bovine brain. The resulting fractions were analysed for Ca²⁺-binding and calmodulin activity. Three peaks of Ca²⁺-binding activity were observed, and only peak III co-eluted with calmodulin activity. The pooled peak I was applied to a hydroxyapatite column and eluted with a linear gradient of sodium phosphate. As shown in Fig. 2, only a single peak of Ca²⁺-binding activity was resolved between 50 mM and 80 mM-phosphate. The unbound fraction did not contain detectable Ca²⁺-binding activity. The Ca²⁺-binding activity peak was pooled, heat-treated (see the Experimental section), and subjected to gel-permeation chromatography (Fig. 3). A single peak of Ca²⁺-binding activity migrating with an apparent Mₚ of 35000 was resolved. By this purification procedure 33 mg of CAB-27 was purified from 1 kg of bovine brain. Determined by the densitometric analysis of SDS/PAGE gels, 1 kg of bovine brain contains 130 mg of CAB-27; therefore 25% of CAB-27 was recovered after purification (Table 1).

The SDS/PAGE analysis of the purification procedure is presented in Fig. 4. The purity of CAB-27 is suggested by the presence of a single protein band after the final step of purification. Protein purity was also confirmed by isoelectric focusing (Fig. 5a). ⁴⁴Ca⁺ autoradiography confirmed that the purified protein bound Ca²⁺ (Fig. 5b).
Physical properties of CAB-27

In a previous paper (Waisman et al., 1983a) we erroneously reported the molecular mass of CAB-27 as 24000 Da. As shown in Fig. 4, calculation from SDS/PAGE analysis of CAB-27 established a value of 27000 Da.

Table 2 summarizes the various physical parameters of the purified CAB-27. A molecular mass of the protein, determined from the Stokes radius and sedimentation coefficient (Siegel & Monty, 1966), under non-denaturing conditions, of 35500 Da indicates that the protein is a monomer. The frictional ratio (Siegel & Monty, 1966) of 1.17 suggests that CAB-27 is a symmetrical molecule. By using a protein concentration determined by amino acid analysis, an absorption coefficient $A_{1%}^{280} = 5.7$ was calculated. The mean residue ellipticity in the absence of Ca$^{2+}$ was $[\theta]_{222} = -6282$ (degrees⋅cm2⋅dmol$^{-1}$). Addition of Ca$^{2+}$ did not affect the $[\theta]_{222}$ value. By using the computer-assisted program (Siegel et al., 1980), the apparent α-helix content of CAB-27 was estimated to be about 16%.

Amino acid composition

The amino acid composition of CAB-27 is shown in Table 3. CAB-27 contains about 26% glutamic acid and aspartic acid and about 13% basic residues (lysine, histidine and arginine). The pH of 4.8 indicates that the molecule is highly acidic. Interestingly, this protein has a high ratio of phenylalanine/tyrosine and only 2 mol of tryptophan/mol of protein, which accounts for its
Fig. 3. High-performance gel-permeation liquid chromatography (TSK-G3000SW) of the Ca\(^{2+}\)-binding activity peak (Fig. 2) from hydroxyapatite chromatography of peak I

Heat treatment of Ca\(^{2+}\)-binding activity peak from hydroxyapatite chromatography of peak I, followed by high-performance gel-permeation liquid-chromatography were performed as described in the Experimental section. Fractions were analysed for Ca\(^{2+}\)-binding activity (○) and protein concentration (●).

![Graph showing protein concentration and Ca\(^{2+}\) binding](image)

Table 1. Purification of CAB-27 from bovine brain

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Total protein (mg)</th>
<th>Amount of CAB-27* (mg)</th>
<th>Yield (%)</th>
<th>Purification (fold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 100000 g supernatant</td>
<td>410.2</td>
<td>132</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>2. DEAE-cellulose</td>
<td>3025</td>
<td>82</td>
<td>62.3</td>
<td>8.5</td>
</tr>
<tr>
<td>3. Hydroxyapatite</td>
<td>176</td>
<td>53</td>
<td>40.3</td>
<td>71.6</td>
</tr>
<tr>
<td>4. Heat treatment</td>
<td>56</td>
<td>42</td>
<td>31.6</td>
<td>149.6</td>
</tr>
<tr>
<td>5. TSK-G3000SW</td>
<td>33</td>
<td>33</td>
<td>25.1</td>
<td>312.5</td>
</tr>
</tbody>
</table>

* As determined by densitometric analysis of SDS/PAGE.

characteristic u.v.-absorption spectrum (results not shown) and low Al\(^{2+}\) value. The spectrum and unusual phenylalanine/tyrosine ratio is similar to the spectrum reported for calmodulin and other EF-hand-containing proteins (Table 3), such as calcineurin (β subunit), S-100 and vitamin-D-dependent Ca\(^{2+}\)-binding protein (28K-CaBP). Table 3 shows that, despite their similar molecular masses, 28K-CaBP and CAB-27 have similar but non-identical amino acid compositions. The differences include the presence of cysteine residues in CAB-27, but not in 28 K-CaBP, and a significantly higher content of valine and histidine in CAB-27.

Ca\(^{2+}\)-binding properties of CAB-27

Fig. 6 presents the saturation curve for Ca\(^{2+}\) binding to CAB-27. Scatchard (1949) analysis of data (Fig. 6, inset) reveals that, in the presence of 3.0 mM-MgCl\(_2\) and 150 mM-KCl, CAB-27 binds 2.0 mol of Ca\(^{2+}\)/mol of protein with an apparent K\(_d\) = 0.22 μM. In the absence of MgCl\(_2\) the apparent K\(_d\) is decreased to 0.14 μM (results not shown). This result suggests that CAB-27 demonstrates both specificity and high affinity for Ca\(^{2+}\) in vitro, and therefore may represent an intracellular Ca\(^{2+}\) receptor in vivo.

Tissue distribution of CAB-27

The tissue distribution of CAB-27 was investigated by the immunoblot procedure (Towbin et al., 1979). In Fig. 7, 200 μg of bovine brain and kidney 100000 g supernatants and 2 μg of purified CAB-27 were subjected to SDS/PAGE and then immunoblotted by using the mouse anti-CAB-27 antibody. The results suggest that the CAB-27 immunoreactivity present in the 100000 g supernatants of brain and kidney is of molecular mass identical with that of purified bovine brain CAB-27. Similar experiments using pre-immune antiserum failed...
Inhibition of phospholipase A₂

Phospholipase A₂-inhibitory proteins have been detected in a number of systems, including rat macrophages (Blackwell et al., 1982), rat renal medullary cells (Rothhut et al., 1983), rabbit neutrophils (Hirata, 1981), and mouse and bovine thymus preparations (Gupta et al., 1984). These proteins have been termed ‘lipocortins’ and shown to consist of a 35 kDa monomer (lipocortin I), a 36 kDa monomer (lipocortin II) or a 36 kDa oligomer consisting of two copies of both the 36 kDa and 6–10 kDa subunits (lipocortin-85). Lipocortin II has been shown to bind 2 mol of Ca²⁺/mol with Kₐ (Ca²⁺) of 4.5 µM (Glenney, 1986). Lipocortins have been shown to inhibit phospholipase A₂ activity, by both an inhibition assay in vitro, which utilizes purified pig pancreatic phospholipase A₂ (Pepinsky et al., 1986), and in cellular assays in which prostaglandin production is monitored. Work from our laboratory using the phospholipase A₂ assay in vitro has identified lipocortin-85 as a potent inhibitor of phospholipase A₂ activity (Khanna et al., 1986).

Western blot analysis has revealed that the lipocortins are not present in brain tissues (Saravis et al., 1979). In contrast, ‘Northern’ analysis shows small but detectable amounts of lipocortin mRNA and protein in rat brain (Wallner et al., 1986). We have used the phospholipase A₂ assay in vitro to test several bovine brain Ca²⁺-binding proteins as potential inhibitors of phospholipase A₂ activity. Under identical assay conditions used for the lipocortins (Khanna et al., 1986), we have identified CAB-27 as an inhibitor of phospholipase A₂ activity. As

Table 2. Physical properties of CAB-27

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentation coefficient (s₂₀,₅₀)</td>
<td>3.63 S</td>
</tr>
<tr>
<td>Stokes radius (nm)</td>
<td>2.30</td>
</tr>
<tr>
<td>Frictional coefficient (f/f₀)</td>
<td>1.17</td>
</tr>
<tr>
<td>Partial specific volume (V)</td>
<td>0.733</td>
</tr>
<tr>
<td>Absorbance (A₄₅₀ nm)</td>
<td>5.722</td>
</tr>
<tr>
<td>pI</td>
<td>4.8</td>
</tr>
<tr>
<td>Molecular mass</td>
<td>35.500 Da</td>
</tr>
<tr>
<td>From sedimentation and gel filtration</td>
<td>27.000 Da</td>
</tr>
<tr>
<td>α-Helical content (%)</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Fig. 4. SDS/PAGE analysis at different stages of CAB-27 purification

Portions of pooled fractions obtained during CAB-27 purification were subjected to SDS/PAGE (5–20% acrylamide gels). Lanes: a, bovine brain 100000 g supernatant; b, DEAE-cellulose peak 1; c, hydroxyapatite chromatography of peak 1; d, after heat treatment; e, TSK-G3000SW chromatography of heat-treated peak 1; f, Mₙ standards [alcohol dehydrogenase (150000), catalase (116000), phosphorylase b (97400), bovine serum albumin (66200), ovalbumin (45000), carbonic anhydrase (29000), trypsin inhibitor (20100)].

Fig. 5. Agarose-gel isoelectric focusing of CAB-27 (a) and ⁴⁰Ca²⁺ autoradiographic analysis (b)

Agarose-gel isoelectric focusing was performed in the presence of 2 M-urea as described in the Experimental section. Separated peptides were electrophoretically transferred to the nitrocellulose sheet at the running current of 100 mA for 60 min. After ⁴⁰Ca²⁺ autoradiography, the nitrocellulose sheet was stained with Amido Black and destained for observation of peptide bands.
Table 3. Amino acid composition of CAB-27

<table>
<thead>
<tr>
<th>Composition (mol of residues/mol)</th>
<th>CAB-27a</th>
<th>Calmodulinb</th>
<th>Parvalbuminc</th>
<th>28K-CaBpd</th>
<th>Calcineurinf</th>
<th>Calregulinf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asx</td>
<td>24</td>
<td>23</td>
<td>12</td>
<td>33</td>
<td>28</td>
<td>90</td>
</tr>
<tr>
<td>Thr</td>
<td>9</td>
<td>12</td>
<td>5</td>
<td>12</td>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>Ser</td>
<td>13</td>
<td>4</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Glx</td>
<td>40</td>
<td>27</td>
<td>13</td>
<td>38</td>
<td>22</td>
<td>97</td>
</tr>
<tr>
<td>Pro</td>
<td>10</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>Gly</td>
<td>17</td>
<td>11</td>
<td>9</td>
<td>17</td>
<td>14</td>
<td>37</td>
</tr>
<tr>
<td>Ala</td>
<td>20</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Cys</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>18</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>13</td>
<td>23</td>
</tr>
<tr>
<td>Met</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Ile</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>11</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>Leu</td>
<td>26</td>
<td>9</td>
<td>9</td>
<td>33</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>Tyr</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>Phe</td>
<td>14</td>
<td>8</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>His</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>Lys</td>
<td>16</td>
<td>7</td>
<td>16</td>
<td>22</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>Arg</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Trp</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>24</td>
</tr>
</tbody>
</table>

\(M_r\)
- 27000
- 16700
- 12000
- 28000
- 19000
- 63000

- Values correspond to \(M_r\) of 27000.
- Wattserson et al. (1980).
- Berchtold et al. (1982).
- Baudier et al. (1985).
- Waisman et al. (1985b).

Fig. 6. Ca\(^{2+}\) binding by CAB-27

The experiment was carried out by equilibrium dialysis as described in the Experimental section. Conditions: 150 mM-KCl, 10 mM-Mops (pH 7.1), 3.0 mM-MgCl\(_2\), 1.0 mM-DTT and 0.1 mM-EGTA. Inset, Scatchard plot of data: \(\bar{V}, Ca^{2+}\) bound (mol/mol of CAB-27); \(C\), free [Ca\(^{2+}\)].

Fig. 7. Distribution of CAB-27 immunoreactivity in bovine tissues

Bovine tissue 100000 g supernatants (200 μg) or purified bovine brain CAB-27 (2 μg) were electrophoresed on 12.5% -polyacrylamide gel in the presence of 0.1% SDS. Mouse antibodies to CAB-27 or control antibodies (results not shown) were used in the immunoblotting procedure as outlined in the Experimental section. The lanes correspond to purified bovine brain CAB-27 (a), bovine brain 100000 g supernatant (b) and bovine kidney 100000 g supernatant (c).
Various Ca\(^{2+}\)-binding proteins were tested for phospholipase A\(_2\) inhibitory activity as described in the Experimental section. The data presented show a typical titration curve for CAB-27 (●), or a single analysis in triplicate with 60 μg of CAB-48 (×), calmodulin (○), calregulin (□), S-100 (▽), calcineurin (○), or parvalbumin (△). CAB-27 (μg)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Inhibition} & \text{0} & \text{20} & \text{40} & \text{60} & \text{80} \\
\hline
\text{CAB-27 (μg)} & & & & & \\
\hline
\end{array}
\]

REFERENCES

Received 28 November 1986/28 January 1987; accepted 17 February 1987