Nitroreductase activity of heart lipoamide dehydrogenase

C. Stanley TSAI
Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, Ont. K1S 5B6, Canada

A novel reaction catalysed by lipoamide dehydrogenase is described. In the presence of NADH, lipoamide dehydrogenase reduces the nitro group of 4-nitropyridine and 4-nitropyridine N-oxide. The elution profiles from a DEAE-cellulose column for the dehydrogenase and nitroreductase activities are identical. Chemical modifications of critical amino acid residues suggest that the two activities share a common catalytic domain. Nitro reduction catalysed by lipoamide dehydrogenase was monitored spectrophotometrically and chromatographically. The major product from the enzymic reduction of 4-nitropyridine was isolated and characterized structurally as N,N-bis(pyridinyl)hydroxylamine, which is formed presumptively via 4-hydroxyniminopyridine in a four-electron redox reaction.

INTRODUCTION

Previous studies by Dixon (1971a,b) showed that free reduced flavin reacted with a wide variety of acceptors. A combination of flavin with apoenzymes greatly alters its acceptor specificity. Thus flavoenzymes serve as ideal systems with which to investigate the role of protein molecules in modulating functional and substrate specificities of enzymes. Lipoamide dehydrogenase (NADH: lipoamide oxidoreductase, EC 1.8.1.4) from pig heart is a dimeric flavoenzyme. It contains one molecule of FAD, a redox-active disulphide and a catalytically competent histidine residue per subunit (Massey & Palmer, 1962a; Williams, 1976; Tsai et al., 1982). The enzyme catalyses a number of NADH-linked reactions, utilizing acceptors of varied structures.

During my search for new electron acceptors with which to investigate the functional specificity of lipoamide dehydrogenase, I observed that the enzyme reduces 4-nitropyridine and 4-nitropyridine N-oxide with NADH as an electron donor. The reduction of the nitro group by lipoamide dehydrogenase is novel and mechanistically interesting, because the nitro group can accept various numbers of electrons in the redox reactions (Rinehart, 1973). The major product from the enzymic reduction of 4-nitropyridine has been isolated and structurally characterized. A plausible mechanism for lipoamide dehydrogenase-catalysed nitroreduction is discussed.

EXPERIMENTAL

Materials

Lipoamide dehydrogenase from pig heart, NADH, DL-lipoamide and iodoacetic acid were obtained from Sigma Chemical Co. The enzyme was checked for purity by electrophoresis, spectrometry \((A_{340}/A_{450})\) and atomic absorption (for trace Cu\(^{2+}\) ion) before use (Tsai, 1980). Pyridine N-oxide and phenylglyoxal monohydrate were provided by Aldrich Chemical Co. and purified respectively by vacuum distillation and recrystallization before use. Methylene Blue was supplied by Fischer Scientific Co. DEAE-cellulose (DE 52) was the product of Whatman Laboratories. Silica-gel 60F-254 t.l.c. plates were purchased from BDH Chemicals.

\[
v = \frac{V_{AB}}{A_B + K_A B + K_B A + K_{AB} K_B}
\]
where \(V \) is the maximum velocity, \(K_a \) and \(K_b \) are Michaelis constants for NADH (A) and the nitro compound (B), and \(K_{ia} \) is the inhibition constant for NADH.

Chemical modifications of enzymes

Complexing with arsenite (Massey & Palmer, 1962b) and reductive carboxymethylation (Tsai et al., 1981a) of the redox-active disulphide group were carried out as described in the references cited. Photo-oxidation was sensitized with Methylene Blue (Tsai et al., 1982). Phenylglyoxalation of arginine residues and acetimidation of lysine residues were performed by the procedures of Tsai et al. (1981b). Amidation with propylamine was effected with 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide (Tsai et al., 1983).

For t.l.c. analyses of reaction products, the enzymic reduction was performed in a mixture containing

Chromatographic analyses

Anion-exchange column chromatography, which separated three lipoamide dehydrogenase isoenzymes (Stein & Stein, 1965; Cohen & McManus, 1972), was carried out by loading a dialysed solution of the enzyme on a column (2.6 cm \(\times \) 36 cm) of DEAE-cellulose (DE 52). Flavoprotein was eluted with a linear gradient of phosphate buffer, pH 7.5, from 0.050 M to 0.10 M in the first step and a salt gradient of 0–0.30 M-NaCl in 0.10 M-phosphate buffer, pH 7.5, in the second step.

For t.l.c. analyses of reaction products, the enzymic reduction was performed in a mixture containing

Table 1. Rate of O₂ consumption during nitroreduction

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate (10² k (min⁻¹))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NADH</td>
<td>7.01 ± 0.58</td>
</tr>
<tr>
<td>NADH + 4-nitropyridine</td>
<td>6.10</td>
</tr>
<tr>
<td>NADH + 4-nitropyridine N-oxide</td>
<td>7.46</td>
</tr>
</tbody>
</table>

\(\text{O₂ consumption was measured manometrically with a Gilson differential respirometer. The pseudo-first-order rate constants, } k, \text{ are given for reaction mixtures containing 196 nM enzyme and 0.10 mM-NADH with or without 0.10 mM nitro compound at pH 7.0.} \)
0.10 mg of lipoamide dehydrogenase, 10 mg of NADH and 5.0 mg of 4-nitropyridine per ml of 0.05 m-phosphate buffer, pH 7.0, at 25 °C. At time intervals, samples were withdrawn and immediately immersed in a boiling-water bath to stop the reaction. A 10 μl portion of the heated reaction mixture was applied on a silica-gel plate, which was developed with ethanol/acetic (1:1, by v/v). The products were detected under a u.v. lamp.

Isolation of the major reduction product

For this, a scaled-up reaction was carried out. The reaction mixture, containing 2.0 mg of enzyme, 200 mg of NADH and 50 mg of 4-nitropyridine in 3.0 ml of 0.05 m-phosphate buffer, pH 7.0, was kept at room temperature for 20–30 h. The product was precipitated, and was collected by suction filtration and washed twice with cold water; yield, 8–12 mg; m.p. 180–182 °C.

Elementary analysis gave: C, 63.70%; H, 5.33%; N, 22.21%; O, 8.76%.

Table 2. Effects of chemical modifications on nitroreductase activity

<table>
<thead>
<tr>
<th>Modification</th>
<th>Activity (% of control)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dehydrogenase</td>
</tr>
<tr>
<td>Reductive carboxymethylation</td>
<td>0</td>
</tr>
<tr>
<td>Arsenite chelation</td>
<td>0</td>
</tr>
<tr>
<td>Sensitized photo-oxidation</td>
<td>3</td>
</tr>
<tr>
<td>Phenylglyoxalation</td>
<td>83</td>
</tr>
<tr>
<td>Acetimidination</td>
<td>129</td>
</tr>
<tr>
<td>Amidation</td>
<td>98</td>
</tr>
</tbody>
</table>

Fig. 3. Anion-exchange (DEAE-cellulose) chromatography of lipoamide dehydrogenase

The column chromatography was performed as described in the text: —— buffer (first step) and salt (second step) gradients. Each fraction was assayed for protein (A_{280}; —), FAD content (A_{450}; ———), lipoamide dehydrogenase (○) and nitroreductase (△) activities.

Spectroscopic and analytical methods

Visible and u.v. spectra were taken with a Cary 14 spectrophotometer. i.r. spectra were recorded with a Perkin–Elmer model 237B i.r. spectrophotometer. Mass spectra were taken with a VG 7070E mass spectrometer (Mass Spectrometer Laboratory, University of Ottawa) equipped with a DEC PDP8 data system. N.m.r. spectra were obtained with a Varian XL-200 n.m.r. spectrometer equipped with Nicolet Fourier transform and TT-100 data system. Enzyme concentrations were determined spectrometrically at 455 nm by using an absorption coefficient of 1.3 nmol·cm⁻¹ and calculated on the basis of FAD content. pH was adjusted with a Fisher model 825 MP Accumet pH-meter, and ionic strength of eluates was measured with a Radiometer CDM2d conductivity-meter.

RESULTS

Lipoamide dehydrogenase was reduced by NADH to form a reduced enzyme. In the absence of external electron acceptors, the reduced enzyme was re-oxidized aerobically, resulting in oxidation of NADH with concomitant O₂ consumption (oxidase activity). The rate of NADH oxidation was facilitated by 4-nitropyridine and 4-nitropyridine N-oxide (Fig. 1), but not by pyridine N-oxide or 4-nitrophenol. Table 1 shows that 4-nitropyridine and its N-oxide facilitated NADH oxidation without stimulating O₂ consumption. In the absence of the enzyme neither 4-nitropyridine nor its N-oxide promoted NADH oxidation.

The reduction of 4-nitropyridine N-oxide by lipoamide dehydrogenase, with dihydrolipoamide as an electron donor, was demonstrated by the time-dependent decrease in the characteristic absorption of 4-nitropyridine N-oxide at 315 nm (Fig. 2). Furthermore, the rate of reduction was accelerated with increased enzyme concentrations (Fig. 2 inset).

Fig. 3 shows the intimate correspondence between the elution profiles for the dehydrogenase and nitroreductase.
Table 3. Kinetic parameters of lipoamide dehydrogenase-catalysed nitroreductions at pH 7.0

Average values for three determinations (±15%) are given. [E]₀ = 196 nm; A (a) and B (b) refer to electron donors and nitro compounds respectively.

<table>
<thead>
<tr>
<th></th>
<th>NADH 4-Nitopyridine</th>
<th>4-Nitopyridine N-oxide</th>
<th>Dihydrolipoamide 4-Nitopyridine N-oxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>V (µM/min)</td>
<td>21.7</td>
<td>37.9</td>
<td>8.33</td>
</tr>
<tr>
<td>Kₐ (µM)</td>
<td>30.4</td>
<td>14.2</td>
<td>41.7</td>
</tr>
<tr>
<td>Kₑ (µM)</td>
<td>43.0</td>
<td>164</td>
<td>250</td>
</tr>
<tr>
<td>Kₗ (µM)</td>
<td>2.78</td>
<td>13.4</td>
<td>8.75</td>
</tr>
<tr>
<td>V/[E]₀ (min⁻¹)</td>
<td>111</td>
<td>193</td>
<td>42.5</td>
</tr>
</tbody>
</table>

(reduction of 4-nitopyridine) activities for all isoenzymes, which were resolved by an anion-exchanger (Stein & Stein, 1965; Cohen & McManus, 1972). To substantiate further that lipoamide dehydrogenase is responsible for the nitroreduction, chemical modifications of critical amino acid residues were carried out to correlate the dehydrogenase and the nitroreductase activities (Table 2). Monomerization of the active-site disulphide by reductive carboxymethylation (Tsai et al., 1981a) and complexing thereof with arsenite (Massey & Palmer, 1962b) abolished the two activities. Photo-oxidative destruction of histidine residues sensitized by Methylene Blue (Tsai et al., 1983) was detrimental to both activities. Phenylglyoxylation of arginine residues, acetylimination of lysine residues and amidation of carboxy groups did not significantly affect the enzymic activities. These parallel chemical effects suggest that the nitroreduction and the dehydrogenation by lipoamide dehydrogenase share common structures for their catalytic activities.

Table 3 summarizes kinetic parameters for lipoamide dehydrogenase-catalysed reductions of 4-nitopyridine and 4-nitopyridine N-oxide. The progress of the enzymic reduction of 4-nitopyridine was followed by monitoring its product formation by silica-gel t.l.c. 4-Nitopyridine moved close to the solvent front, whereas NADH remained on the origin. Three products, with Rₑ values of 0.34, 0.58 and 0.78, were formed (Fig. 4). The compound with Rₑ 0.58 was the major product that accumulated with prolonged reaction time. It was readily isolated from a scaled-up reaction mixture, although attempts to isolate the other two products were unsuccessful. The isolated product moved on a silica-gel t.l.c. plate as a single spot with Rₑ values of 0.58 ± 0.02 or 0.16 ± 0.04 in ethanol/acetone (1:1, v/v) or acetone/ethyl acetate (2:3, v/v) as the developing solvent respectively. The absence of νₐ₀, at 1345 and 1540 cm⁻¹ in its i.r. spectrum (Table 4) implies the reduction of the nitro group. Spectral properties of the major product are summarized in Table 4.

Table 4. Some spectral characteristics of the major product from enzymic reduction of 4-nitopyridine

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Parameter</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.v. (CH₃OH)</td>
<td>λ max. (nm)</td>
<td>290</td>
</tr>
<tr>
<td>L.r.</td>
<td>ν (cm⁻¹)</td>
<td>1505, 1535, 1590, 1640</td>
</tr>
<tr>
<td>M.s.</td>
<td>m/z</td>
<td>187 (M⁺), 170 (M⁺ − 17), 146 (M⁺ − 41), 95 (base), 94 (C₁₁H₈N₂⁺), 78 (C₆H₅N⁺), 67 (94 − HCN) 51 (78 − HCN) 39 (C₃H₆N⁺)</td>
</tr>
<tr>
<td>H n.m.r. (C₆H₄O₂H)</td>
<td>δ (p.p.m.)</td>
<td>8.29 (d, 4H), 8.31 (d, 4H)</td>
</tr>
<tr>
<td>C n.m.r. (C₆H₄O₂H)</td>
<td>δ (p.p.m.)</td>
<td>110.87 (s, 6C), 150.96 (s, 4C)</td>
</tr>
</tbody>
</table>
DISCUSSION

Although the nitro group is not listed as one of the substrate functional groups for flavoenzymes (Walsh, 1982), nitroalkanes are oxidized by glucose oxidase (Porter & Bright, 1977) and 2-nitropropane dioxygenase (Kido & Soda, 1984). The present study demonstrates that lipoamide dehydrogenase, in addition to its dehydrogenase, transhydrogenase, electrontransferee, diaphorase and oxidase activities, catalyses the reduction of 4-nitropyridine and 4-nitropyridine N-oxide in the presence of NADH as the electron donor. This is concluded from the following observations. (1) 4-Nitropyridine and 4-nitropyridine N-oxide facilitate the rate of lipoamide dehydrogenase-catalysed NADH oxidation without stimulating O₂ consumption. (2) In the absence of lipoamide dehydrogenase redox reaction takes place neither between NADH and 4-nitropyridine nor between NADH and 4-nitropyridine N-oxide. (3) The reduction of 4-nitropyridine N-oxide with dihydrolipoamide as the electron donor is demonstrated by a time-dependent decrease in its characteristic absorption at 315 nm. (4) The reduction of 4-nitropyridine is evidenced by the time-dependent formation of three t.l.c.- distinguishable products. (5) The nitroreductase activity is co-eluted with the dehydrogenase activity of lipoamide dehydrogenase from a DEAE-cellulose column. Furthermore, both activities respond identically to chemical modifications.

The major product of lipoamide dehydrogenase-catalysed reduction of 4-nitropyridine has been isolated for structural characterization. The elementary analysis and the molecular ion (M⁺) of 187 from its mass spectrum suggest that the product is a dipyrindyl derivative, C₁₉H₁₆N₄O. The fragmentation pattern of the low-m/z region of the mass spectrum suggests the absence of the pyridine ring (Porter & Baldas, 1971). This is substantiated by the ¹H-n.m.r. spectrum, which indicates an equivalent substitution of the pyridine rings at the 4-position (White & Williams, 1971; Retcofsky & Friedel, 1967). The i.r. spectrum indicates the absence of the nitro group but the presence of the hydroxy and/or the amino group. These spectral characteristics are consistent with a structural assignment of NN-bis(pyridinyl)hydroxylamine.

In a model reaction, chemically reduced flavin promotes the reduction of nitrobenzene to nitrosobenzene and azoxybenzene, presumably via N-phenylhydroxylamine (Gibian & Baumstark, 1971). It is likely that 4-nitropyridine is reduced by the reduced lipoamide dehydrogenase to 4-hydroxyaminopyridine, which, in turn, replaces the nitro group of another 4-nitropyridine molecule by a substitution reaction (Boulton & McKillop, 1984) to yield NN-bis(pyridinyl)hydroxylamine (Scheme 1). Disulphide flavoenzymes are potentially capable of catalysing one-, two- or four-electron transfer reactions (Bruice, 1980; Walsh, 1980). One- and two-electron redox reactions catalysed by lipoamide dehydrogenase have been documented (Williams, 1976; Tsai et al., 1982, 1983). The present work demonstrates the reduction of 4-nitropyridine to NN-bis(pyridinyl)hydroxylamine catalysed by lipoamide dehydrogenase, presumably via a four-electron redox process.

This work was supported by a grant from the Natural Science and Engineering Research Council of Canada.

REFERENCES

Vol. 242

Scheme 1. A plausible mechanism for the formation of NN-bis(pyridinyl)hydroxylamine

EH₄ represents either two EH₄ dimer or four-electron-reduced enzyme.

Received 24 July 1986/3 October 1986; accepted 4 November 1986