Activation of the multicatalytic proteinase from rat skeletal muscle by fatty acids or sodium dodecyl sulphate

Burkhardt DAHLMANN, Malte RUTSCHMANN, Lothar KUEHN and Hans REINAUER
Biochemische Abteilung, Diabetes Forschungsinsttitut, Auf'm Hennekamp 65, D-4000 Düsseldorf, Federal Republic of Germany

(Received 8 November 1984/31 December 1984; accepted 22 January 1985)

A multicatalytic proteinase from rat skeletal muscle contains active site(s) catalysing the degradation of benzoyl-Val-Gly-Arg 4-methyl-7-coumarylamide, succinyl-Ala-Ala-Ala-Phe 4-methylcoumarylamide and \([^{14}C]methylcasein\) as well as benzyloxy-carbonyl-Leu-Leu-Glu 2-naphthylamide. These activities are 7–14-fold activated by 1 mM-sodium dodecyl sulphate. The activation leads to a higher susceptibility to the proteinase inhibitor chymostatin and to a lower ability to be inhibited and precipitated by antibodies raised against the non-activated enzyme. Since no changes in \(M_r\) or subunit composition were observed in the SDS-activated form, some conformational changes seem to occur during the activation step. More pronounced activation was observed in the presence of physiological concentrations of fatty acids; oleic acid at 100 \(\mu\)M concentrations stimulated the proteinase about 50-fold. In contrast with the non-activated proteinase, the activated enzyme considerably degrades muscle cytoplasmic proteins \(\textit{in vitro}\). Thus it is not unlikely that, \(\textit{in vivo}\), potential activators such as fatty acids can induce the multicatalytic proteinase to participate in muscle protein breakdown.

Intracellular protein degradation is catalysed by proteolytic enzymes that are localized within the lysosomal compartment as well as in the extralysosomal, cytoplasmic compartment. To prevent uncontrolled action of these proteinases, a situation that would lead to wastage and cell death, these enzymes are generally associated with proteinase inhibitors (Lenney, 1980). This proteinase–proteinase inhibitor interaction is probably one mechanism to regulate intracellular protein catalysis. In addition, a number of other mechanisms have been discussed that may be involved in the control of the highly co-ordinated breakdown of intracellular proteins (for reviews, see Goldberg & Dice, 1974; Goldberg & St. John, 1976; Holzer & Heinrich, 1980). Regulation may occur at both levels, by post-translational modification of the substrate proteins (Beynon, 1980) as well as by modulation of the proteolytic activities, e.g. by activators like \(\text{Ca}^{2+}\) (Murachi \textit{et al}., 1981) or ATP (Hershko & Ciechanover, 1982; Tanaka \textit{et al}., 1983).

We have recently isolated a high-molecular-mass proteinase from rat skeletal muscle tissue. This enzyme has been designated multicatalytic proteinase, on the basis of observations that the catalytic sites for the substrates Bz-Val-Gly-Arg-NMec, Suc-Ala-Ala-Phe-NMec, Z-Leu-Leu-Glu-2Nap and \([^{14}C]methyl\) casein were antagonistically affected by several compounds [Dahlmann \textit{et al}., 1983a; the preceding paper (Dahlmann \textit{et al}., 1985)].

Wilk & Orlowski (1980) have identified a similar enzyme in bovine pituitary. More recently, those authors reported that the Z-Leu-Leu-Glu-2-Nap-hydrolysing activity can be activated by low concentrations of SDS (Wilk & Orlowski, 1983).

In the present study we have investigated the effect of SDS and structurally related compounds on the hydrolytic activities of the multicatalytic proteinase from rat skeletal muscle with the aim of gaining insight into the mechanism of activation.
Experimental

Materials

The substrates Bz-Val-Gly-Arg-NMec and Suc-Ala-Ala-Phe-NMec were products from Bachem Feinchemikalien AG, Bubendorf, Switzerland. [14C]Methylcasein (0.82 μCi/mg) was obtained from New England Nuclear, Boston, MA, U.S.A. The substrate Z-Leu-Leu-Glu-2-NNap was generously given by Dr. D. Wilk, Mount Sinai School of Medicine, New York, NY, U.S.A. SDS was purchased from Pierce Chemical Co., Rockford, IL, U.S.A., and AG 11 A8 anion-exchange resin was from Bio-Rad, Richmond, CA, U.S.A. The saturated and unsaturated fatty acids, as well as sodium oleate and oleoyl ethyl ester were from Sigma Chemie G.m.b.H, Taufkirchen Germany.

Methods

The preparation of the multicatalytic proteinase from rat skeletal-muscle tissue and activity measurement were performed as described previously (Dahlmann et al., 1985).

The isolation of the immunoglobulin G fraction from rabbit anti-(multicatalytic proteinase) serum and the immunoinhibition assays were essentially performed as described previously (Dahlmann et al., 1982). Crossed immunoelectrophoresis was carried out as described by Weeke (1973), with 5% (v/v) anti-(multicatalytic proteinase) serum in 1% (w/v) agarose gels for the second dimension. Electrophoresis buffer was 24 mM-barbital, pH 8.6. Electrophoresis in the first dimension was at a constant voltage gradient of 20 V/cm for 45 min and at 10°C, followed by electrophoresis in the second dimension, run at 1.2 V/cm for 16 h and at 10°C. Washing, drying and staining with Coomassie Blue R250 of the agarose gel was performed as described by Johannson (1972).

Removal of SDS from the SDS-activated enzyme was carried out by using a column (1.5 cm × 13 cm) of AG 11 A8 resin equilibrated in distilled water (Kapp & Vinogradov, 1978). The flow rate was 60 ml/h and 2 ml fractions were collected. Routinely, a 2 ml portion of proteinase solution, containing about 3-4 mg of enzyme protein, was applied to the column after the enzyme had been concentrated and desalted by ultrafiltration in an Amicon cell (YM-30 membrane) or in Centricon 30 microconcentrators (Amicon Corp., Danvers, MA, U.S.A.). After chromatography, the fractions with proteolytic activity were pooled and dialysed against 20 mM-Tris/HCl/1 mM-EDTA/1 mM-NaCl/0.1% (v/v) mercaptoethanol, pH 7.5.

The isolation and separation of cytoplasmic proteins from skeletal muscle as well as measurement of their proteolytic degradation by using Coomassie Blue G250 was performed as described previously (Dahlmann et al., 1983b).

Protein concentration was determined with Coomassie Blue G250 by the method of Sedmak & Grossberg (1977), with control serum (LAB TROL; Dade, Miami, FL, U.S.A.) as a standard.

Results

When the activities of purified rat skeletal-muscle multicatalytic proteinase were tested in the presence of increasing concentrations of SDS, all four activities were found to be enhanced, and each activity was maximally activated at 0.03% SDS. At higher SDS concentrations the activities gradually decreased to basal values or below (Table 1).

In order to investigate whether activation of the enzyme was accompanied by a dissociation into subunits of the high-Μ, proteinase or whether it was due to the separation of an inhibitory peptide, the activated enzyme was subjected to gel filtration on TSK HW 55 (S) after removal of SDS by chromatography on AG 11 A8 resin (Dahlmann et al., 1983a). However, it was found that the activated enzyme, when tested with Bz-Val-Gly-Arg-NMec, Suc-Ala-Ala-Phe-NMec or [14C]-methylcasein as substrate, was eluted from the column at the same position as the non-activated enzyme (result not shown). Further, no difference in mobility or in subunit composition was detected with the activated proteinase as compared with the non-activated enzyme when analysed by electrophoresis in polyacrylamide gels under non-denaturing conditions and by SDS/polyacrylamide-gel electrophoresis respectively (results not shown). Since, also, an activation of the enzyme did not occur when the non-activated enzyme was chromatographed on AG 11 A8 resin (results not shown), all these findings argue against the presence of an inhibitory peptide that may be removed in the activation step.

A difference between the non-activated and SDS-activated enzyme becomes, however, apparent by analysis by rocket immunoelectrophoresis (Fig. 1). Whereas the rocket obtained with the untreated enzyme formed a double peak, this phenomenon was not observed with the SDS-activated enzyme (Fig. 1).

An altered reactivity of the SDS-activated enzyme with antibodies raised against the non-activated enzyme could also be observed in an immunoinhibition test. Thus a considerably larger amount of IgG was necessary to inhibit as well as to precipitate the enzyme in the activated form as compared with the non-activated enzyme (Fig. 2). This suggests that some conformational change is occurring in the proteinase molecule during the
Activation of multicatalytic proteinase

Table 1. Effect of SDS on the activities of the multicatalytic proteinase

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Bz-Val-Gly-Arg-NMec</th>
<th>Suc-Ala-Ala-Phe-NMec</th>
<th>Z-Leu-Leu-Glu-2Nap</th>
<th>SDS activ.</th>
<th>Enzyme activity (c.p.m. mg proteinase)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>264</td>
<td>105</td>
<td>517</td>
<td>91</td>
<td>600/85/1189/1168/620</td>
</tr>
<tr>
<td>0.1% SDS</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>600/85/1189/1168/620</td>
</tr>
<tr>
<td>0.5% SDS</td>
<td>216</td>
<td>105</td>
<td>517</td>
<td>91</td>
<td>600/85/1189/1168/620</td>
</tr>
<tr>
<td>1% SDS</td>
<td>91</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>600/85/1189/1168/620</td>
</tr>
<tr>
<td>1.5% SDS</td>
<td>63</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>600/85/1189/1168/620</td>
</tr>
<tr>
<td>2% SDS</td>
<td>39</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>600/85/1189/1168/620</td>
</tr>
</tbody>
</table>

Fig. 1. Crossed immunoelectrophoresis of multicatalytic proteinase

A 2.0 μg portion of multicatalytic proteinase (a), as well as of SDS-activated multicatalytic proteinase (b), was subjected to crossed immunoelectrophoresis with 5% (v/v) rabbit anti-(rat multicatalytic proteinase) serum. To remove SDS the activated enzyme was chromatographed on AG 11 A8 anion-exchange resin before immunoelectrophoresis.

Fig. 2. Immunotitration of multicatalytic proteinase

Multicatalytic proteinase (open symbols) and SDS-activated multicatalytic proteinase (closed symbols) after removal of SDS by chromatography on AG 11 A8 resin was incubated with rabbit anti-(rat multicatalytic proteinase) IgG for 60 min at 37°C. The mixture was then centrifuged for 10 min at 45000g. Residual hydrolytic activity was determined in the supernatants with Bz-Val-Gly-Arg-NMec (○, ■) and Suc-Ala-Ala-Phe-NMec (∆, ▲) as substrates. The activities are given as percentage of controls containing the proteinase solution and the IgG dilution buffer (0.15 M-NaCl/0.1 M-sodium phosphate, pH 7.4). Enzyme was dissolved in 20 mM-Tris/HCl/1 mM-EDTA/1 mM-NaNO3/0.1% (v/v) mercaptoethanol, pH 7.5.

activation step. This idea is also supported by the finding that, in the SDS-activated state, not only are the Bz-Val-Gly-Arg-NMec- and Suc-Ala-Ala-Phe-NMec-hydrolysing activities inhibited by chymostatin but the casinolytic activity, previously activated by chymostatin in the non-activated
enzyme, is now equally inhibited (Table 2). The same effect was observed when leupeptin was used instead of chymostatin (results not shown).

In an attempt to find activating molecules more likely to play a physiological role than does SDS, we tested saturated fatty acids with various even-numbered-carbon-chain lengths. As shown in Fig. 3, all fatty acids tested stimulated the caseinolytic activity of the multicatalytic proteinase irrespective of their chain length and concentration, but the stimulatory effect on the proteolytic activity was the most prominent with stearic, arachidic and behenic acids. The optimum chain length was C20:0, and the presence of this fatty acid at a concentration of 200 μM provoked a 40-fold increase in caseinolytic activity.

To study the effects of unsaturated fatty acids on the proteolytic activity, we tested the influence on the caseinolytic activity of the multicatalytic proteinase of oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids and compared it with that of stearic acid (C18:0). Oleic acid, the most abundant among unsaturated fatty acids in muscle, stimulates the proteolytic activity to a significant extent, at concentration as low as 0.02 μM. At 100 μM, the highest concentration of C18:1 acid tested, the enzyme activity was about 50-fold increased over control values (Fig. 4). By contrast, to achieve a stimulation of the proteinase activity by stearic, linoleic and linolenic acids, 100 μM concentrations of these fatty acids were required. SDS does not stimulate the proteinase at micromolar concentrations (Fig. 4) and, as mentioned above, 0.03% SDS, equivalent to 1 mM, is needed to maximally activate the enzyme. Sodium olate activated the enzyme to the same low extent as did linolenic acid, and no activation was observed with oleoyl ethyl ester (results not shown), indicating that the carboxy group of the fatty acid is important in the activation process.

Fatty acids also showed a stimulatory effect on both the Bz-Val-Gly-Arg-NMec- and Suc-Ala-Ala-Phe-NMec-hydrolysing activities, but to a much lower extent than on the caseinolytic activity (Table 3).

![Fig. 3. Effect of saturated fatty acids on the activity of the multicatalytic proteinase](image_url)

Table 2. Effect of chymostatin on the activities of the multicatalytic proteinase

A 0.05 ml portion of purified enzyme (11 μg), 0.05 ml of fatty acid dissolved in 20 mM-Tris/HCl/1 mM-EDTA/1 mM-NaNO3/0.1% (v/v) mercaptoethanol, pH 7.5, containing 6% (v/v) dimethyl sulphoxide and 0.05 ml of 0.1 M-potassium phosphate/30 mM-cysteine, pH 8.0, were incubated for 10 min at 37°C. A 0.05 ml portion of [14C]methylcasein was then added and the proteolytic activity was measured after a further incubation for 60 min at 37°C. The final concentrations of fatty acids were 0.02 μM (■), 1.56 μM (◇), 6.25 μM (△), 25 μM (△), 100 μM (●) and 200 μM (○). The proteolytic activities are given as percentage of the control value obtained without fatty acid.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Activity state of proteinase</th>
<th>Chymostatin final concn. (mM)</th>
<th>Activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 1 7.8 62.5 125 500</td>
</tr>
<tr>
<td>Bz-Val-Gly-Arg-NMec</td>
<td>Non-activated</td>
<td>100 81 62.9 26.1 19.4 9.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activated</td>
<td>100 82 51.3 13.2 6.7 2.5</td>
<td></td>
</tr>
<tr>
<td>Suc-Ala-Ala-Phe-NMec</td>
<td>Non-activated</td>
<td>100 109 58.2 49.1 23.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activated</td>
<td>100 90.9 27.3 18.2 18.2</td>
<td></td>
</tr>
<tr>
<td>[14C]Methylcasein</td>
<td>Non-activated</td>
<td>100 115 343 322 132 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Activated</td>
<td>100 88 89 84 83 70</td>
<td></td>
</tr>
</tbody>
</table>

1985
Table 3. Effect of fatty acids on the Bz-Val-Gly-Arg-NMec- and Suc-Ala-Ala-Phe-NMec-hydrolysing activities of the multicatalytic proteinase

A 0.05 ml sample of fatty acids (final concn. 100 μM) dissolved in 6% (v/v) dimethyl sulphoxide/20 mM-Tris-HCl/1 mM-EDTA/1 mM-NaNH3/0.1 (v/v) mercaptoethanol, pH 7.5, was mixed with 0.05 ml of multicatalytic proteinase (100 μg/ml) and preincubated for 10 min at 37°C, before 0.1 ml of substrate solution was added to measure proteolytic activity. Assays were carried out in triplicate and there was less than 5% variation between these replicates.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Bz-Val-Gly-Arg-NMec (pmol/min per ml)</th>
<th>(%)</th>
<th>Suc-Ala-Ala-Phe-NMec (pmol/min per ml)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>105</td>
<td>100</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>164</td>
<td>156</td>
<td>14</td>
<td>127</td>
</tr>
<tr>
<td>Oleic acid</td>
<td>688</td>
<td>655</td>
<td>116</td>
<td>1054</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>688</td>
<td>655</td>
<td>107</td>
<td>973</td>
</tr>
<tr>
<td>Linolenic acid</td>
<td>222</td>
<td>211</td>
<td>13</td>
<td>118</td>
</tr>
<tr>
<td>Arachidic acid</td>
<td>150</td>
<td>143</td>
<td>15</td>
<td>136</td>
</tr>
<tr>
<td>Behenic acid</td>
<td>509</td>
<td>485</td>
<td>39</td>
<td>355</td>
</tr>
</tbody>
</table>

Table 4. Degradation of muscle cytoplasmic proteins by multicatalytic proteinase

Cytoplasmic proteins dissolved in 20 mM-Tris/HCl, pH 7.5 and 9.5 respectively and multicatalytic proteinase were incubated in a shaking water bath for 22 h at 37°C. Proteinase was dissolved in 20 mM-Tris/HCl/1 mM-EDTA/1 mM-NaNH3/0.1% (v/v) mercaptoethanol, pH 7.5; from the activated proteinase SDS was removed by chromatography on AG 11 A8 resin. Controls contained Tris buffer without the enzyme. Degradation of the cytoplasmic protein was measured by using the Coomassie Blue G250-binding test described by Dahlmann et al. (1983b), and results are given as the percentage of the control value. Assay mixtures with activated and non-activated enzyme contained the same amount of enzyme as the ratio of substrate to enzyme of 20:1. Assays were carried out in duplicate, and there was less than 5% variation between these replicates.

<table>
<thead>
<tr>
<th>Cytoplasmic protein fraction</th>
<th>pH</th>
<th>Non-activated</th>
<th>Activated</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7.5</td>
<td>6.3</td>
<td>13.0</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>2.2</td>
<td>18.8</td>
</tr>
<tr>
<td>B</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>7.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9.5</td>
<td>0.84</td>
<td>32.4</td>
</tr>
</tbody>
</table>

Fig. 4. Effect of saturated and unsaturated fatty acids as well as SDS on the activity of the multicatalytic proteinase

Purified proteinase (11 μg) was incubated with stearic acid (■), oleic acid (△), linoleic acid (○), linolenic acid (□) and SDS (▲) respectively at the indicated concentrations. Conditions, buffer and assay conditions of proteolytic activity were as described in the legend to Fig. 3.

To investigate whether the activation of the multicatalytic proteinase may be of relevance for the degradation of substrates that more closely resemble the physiological ones, cytoplasmic proteins from rat skeletal muscle were subjected to the action of non-activated and SDS-activated proteinase. The cytoplasmic proteins had been fractionated into four groups (A,B,C,D) by anion-exchange chromatography (Dahlmann et al., 1983b). Fraction-D proteins, having pI values between 5.3 and 3.5 (Dahlmann et al., 1983b), were not used as substrates in these experiments, since they contained Bz-Val-Gly-Arg-NMec- and Suc-

Vol. 228
Ala-Ala-Phe-NMec-hydrolysing activity. As shown in Table 4, the non-activated enzyme degraded only group-A and group-C proteins to a small extent. When the same amount of SDS-activated enzyme was incubated with the substrate proteins, the degradation of group-A proteins was increased 2–3-fold and group-B and -C proteins were now degraded to a considerable extent at pH 9.5.

Discussion

The present data show that the activities of the multicatalytic proteinases from rat skeletal muscle can be stimulated by SDS. Maximum activation of the purified enzyme was obtained at concentration of 0.03% SDS in the activation mixture. Although a similar concentration of SDS was required to activate the multicatalytic proteinase from bovine pituitary (Wilk & Orłowski, 1983), an important difference between the enzymes from the two sources resides in the fact that, in the enzyme from pituitary, only the Z-Leu-Leu-Glu-2NNap-hydrolysing activity is activated, whereas the other two activities are inhibited by SDS. In contrast, in the enzyme from rat skeletal muscle, all four activities tested are activated by SDS. The action of SDS appears to lead to the formation of a persistently activated state of the enzyme, in that, after the removal of SDS by chromatography on AG 11 A8 anion-exchange resin, about 80% of the enzyme activity loaded on to the column was recovered (results not shown). In the activation experiments the detergent was in a 3000-fold molar excess over the enzyme. Since Kapp & Vinogradov (1978) determined the ratio of SDS to protein to be 0.1–1.4 mol/mol after chromatography on AG 11 A8 and as no differences in electrophoretic mobility were found in our experiments between non-activated and SDS-activated enzyme after removal of SDS, we conclude that the major part of SDS was removed by this anion-exchange-chromatographic step without loss of activation of the enzyme.

The mechanism of activation, however, remains unclear. Wilk & Orłowski (1983) suggested that the detergent removes an inhibitor from the enzyme. On the basis of the results of gel-filtration experiments and analysis by SDS/polyacrylamide-gel electrophoresis we have, however, reason to believe that this activation step is not due to the removal of a potential inhibitory protein, since no change in M_r or subunit composition was detected with the activated proteinase. On the other hand, alterations became apparent when the activated enzyme was allowed to react with antibodies raised against the non-activated proteinase. The double peak that formed between non-activated enzyme and the antibody was resolved to a single peak for the pair SDS-activated enzyme/antibody. Such an immunological 'camel' precipitate formation has been reported for partly degraded membrane proteins (Bjerrum & Bøg-Hansen, 1976). Alternatively, partial dissociation into subunits could also explain such a precipitate formation, as has been observed with the fatty acid synthetase complex (Paskin & Mayer, 1976). If the latter is correct, the activated enzyme would be in a more stable conformation that does not dissociate into subunits under the conditions of immunoelectrophoresis.

Indeed, from the results obtained with the immunoinhibition experiments, we conclude that the activation of the enzyme may evoke some conformational alterations in the molecular structure, since the amount of antibodies needed for inhibition and precipitation of the activated enzyme is more than twice that amount of antibodies necessary to achieve the same with the non-activated form of enzyme.

Assuming that such an activation of the multicatalytic proteinase is of significance in vivo, fatty acids would be potential candidates as modulators of the proteinase activity. Saturated fatty acids of all chain lengths tested slightly activated the catalytic activity of the enzyme and the largest stimulatory effect was found with a carbon chain length of 20. Among the unsaturated fatty acids, oleic acid was found to be the most efficient fatty acid, stimulating the proteinase activity at concentrations as low as 0.02 μM. A higher degree of unsaturation of the fatty acid reduced its ability to activate the proteinase, as shown for linoleic and linolenic acid.

To our knowledge the concentration of free fatty acids within the muscle cell is presently unknown and the significance of the stimulatory effect of fatty acids on the multicatalytic proteinase is therefore difficult to assess. The increased fatty acid concentration as reported for skeletal-muscle tissue of diabetic rats (Garland & Randle, 1963) could result in an increased activity of the multicatalytic proteinase, or, in vivo the proteinase is per se in the activated form if the basal intracellular concentration of free fatty acids is within the micromolar range. Opinions about the intracellular level of fatty acids appear to be contradictory and, as recently discussed by Van der Vusse & Reneman (1984), there are several reasons to believe that the concentration within the cells is lower than 100 nmol/g wet wt. of tissue. In dog myocardial biopsies, concentrations as low as 10 μmol/litre were estimated (Van der Vusse et al., 1982). If in skeletal muscle the concentration of fatty acids is of similar magnitude, the multicatalytic proteinase would be in a moderately activated
state within the cell. Thus, during diabetes and starvation, when the concentration of fatty acids is known to increase within the muscle tissue (Garland & Randle, 1964), fatty acids could dramatically increase the activity of the multicatalytic proteinase, which may then participate in the increased protein breakdown observed under these catabolic conditions. Modulation of proteolytic activity by fatty acids was reported previously for human granulocyte elastase (Ashe & Zimmerman, 1977) and for rat mast-cell chymase (Kido et al., 1984). The activities of both enzymes are inhibited by fatty acids, whereas fatty acid alcohol esters increase the activity of the granulocyte elastase. Thus further investigations, to see whether fatty acids are regulatory compounds for the activity of proteolytic enzymes, may be remunerative.

This work was supported by the ‘Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen’, Düsseldorf, by the ‘Bundesministerium für Jugend, Familie und Gesundheit’, Bonn, and by a grant (SFB 113, Projekt G4) from the ‘Deutsche Forschungsgemeinschaft’, Bonn. We thank Mrs. R. Schitte for expert technical assistance.

References

